soft float support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1332 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
4f716dc681
commit
158142c2c2
@ -229,7 +229,7 @@ ifeq ($(TARGET_ARCH), i386)
|
||||
OBJS+= vm86.o
|
||||
endif
|
||||
ifeq ($(TARGET_ARCH), arm)
|
||||
OBJS+=nwfpe/softfloat.o nwfpe/fpa11.o nwfpe/fpa11_cpdo.o \
|
||||
OBJS+=nwfpe/fpa11.o nwfpe/fpa11_cpdo.o \
|
||||
nwfpe/fpa11_cpdt.o nwfpe/fpa11_cprt.o nwfpe/fpopcode.o nwfpe/single_cpdo.o \
|
||||
nwfpe/double_cpdo.o nwfpe/extended_cpdo.o
|
||||
endif
|
||||
@ -237,8 +237,14 @@ SRCS:= $(OBJS:.o=.c)
|
||||
OBJS+= libqemu.a
|
||||
|
||||
# cpu emulator library
|
||||
LIBOBJS=exec.o kqemu.o translate-all.o cpu-exec.o\
|
||||
LIBOBJS=exec.o kqemu.o translate-op.o translate-all.o cpu-exec.o\
|
||||
translate.o op.o
|
||||
ifdef CONFIG_SOFTFLOAT
|
||||
LIBOBJS+=fpu/softfloat.o
|
||||
else
|
||||
LIBOBJS+=fpu/softfloat-native.o
|
||||
endif
|
||||
DEFINES+=-I$(SRC_PATH)/fpu
|
||||
|
||||
ifeq ($(TARGET_ARCH), i386)
|
||||
LIBOBJS+=helper.o helper2.o
|
||||
@ -399,7 +405,9 @@ libqemu.a: $(LIBOBJS)
|
||||
|
||||
translate.o: translate.c gen-op.h opc.h cpu.h
|
||||
|
||||
translate-all.o: translate-all.c op.h opc.h cpu.h
|
||||
translate-all.o: translate-all.c opc.h cpu.h
|
||||
|
||||
translate-op.o: translate-all.c op.h opc.h cpu.h
|
||||
|
||||
op.h: op.o $(DYNGEN)
|
||||
$(DYNGEN) -o $@ $<
|
||||
|
5
configure
vendored
5
configure
vendored
@ -593,6 +593,7 @@ fi
|
||||
#echo "Creating $config_mak, $config_h and $target_dir/Makefile"
|
||||
|
||||
mkdir -p $target_dir
|
||||
mkdir -p $target_dir/fpu
|
||||
if test "$target" = "arm-user" -o "$target" = "armeb-user" ; then
|
||||
mkdir -p $target_dir/nwfpe
|
||||
fi
|
||||
@ -658,6 +659,10 @@ if test "$target_user_only" = "yes" ; then
|
||||
echo "#define CONFIG_USER_ONLY 1" >> $config_h
|
||||
fi
|
||||
|
||||
if test "$target_cpu" = "arm" -o "$target_cpu" = "armeb" ; then
|
||||
echo "CONFIG_SOFTFLOAT=yes" >> $config_mak
|
||||
echo "#define CONFIG_SOFTFLOAT 1" >> $config_h
|
||||
fi
|
||||
# sdl defines
|
||||
|
||||
if test "$target_user_only" = "no"; then
|
||||
|
720
fpu/softfloat-macros.h
Normal file
720
fpu/softfloat-macros.h
Normal file
@ -0,0 +1,720 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal notice) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 32, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void shift32RightJamming( bits32 a, int16 count, bits32 *zPtr )
|
||||
{
|
||||
bits32 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 32 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 31 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts `a' right by the number of bits given in `count'. If any nonzero
|
||||
| bits are shifted off, they are ``jammed'' into the least significant bit of
|
||||
| the result by setting the least significant bit to 1. The value of `count'
|
||||
| can be arbitrarily large; in particular, if `count' is greater than 64, the
|
||||
| result will be either 0 or 1, depending on whether `a' is zero or nonzero.
|
||||
| The result is stored in the location pointed to by `zPtr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void shift64RightJamming( bits64 a, int16 count, bits64 *zPtr )
|
||||
{
|
||||
bits64 z;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z = a;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z = ( a>>count ) | ( ( a<<( ( - count ) & 63 ) ) != 0 );
|
||||
}
|
||||
else {
|
||||
z = ( a != 0 );
|
||||
}
|
||||
*zPtr = z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by 64
|
||||
| _plus_ the number of bits given in `count'. The shifted result is at most
|
||||
| 64 nonzero bits; this is stored at the location pointed to by `z0Ptr'. The
|
||||
| bits shifted off form a second 64-bit result as follows: The _last_ bit
|
||||
| shifted off is the most-significant bit of the extra result, and the other
|
||||
| 63 bits of the extra result are all zero if and only if _all_but_the_last_
|
||||
| bits shifted off were all zero. This extra result is stored in the location
|
||||
| pointed to by `z1Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0' and `a1' are considered to form
|
||||
| a fixed-point value with binary point between `a0' and `a1'. This fixed-
|
||||
| point value is shifted right by the number of bits given in `count', and
|
||||
| the integer part of the result is returned at the location pointed to by
|
||||
| `z0Ptr'. The fractional part of the result may be slightly corrupted as
|
||||
| described above, and is returned at the location pointed to by `z1Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift64ExtraRightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1 != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' can be arbitrarily large; in particular, if `count' is greater
|
||||
| than 128, the result will be 0. The result is broken into two 64-bit pieces
|
||||
| which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128Right(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
z1 = ( count < 64 ) ? ( a0>>( count & 63 ) ) : 0;
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' right by the
|
||||
| number of bits given in `count'. If any nonzero bits are shifted off, they
|
||||
| are ``jammed'' into the least significant bit of the result by setting the
|
||||
| least significant bit to 1. The value of `count' can be arbitrarily large;
|
||||
| in particular, if `count' is greater than 128, the result will be either
|
||||
| 0 or 1, depending on whether the concatenation of `a0' and `a1' is zero or
|
||||
| nonzero. The result is broken into two 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128RightJamming(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z0, z1;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else if ( count < 64 ) {
|
||||
z1 = ( a0<<negCount ) | ( a1>>count ) | ( ( a1<<negCount ) != 0 );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z1 = a0 | ( a1 != 0 );
|
||||
}
|
||||
else if ( count < 128 ) {
|
||||
z1 = ( a0>>( count & 63 ) ) | ( ( ( a0<<negCount ) | a1 ) != 0 );
|
||||
}
|
||||
else {
|
||||
z1 = ( ( a0 | a1 ) != 0 );
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' right
|
||||
| by 64 _plus_ the number of bits given in `count'. The shifted result is
|
||||
| at most 128 nonzero bits; these are broken into two 64-bit pieces which are
|
||||
| stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
|
||||
| off form a third 64-bit result as follows: The _last_ bit shifted off is
|
||||
| the most-significant bit of the extra result, and the other 63 bits of the
|
||||
| extra result are all zero if and only if _all_but_the_last_ bits shifted off
|
||||
| were all zero. This extra result is stored in the location pointed to by
|
||||
| `z2Ptr'. The value of `count' can be arbitrarily large.
|
||||
| (This routine makes more sense if `a0', `a1', and `a2' are considered
|
||||
| to form a fixed-point value with binary point between `a1' and `a2'. This
|
||||
| fixed-point value is shifted right by the number of bits given in `count',
|
||||
| and the integer part of the result is returned at the locations pointed to
|
||||
| by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
|
||||
| corrupted as described above, and is returned at the location pointed to by
|
||||
| `z2Ptr'.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shift128ExtraRightJamming(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount = ( - count ) & 63;
|
||||
|
||||
if ( count == 0 ) {
|
||||
z2 = a2;
|
||||
z1 = a1;
|
||||
z0 = a0;
|
||||
}
|
||||
else {
|
||||
if ( count < 64 ) {
|
||||
z2 = a1<<negCount;
|
||||
z1 = ( a0<<negCount ) | ( a1>>count );
|
||||
z0 = a0>>count;
|
||||
}
|
||||
else {
|
||||
if ( count == 64 ) {
|
||||
z2 = a1;
|
||||
z1 = a0;
|
||||
}
|
||||
else {
|
||||
a2 |= a1;
|
||||
if ( count < 128 ) {
|
||||
z2 = a0<<negCount;
|
||||
z1 = a0>>( count & 63 );
|
||||
}
|
||||
else {
|
||||
z2 = ( count == 128 ) ? a0 : ( a0 != 0 );
|
||||
z1 = 0;
|
||||
}
|
||||
}
|
||||
z0 = 0;
|
||||
}
|
||||
z2 |= ( a2 != 0 );
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 128-bit value formed by concatenating `a0' and `a1' left by the
|
||||
| number of bits given in `count'. Any bits shifted off are lost. The value
|
||||
| of `count' must be less than 64. The result is broken into two 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift128Left(
|
||||
bits64 a0, bits64 a1, int16 count, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1<<count;
|
||||
*z0Ptr =
|
||||
( count == 0 ) ? a0 : ( a0<<count ) | ( a1>>( ( - count ) & 63 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Shifts the 192-bit value formed by concatenating `a0', `a1', and `a2' left
|
||||
| by the number of bits given in `count'. Any bits shifted off are lost.
|
||||
| The value of `count' must be less than 64. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
shortShift192Left(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
int16 count,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 negCount;
|
||||
|
||||
z2 = a2<<count;
|
||||
z1 = a1<<count;
|
||||
z0 = a0<<count;
|
||||
if ( 0 < count ) {
|
||||
negCount = ( ( - count ) & 63 );
|
||||
z1 |= a2>>negCount;
|
||||
z0 |= a1>>negCount;
|
||||
}
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 128-bit value formed by concatenating `a0' and `a1' to the 128-bit
|
||||
| value formed by concatenating `b0' and `b1'. Addition is modulo 2^128, so
|
||||
| any carry out is lost. The result is broken into two 64-bit pieces which
|
||||
| are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits64 z1;
|
||||
|
||||
z1 = a1 + b1;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = a0 + b0 + ( z1 < a1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Adds the 192-bit value formed by concatenating `a0', `a1', and `a2' to the
|
||||
| 192-bit value formed by concatenating `b0', `b1', and `b2'. Addition is
|
||||
| modulo 2^192, so any carry out is lost. The result is broken into three
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr',
|
||||
| `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
add192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 carry0, carry1;
|
||||
|
||||
z2 = a2 + b2;
|
||||
carry1 = ( z2 < a2 );
|
||||
z1 = a1 + b1;
|
||||
carry0 = ( z1 < a1 );
|
||||
z0 = a0 + b0;
|
||||
z1 += carry1;
|
||||
z0 += ( z1 < carry1 );
|
||||
z0 += carry0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 128-bit value formed by concatenating `b0' and `b1' from the
|
||||
| 128-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
|
||||
| 2^128, so any borrow out (carry out) is lost. The result is broken into two
|
||||
| 64-bit pieces which are stored at the locations pointed to by `z0Ptr' and
|
||||
| `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub128(
|
||||
bits64 a0, bits64 a1, bits64 b0, bits64 b1, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
|
||||
*z1Ptr = a1 - b1;
|
||||
*z0Ptr = a0 - b0 - ( a1 < b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Subtracts the 192-bit value formed by concatenating `b0', `b1', and `b2'
|
||||
| from the 192-bit value formed by concatenating `a0', `a1', and `a2'.
|
||||
| Subtraction is modulo 2^192, so any borrow out (carry out) is lost. The
|
||||
| result is broken into three 64-bit pieces which are stored at the locations
|
||||
| pointed to by `z0Ptr', `z1Ptr', and `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
sub192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 a2,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 b2,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2;
|
||||
int8 borrow0, borrow1;
|
||||
|
||||
z2 = a2 - b2;
|
||||
borrow1 = ( a2 < b2 );
|
||||
z1 = a1 - b1;
|
||||
borrow0 = ( a1 < b1 );
|
||||
z0 = a0 - b0;
|
||||
z0 -= ( z1 < borrow1 );
|
||||
z1 -= borrow1;
|
||||
z0 -= borrow0;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies `a' by `b' to obtain a 128-bit product. The product is broken
|
||||
| into two 64-bit pieces which are stored at the locations pointed to by
|
||||
| `z0Ptr' and `z1Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void mul64To128( bits64 a, bits64 b, bits64 *z0Ptr, bits64 *z1Ptr )
|
||||
{
|
||||
bits32 aHigh, aLow, bHigh, bLow;
|
||||
bits64 z0, zMiddleA, zMiddleB, z1;
|
||||
|
||||
aLow = a;
|
||||
aHigh = a>>32;
|
||||
bLow = b;
|
||||
bHigh = b>>32;
|
||||
z1 = ( (bits64) aLow ) * bLow;
|
||||
zMiddleA = ( (bits64) aLow ) * bHigh;
|
||||
zMiddleB = ( (bits64) aHigh ) * bLow;
|
||||
z0 = ( (bits64) aHigh ) * bHigh;
|
||||
zMiddleA += zMiddleB;
|
||||
z0 += ( ( (bits64) ( zMiddleA < zMiddleB ) )<<32 ) + ( zMiddleA>>32 );
|
||||
zMiddleA <<= 32;
|
||||
z1 += zMiddleA;
|
||||
z0 += ( z1 < zMiddleA );
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' by
|
||||
| `b' to obtain a 192-bit product. The product is broken into three 64-bit
|
||||
| pieces which are stored at the locations pointed to by `z0Ptr', `z1Ptr', and
|
||||
| `z2Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul128By64To192(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, more1;
|
||||
|
||||
mul64To128( a1, b, &z1, &z2 );
|
||||
mul64To128( a0, b, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Multiplies the 128-bit value formed by concatenating `a0' and `a1' to the
|
||||
| 128-bit value formed by concatenating `b0' and `b1' to obtain a 256-bit
|
||||
| product. The product is broken into four 64-bit pieces which are stored at
|
||||
| the locations pointed to by `z0Ptr', `z1Ptr', `z2Ptr', and `z3Ptr'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE void
|
||||
mul128To256(
|
||||
bits64 a0,
|
||||
bits64 a1,
|
||||
bits64 b0,
|
||||
bits64 b1,
|
||||
bits64 *z0Ptr,
|
||||
bits64 *z1Ptr,
|
||||
bits64 *z2Ptr,
|
||||
bits64 *z3Ptr
|
||||
)
|
||||
{
|
||||
bits64 z0, z1, z2, z3;
|
||||
bits64 more1, more2;
|
||||
|
||||
mul64To128( a1, b1, &z2, &z3 );
|
||||
mul64To128( a1, b0, &z1, &more2 );
|
||||
add128( z1, more2, 0, z2, &z1, &z2 );
|
||||
mul64To128( a0, b0, &z0, &more1 );
|
||||
add128( z0, more1, 0, z1, &z0, &z1 );
|
||||
mul64To128( a0, b1, &more1, &more2 );
|
||||
add128( more1, more2, 0, z2, &more1, &z2 );
|
||||
add128( z0, z1, 0, more1, &z0, &z1 );
|
||||
*z3Ptr = z3;
|
||||
*z2Ptr = z2;
|
||||
*z1Ptr = z1;
|
||||
*z0Ptr = z0;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the 64-bit integer quotient obtained by dividing
|
||||
| `b' into the 128-bit value formed by concatenating `a0' and `a1'. The
|
||||
| divisor `b' must be at least 2^63. If q is the exact quotient truncated
|
||||
| toward zero, the approximation returned lies between q and q + 2 inclusive.
|
||||
| If the exact quotient q is larger than 64 bits, the maximum positive 64-bit
|
||||
| unsigned integer is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits64 estimateDiv128To64( bits64 a0, bits64 a1, bits64 b )
|
||||
{
|
||||
bits64 b0, b1;
|
||||
bits64 rem0, rem1, term0, term1;
|
||||
bits64 z;
|
||||
|
||||
if ( b <= a0 ) return LIT64( 0xFFFFFFFFFFFFFFFF );
|
||||
b0 = b>>32;
|
||||
z = ( b0<<32 <= a0 ) ? LIT64( 0xFFFFFFFF00000000 ) : ( a0 / b0 )<<32;
|
||||
mul64To128( b, z, &term0, &term1 );
|
||||
sub128( a0, a1, term0, term1, &rem0, &rem1 );
|
||||
while ( ( (sbits64) rem0 ) < 0 ) {
|
||||
z -= LIT64( 0x100000000 );
|
||||
b1 = b<<32;
|
||||
add128( rem0, rem1, b0, b1, &rem0, &rem1 );
|
||||
}
|
||||
rem0 = ( rem0<<32 ) | ( rem1>>32 );
|
||||
z |= ( b0<<32 <= rem0 ) ? 0xFFFFFFFF : rem0 / b0;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the square root of the 32-bit significand given
|
||||
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
| `aExp' (the least significant bit) is 1, the integer returned approximates
|
||||
| 2^31*sqrt(`a'/2^31), where `a' is considered an integer. If bit 0 of `aExp'
|
||||
| is 0, the integer returned approximates 2^31*sqrt(`a'/2^30). In either
|
||||
| case, the approximation returned lies strictly within +/-2 of the exact
|
||||
| value.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static bits32 estimateSqrt32( int16 aExp, bits32 a )
|
||||
{
|
||||
static const bits16 sqrtOddAdjustments[] = {
|
||||
0x0004, 0x0022, 0x005D, 0x00B1, 0x011D, 0x019F, 0x0236, 0x02E0,
|
||||
0x039C, 0x0468, 0x0545, 0x0631, 0x072B, 0x0832, 0x0946, 0x0A67
|
||||
};
|
||||
static const bits16 sqrtEvenAdjustments[] = {
|
||||
0x0A2D, 0x08AF, 0x075A, 0x0629, 0x051A, 0x0429, 0x0356, 0x029E,
|
||||
0x0200, 0x0179, 0x0109, 0x00AF, 0x0068, 0x0034, 0x0012, 0x0002
|
||||
};
|
||||
int8 index;
|
||||
bits32 z;
|
||||
|
||||
index = ( a>>27 ) & 15;
|
||||
if ( aExp & 1 ) {
|
||||
z = 0x4000 + ( a>>17 ) - sqrtOddAdjustments[ index ];
|
||||
z = ( ( a / z )<<14 ) + ( z<<15 );
|
||||
a >>= 1;
|
||||
}
|
||||
else {
|
||||
z = 0x8000 + ( a>>17 ) - sqrtEvenAdjustments[ index ];
|
||||
z = a / z + z;
|
||||
z = ( 0x20000 <= z ) ? 0xFFFF8000 : ( z<<15 );
|
||||
if ( z <= a ) return (bits32) ( ( (sbits32) a )>>1 );
|
||||
}
|
||||
return ( (bits32) ( ( ( (bits64) a )<<31 ) / z ) ) + ( z>>1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 32 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros32( bits32 a )
|
||||
{
|
||||
static const int8 countLeadingZerosHigh[] = {
|
||||
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
|
||||
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
|
||||
};
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < 0x10000 ) {
|
||||
shiftCount += 16;
|
||||
a <<= 16;
|
||||
}
|
||||
if ( a < 0x1000000 ) {
|
||||
shiftCount += 8;
|
||||
a <<= 8;
|
||||
}
|
||||
shiftCount += countLeadingZerosHigh[ a>>24 ];
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the number of leading 0 bits before the most-significant 1 bit of
|
||||
| `a'. If `a' is zero, 64 is returned.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static int8 countLeadingZeros64( bits64 a )
|
||||
{
|
||||
int8 shiftCount;
|
||||
|
||||
shiftCount = 0;
|
||||
if ( a < ( (bits64) 1 )<<32 ) {
|
||||
shiftCount += 32;
|
||||
}
|
||||
else {
|
||||
a >>= 32;
|
||||
}
|
||||
shiftCount += countLeadingZeros32( a );
|
||||
return shiftCount;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1'
|
||||
| is equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag eq128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 == b0 ) && ( a1 == b1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than or equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag le128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 <= b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is less
|
||||
| than the 128-bit value formed by concatenating `b0' and `b1'. Otherwise,
|
||||
| returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag lt128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 < b0 ) || ( ( a0 == b0 ) && ( a1 < b1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the 128-bit value formed by concatenating `a0' and `a1' is
|
||||
| not equal to the 128-bit value formed by concatenating `b0' and `b1'.
|
||||
| Otherwise, returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
INLINE flag ne128( bits64 a0, bits64 a1, bits64 b0, bits64 b1 )
|
||||
{
|
||||
|
||||
return ( a0 != b0 ) || ( a1 != b1 );
|
||||
|
||||
}
|
||||
|
262
fpu/softfloat-native.c
Normal file
262
fpu/softfloat-native.c
Normal file
@ -0,0 +1,262 @@
|
||||
/* Native implementation of soft float functions. Only a single status
|
||||
context is supported */
|
||||
#include "softfloat.h"
|
||||
#include <math.h>
|
||||
|
||||
void set_float_rounding_mode(int val STATUS_PARAM)
|
||||
{
|
||||
STATUS(float_rounding_mode) = val;
|
||||
#if defined(_BSD) && !defined(__APPLE__)
|
||||
fpsetround(val);
|
||||
#elif defined(__arm__)
|
||||
/* nothing to do */
|
||||
#else
|
||||
fesetround(val);
|
||||
#endif
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
void set_floatx80_rounding_precision(int val STATUS_PARAM)
|
||||
{
|
||||
STATUS(floatx80_rounding_precision) = val;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(_BSD)
|
||||
#define lrint(d) ((int32_t)rint(d))
|
||||
#define llrint(d) ((int64_t)rint(d))
|
||||
#endif
|
||||
|
||||
#if defined(__powerpc__)
|
||||
|
||||
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
|
||||
double qemu_rint(double x)
|
||||
{
|
||||
double y = 4503599627370496.0;
|
||||
if (fabs(x) >= y)
|
||||
return x;
|
||||
if (x < 0)
|
||||
y = -y;
|
||||
y = (x + y) - y;
|
||||
if (y == 0.0)
|
||||
y = copysign(y, x);
|
||||
return y;
|
||||
}
|
||||
|
||||
#define rint qemu_rint
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32(int v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
|
||||
float64 int32_to_float64(int v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80(int v STATUS_PARAM)
|
||||
{
|
||||
return (floatx80)v;
|
||||
}
|
||||
#endif
|
||||
float32 int64_to_float32( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float32)v;
|
||||
}
|
||||
float64 int64_to_float64( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (float64)v;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
|
||||
{
|
||||
return (floatx80)v;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 a STATUS_PARAM)
|
||||
{
|
||||
return lrintf(a);
|
||||
}
|
||||
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t float32_to_int64( float32 a STATUS_PARAM)
|
||||
{
|
||||
return llrintf(a);
|
||||
}
|
||||
|
||||
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
|
||||
float64 float32_to_float64( float32 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 a STATUS_PARAM)
|
||||
{
|
||||
return rintf(a);
|
||||
}
|
||||
|
||||
float32 float32_sqrt( float32 a STATUS_PARAM)
|
||||
{
|
||||
return sqrtf(a);
|
||||
}
|
||||
char float32_is_signaling_nan( float32 a1)
|
||||
{
|
||||
float32u u;
|
||||
uint32_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 a STATUS_PARAM)
|
||||
{
|
||||
return lrint(a);
|
||||
}
|
||||
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t float64_to_int64( float64 a STATUS_PARAM)
|
||||
{
|
||||
return llrint(a);
|
||||
}
|
||||
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
float32 float64_to_float32( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 a STATUS_PARAM )
|
||||
{
|
||||
#if defined(__arm__)
|
||||
switch(STATUS(float_rounding_mode)) {
|
||||
default:
|
||||
case float_round_nearest_even:
|
||||
asm("rndd %0, %1" : "=f" (a) : "f"(a));
|
||||
break;
|
||||
case float_round_down:
|
||||
asm("rnddm %0, %1" : "=f" (a) : "f"(a));
|
||||
break;
|
||||
case float_round_up:
|
||||
asm("rnddp %0, %1" : "=f" (a) : "f"(a));
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
asm("rnddz %0, %1" : "=f" (a) : "f"(a));
|
||||
break;
|
||||
}
|
||||
#else
|
||||
return rint(a);
|
||||
#endif
|
||||
}
|
||||
|
||||
float64 float64_sqrt( float64 a STATUS_PARAM)
|
||||
{
|
||||
return sqrt(a);
|
||||
}
|
||||
char float64_is_signaling_nan( float64 a1)
|
||||
{
|
||||
float64u u;
|
||||
uint64_t a;
|
||||
u.f = a1;
|
||||
a = u.i;
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return lrintl(a);
|
||||
}
|
||||
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return (int)a;
|
||||
}
|
||||
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return llrintl(a);
|
||||
}
|
||||
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return (int64_t)a;
|
||||
}
|
||||
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return rintl(a);
|
||||
}
|
||||
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
return sqrtl(a);
|
||||
}
|
||||
char floatx80_is_signaling_nan( floatx80 a1)
|
||||
{
|
||||
floatx80u u;
|
||||
u.f = a1;
|
||||
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
|
||||
}
|
||||
|
||||
#endif
|
312
fpu/softfloat-native.h
Normal file
312
fpu/softfloat-native.h
Normal file
@ -0,0 +1,312 @@
|
||||
/* Native implementation of soft float functions */
|
||||
#include <math.h>
|
||||
#if defined(_BSD) && !defined(__APPLE__)
|
||||
#include <ieeefp.h>
|
||||
#else
|
||||
#include <fenv.h>
|
||||
#endif
|
||||
|
||||
typedef float float32;
|
||||
typedef double float64;
|
||||
#ifdef FLOATX80
|
||||
typedef long double floatx80;
|
||||
#endif
|
||||
|
||||
typedef union {
|
||||
float32 f;
|
||||
uint32_t i;
|
||||
} float32u;
|
||||
typedef union {
|
||||
float64 f;
|
||||
uint64_t i;
|
||||
} float64u;
|
||||
#ifdef FLOATX80
|
||||
typedef union {
|
||||
floatx80 f;
|
||||
struct {
|
||||
uint64_t low;
|
||||
uint16_t high;
|
||||
} i;
|
||||
} floatx80u;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#if defined(_BSD) && !defined(__APPLE__)
|
||||
enum {
|
||||
float_round_nearest_even = FP_RN,
|
||||
float_round_down = FE_RM,
|
||||
float_round_up = FE_RP,
|
||||
float_round_to_zero = FE_RZ
|
||||
};
|
||||
#elif defined(__arm__)
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_down = 1,
|
||||
float_round_up = 2,
|
||||
float_round_to_zero = 3
|
||||
};
|
||||
#else
|
||||
enum {
|
||||
float_round_nearest_even = FE_TONEAREST,
|
||||
float_round_down = FE_DOWNWARD,
|
||||
float_round_up = FE_UPWARD,
|
||||
float_round_to_zero = FE_TOWARDZERO
|
||||
};
|
||||
#endif
|
||||
|
||||
typedef struct float_status {
|
||||
signed char float_rounding_mode;
|
||||
#ifdef FLOATX80
|
||||
signed char floatx80_rounding_precision;
|
||||
#endif
|
||||
} float_status;
|
||||
|
||||
void set_float_rounding_mode(int val STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int STATUS_PARAM);
|
||||
float64 int32_to_float64( int STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int STATUS_PARAM);
|
||||
#endif
|
||||
float32 int64_to_float32( int64_t STATUS_PARAM);
|
||||
float64 int64_to_float64( int64_t STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( int64_t STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 STATUS_PARAM);
|
||||
int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
|
||||
int64_t float32_to_int64( float32 STATUS_PARAM);
|
||||
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
|
||||
float64 float32_to_float64( float32 STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 STATUS_PARAM);
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 STATUS_PARAM);
|
||||
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
float32 float32_rem( float32, float32 STATUS_PARAM);
|
||||
float32 float32_sqrt( float32 STATUS_PARAM);
|
||||
INLINE char float32_eq( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
/* XXX: incorrect because it can raise an exception */
|
||||
return a == b;
|
||||
}
|
||||
INLINE char float32_le( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE char float32_lt( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE char float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE char float32_le_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE char float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
}
|
||||
char float32_is_signaling_nan( float32 );
|
||||
|
||||
INLINE float32 float32_abs(float32 a)
|
||||
{
|
||||
return fabsf(a);
|
||||
}
|
||||
|
||||
INLINE float32 float32_chs(float32 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 STATUS_PARAM );
|
||||
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
||||
float32 float64_to_float32( float64 STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 STATUS_PARAM );
|
||||
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
float64 float64_rem( float64, float64 STATUS_PARAM );
|
||||
float64 float64_sqrt( float64 STATUS_PARAM );
|
||||
INLINE char float64_eq( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE char float64_le( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE char float64_lt( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE char float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE char float64_le_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE char float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
|
||||
}
|
||||
char float64_is_signaling_nan( float64 );
|
||||
|
||||
INLINE float64 float64_abs(float64 a)
|
||||
{
|
||||
return fabs(a);
|
||||
}
|
||||
|
||||
INLINE float64 float64_chs(float64 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 STATUS_PARAM );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
||||
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
|
||||
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
|
||||
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
||||
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
||||
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a + b;
|
||||
}
|
||||
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a - b;
|
||||
}
|
||||
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a * b;
|
||||
}
|
||||
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a / b;
|
||||
}
|
||||
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
||||
INLINE char floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE char floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a <= b;
|
||||
}
|
||||
INLINE char floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a < b;
|
||||
}
|
||||
INLINE char floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return a == b;
|
||||
}
|
||||
INLINE char floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return islessequal(a, b);
|
||||
}
|
||||
INLINE char floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
return isless(a, b);
|
||||
|
||||
}
|
||||
char floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
INLINE floatx80 floatx80_abs(floatx80 a)
|
||||
{
|
||||
return fabsl(a);
|
||||
}
|
||||
|
||||
INLINE floatx80 floatx80_chs(floatx80 a)
|
||||
{
|
||||
return -a;
|
||||
}
|
||||
#endif
|
464
fpu/softfloat-specialize.h
Normal file
464
fpu/softfloat-specialize.h
Normal file
@ -0,0 +1,464 @@
|
||||
|
||||
/*============================================================================
|
||||
|
||||
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
||||
Arithmetic Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Underflow tininess-detection mode, statically initialized to default value.
|
||||
| (The declaration in `softfloat.h' must match the `int8' type here.)
|
||||
*----------------------------------------------------------------------------*/
|
||||
int8 float_detect_tininess = float_tininess_after_rounding;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
||||
| defined here if desired. It is currently not possible for such a trap
|
||||
| to substitute a result value. If traps are not implemented, this routine
|
||||
| should be simply `float_exception_flags |= flags;'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
void float_raise( int8 flags STATUS_PARAM )
|
||||
{
|
||||
|
||||
STATUS(float_exception_flags) |= flags;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Internal canonical NaN format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef struct {
|
||||
flag sign;
|
||||
bits64 high, low;
|
||||
} commonNaNT;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated single-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float32_default_nan 0xFFC00000
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( 0xFF000000 < (bits32) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float32_is_signaling_nan( float32 a )
|
||||
{
|
||||
|
||||
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the single-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
|
||||
z.sign = a>>31;
|
||||
z.low = 0;
|
||||
z.high = ( (bits64) a )<<41;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the single-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 commonNaNToFloat32( commonNaNT a )
|
||||
{
|
||||
|
||||
return ( ( (bits32) a.sign )<<31 ) | 0x7FC00000 | ( a.high>>41 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two single-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float32_is_nan( a );
|
||||
aIsSignalingNaN = float32_is_signaling_nan( a );
|
||||
bIsNaN = float32_is_nan( b );
|
||||
bIsSignalingNaN = float32_is_signaling_nan( b );
|
||||
a |= 0x00400000;
|
||||
b |= 0x00400000;
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( (bits32) ( a<<1 ) < (bits32) ( b<<1 ) ) return b;
|
||||
if ( (bits32) ( b<<1 ) < (bits32) ( a<<1 ) ) return a;
|
||||
return ( a < b ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated double-precision NaN.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float64_default_nan LIT64( 0xFFF8000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_nan( float64 a )
|
||||
{
|
||||
|
||||
return ( LIT64( 0xFFE0000000000000 ) < (bits64) ( a<<1 ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float64_is_signaling_nan( float64 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
|
||||
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the double-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
z.sign = a>>63;
|
||||
z.low = 0;
|
||||
z.high = a<<12;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the double-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 commonNaNToFloat64( commonNaNT a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( (bits64) a.sign )<<63 )
|
||||
| LIT64( 0x7FF8000000000000 )
|
||||
| ( a.high>>12 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two double-precision floating-point values `a' and `b', one of which
|
||||
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
||||
| signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float64_is_nan( a );
|
||||
aIsSignalingNaN = float64_is_signaling_nan( a );
|
||||
bIsNaN = float64_is_nan( b );
|
||||
bIsSignalingNaN = float64_is_signaling_nan( b );
|
||||
a |= LIT64( 0x0008000000000000 );
|
||||
b |= LIT64( 0x0008000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( (bits64) ( a<<1 ) < (bits64) ( b<<1 ) ) return b;
|
||||
if ( (bits64) ( b<<1 ) < (bits64) ( a<<1 ) ) return a;
|
||||
return ( a < b ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated extended double-precision NaN. The
|
||||
| `high' and `low' values hold the most- and least-significant bits,
|
||||
| respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define floatx80_default_nan_high 0xFFFF
|
||||
#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_nan( floatx80 a )
|
||||
{
|
||||
|
||||
return ( ( a.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( a.low<<1 );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the extended double-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag floatx80_is_signaling_nan( floatx80 a )
|
||||
{
|
||||
bits64 aLow;
|
||||
|
||||
aLow = a.low & ~ LIT64( 0x4000000000000000 );
|
||||
return
|
||||
( ( a.high & 0x7FFF ) == 0x7FFF )
|
||||
&& (bits64) ( aLow<<1 )
|
||||
&& ( a.low == aLow );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the extended double-precision floating-
|
||||
| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
|
||||
| invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
z.sign = a.high>>15;
|
||||
z.low = 0;
|
||||
z.high = a.low<<1;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the extended
|
||||
| double-precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 commonNaNToFloatx80( commonNaNT a )
|
||||
{
|
||||
floatx80 z;
|
||||
|
||||
z.low = LIT64( 0xC000000000000000 ) | ( a.high>>1 );
|
||||
z.high = ( ( (bits16) a.sign )<<15 ) | 0x7FFF;
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two extended double-precision floating-point values `a' and `b', one
|
||||
| of which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = floatx80_is_nan( a );
|
||||
aIsSignalingNaN = floatx80_is_signaling_nan( a );
|
||||
bIsNaN = floatx80_is_nan( b );
|
||||
bIsSignalingNaN = floatx80_is_signaling_nan( b );
|
||||
a.low |= LIT64( 0xC000000000000000 );
|
||||
b.low |= LIT64( 0xC000000000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( a.low < b.low ) return b;
|
||||
if ( b.low < a.low ) return a;
|
||||
return ( a.high < b.high ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The pattern for a default generated quadruple-precision NaN. The `high' and
|
||||
| `low' values hold the most- and least-significant bits, respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
|
||||
#define float128_default_nan_low LIT64( 0x0000000000000000 )
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a NaN;
|
||||
| otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( LIT64( 0xFFFE000000000000 ) <= (bits64) ( a.high<<1 ) )
|
||||
&& ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns 1 if the quadruple-precision floating-point value `a' is a
|
||||
| signaling NaN; otherwise returns 0.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
flag float128_is_signaling_nan( float128 a )
|
||||
{
|
||||
|
||||
return
|
||||
( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
|
||||
&& ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the quadruple-precision floating-point NaN
|
||||
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
||||
| exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
|
||||
{
|
||||
commonNaNT z;
|
||||
|
||||
if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
z.sign = a.high>>63;
|
||||
shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of converting the canonical NaN `a' to the quadruple-
|
||||
| precision floating-point format.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 commonNaNToFloat128( commonNaNT a )
|
||||
{
|
||||
float128 z;
|
||||
|
||||
shift128Right( a.high, a.low, 16, &z.high, &z.low );
|
||||
z.high |= ( ( (bits64) a.sign )<<63 ) | LIT64( 0x7FFF800000000000 );
|
||||
return z;
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes two quadruple-precision floating-point values `a' and `b', one of
|
||||
| which is a NaN, and returns the appropriate NaN result. If either `a' or
|
||||
| `b' is a signaling NaN, the invalid exception is raised.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
|
||||
{
|
||||
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
||||
|
||||
aIsNaN = float128_is_nan( a );
|
||||
aIsSignalingNaN = float128_is_signaling_nan( a );
|
||||
bIsNaN = float128_is_nan( b );
|
||||
bIsSignalingNaN = float128_is_signaling_nan( b );
|
||||
a.high |= LIT64( 0x0000800000000000 );
|
||||
b.high |= LIT64( 0x0000800000000000 );
|
||||
if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
|
||||
if ( aIsSignalingNaN ) {
|
||||
if ( bIsSignalingNaN ) goto returnLargerSignificand;
|
||||
return bIsNaN ? b : a;
|
||||
}
|
||||
else if ( aIsNaN ) {
|
||||
if ( bIsSignalingNaN | ! bIsNaN ) return a;
|
||||
returnLargerSignificand:
|
||||
if ( lt128( a.high<<1, a.low, b.high<<1, b.low ) ) return b;
|
||||
if ( lt128( b.high<<1, b.low, a.high<<1, a.low ) ) return a;
|
||||
return ( a.high < b.high ) ? a : b;
|
||||
}
|
||||
else {
|
||||
return b;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
|
5185
fpu/softfloat.c
Normal file
5185
fpu/softfloat.c
Normal file
File diff suppressed because it is too large
Load Diff
329
fpu/softfloat.h
Normal file
329
fpu/softfloat.h
Normal file
@ -0,0 +1,329 @@
|
||||
/*============================================================================
|
||||
|
||||
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
||||
Package, Release 2b.
|
||||
|
||||
Written by John R. Hauser. This work was made possible in part by the
|
||||
International Computer Science Institute, located at Suite 600, 1947 Center
|
||||
Street, Berkeley, California 94704. Funding was partially provided by the
|
||||
National Science Foundation under grant MIP-9311980. The original version
|
||||
of this code was written as part of a project to build a fixed-point vector
|
||||
processor in collaboration with the University of California at Berkeley,
|
||||
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
||||
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
||||
arithmetic/SoftFloat.html'.
|
||||
|
||||
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
||||
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
||||
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
||||
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
||||
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
||||
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
||||
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
||||
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
||||
|
||||
Derivative works are acceptable, even for commercial purposes, so long as
|
||||
(1) the source code for the derivative work includes prominent notice that
|
||||
the work is derivative, and (2) the source code includes prominent notice with
|
||||
these four paragraphs for those parts of this code that are retained.
|
||||
|
||||
=============================================================================*/
|
||||
|
||||
#ifndef SOFTFLOAT_H
|
||||
#define SOFTFLOAT_H
|
||||
|
||||
#include <inttypes.h>
|
||||
#include "config.h"
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines the most convenient type that holds
|
||||
| integers of at least as many bits as specified. For example, `uint8' should
|
||||
| be the most convenient type that can hold unsigned integers of as many as
|
||||
| 8 bits. The `flag' type must be able to hold either a 0 or 1. For most
|
||||
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
|
||||
| to the same as `int'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef char flag;
|
||||
typedef uint8_t uint8;
|
||||
typedef int8_t int8;
|
||||
typedef int uint16;
|
||||
typedef int int16;
|
||||
typedef unsigned int uint32;
|
||||
typedef signed int int32;
|
||||
typedef uint64_t uint64;
|
||||
typedef int64_t int64;
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Each of the following `typedef's defines a type that holds integers
|
||||
| of _exactly_ the number of bits specified. For instance, for most
|
||||
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
|
||||
| `unsigned short int' and `signed short int' (or `short int'), respectively.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef uint8_t bits8;
|
||||
typedef int8_t sbits8;
|
||||
typedef uint16_t bits16;
|
||||
typedef int16_t sbits16;
|
||||
typedef uint32_t bits32;
|
||||
typedef int32_t sbits32;
|
||||
typedef uint64_t bits64;
|
||||
typedef int64_t sbits64;
|
||||
|
||||
#define LIT64( a ) a##LL
|
||||
#define INLINE static inline
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| The macro `FLOATX80' must be defined to enable the extended double-precision
|
||||
| floating-point format `floatx80'. If this macro is not defined, the
|
||||
| `floatx80' type will not be defined, and none of the functions that either
|
||||
| input or output the `floatx80' type will be defined. The same applies to
|
||||
| the `FLOAT128' macro and the quadruple-precision format `float128'.
|
||||
*----------------------------------------------------------------------------*/
|
||||
#ifdef CONFIG_SOFTFLOAT
|
||||
/* bit exact soft float support */
|
||||
#define FLOATX80
|
||||
#define FLOAT128
|
||||
#else
|
||||
/* native float support */
|
||||
#if (defined(__i386__) || defined(__x86_64__)) && !defined(_BSD)
|
||||
#define FLOATX80
|
||||
#endif
|
||||
#endif /* !CONFIG_SOFTFLOAT */
|
||||
|
||||
#define STATUS_PARAM , float_status *status
|
||||
#define STATUS(field) status->field
|
||||
#define STATUS_VAR , status
|
||||
|
||||
#ifdef CONFIG_SOFTFLOAT
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point types.
|
||||
*----------------------------------------------------------------------------*/
|
||||
typedef uint32_t float32;
|
||||
typedef uint64_t float64;
|
||||
#ifdef FLOATX80
|
||||
typedef struct {
|
||||
uint64_t low;
|
||||
uint16_t high;
|
||||
} floatx80;
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
typedef struct {
|
||||
#ifdef WORDS_BIGENDIAN
|
||||
uint64_t high, low;
|
||||
#else
|
||||
uint64_t low, high;
|
||||
#endif
|
||||
} float128;
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point underflow tininess-detection mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
float_tininess_after_rounding = 0,
|
||||
float_tininess_before_rounding = 1
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point rounding mode.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
float_round_nearest_even = 0,
|
||||
float_round_down = 1,
|
||||
float_round_up = 2,
|
||||
float_round_to_zero = 3
|
||||
};
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE floating-point exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
enum {
|
||||
float_flag_invalid = 1,
|
||||
float_flag_divbyzero = 4,
|
||||
float_flag_overflow = 8,
|
||||
float_flag_underflow = 16,
|
||||
float_flag_inexact = 32
|
||||
};
|
||||
|
||||
typedef struct float_status {
|
||||
signed char float_detect_tininess;
|
||||
signed char float_rounding_mode;
|
||||
signed char float_exception_flags;
|
||||
#ifdef FLOATX80
|
||||
signed char floatx80_rounding_precision;
|
||||
#endif
|
||||
} float_status;
|
||||
|
||||
void set_float_rounding_mode(int val STATUS_PARAM);
|
||||
#ifdef FLOATX80
|
||||
void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Routine to raise any or all of the software IEC/IEEE floating-point
|
||||
| exception flags.
|
||||
*----------------------------------------------------------------------------*/
|
||||
void float_raise( signed char STATUS_PARAM);
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 int32_to_float32( int STATUS_PARAM );
|
||||
float64 int32_to_float64( int STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int32_to_floatx80( int STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int32_to_float128( int STATUS_PARAM );
|
||||
#endif
|
||||
float32 int64_to_float32( int64_t STATUS_PARAM );
|
||||
float64 int64_to_float64( int64_t STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 int64_to_float128( int64_t STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float32_to_int32( float32 STATUS_PARAM );
|
||||
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
|
||||
int64_t float32_to_int64( float32 STATUS_PARAM );
|
||||
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
|
||||
float64 float32_to_float64( float32 STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float32_to_float128( float32 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE single-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float32 float32_round_to_int( float32 STATUS_PARAM );
|
||||
float32 float32_add( float32, float32 STATUS_PARAM );
|
||||
float32 float32_sub( float32, float32 STATUS_PARAM );
|
||||
float32 float32_mul( float32, float32 STATUS_PARAM );
|
||||
float32 float32_div( float32, float32 STATUS_PARAM );
|
||||
float32 float32_rem( float32, float32 STATUS_PARAM );
|
||||
float32 float32_sqrt( float32 STATUS_PARAM );
|
||||
char float32_eq( float32, float32 STATUS_PARAM );
|
||||
char float32_le( float32, float32 STATUS_PARAM );
|
||||
char float32_lt( float32, float32 STATUS_PARAM );
|
||||
char float32_eq_signaling( float32, float32 STATUS_PARAM );
|
||||
char float32_le_quiet( float32, float32 STATUS_PARAM );
|
||||
char float32_lt_quiet( float32, float32 STATUS_PARAM );
|
||||
char float32_is_signaling_nan( float32 );
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float64_to_int32( float64 STATUS_PARAM );
|
||||
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64( float64 STATUS_PARAM );
|
||||
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
||||
float32 float64_to_float32( float64 STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
||||
#endif
|
||||
#ifdef FLOAT128
|
||||
float128 float64_to_float128( float64 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float64 float64_round_to_int( float64 STATUS_PARAM );
|
||||
float64 float64_add( float64, float64 STATUS_PARAM );
|
||||
float64 float64_sub( float64, float64 STATUS_PARAM );
|
||||
float64 float64_mul( float64, float64 STATUS_PARAM );
|
||||
float64 float64_div( float64, float64 STATUS_PARAM );
|
||||
float64 float64_rem( float64, float64 STATUS_PARAM );
|
||||
float64 float64_sqrt( float64 STATUS_PARAM );
|
||||
char float64_eq( float64, float64 STATUS_PARAM );
|
||||
char float64_le( float64, float64 STATUS_PARAM );
|
||||
char float64_lt( float64, float64 STATUS_PARAM );
|
||||
char float64_eq_signaling( float64, float64 STATUS_PARAM );
|
||||
char float64_le_quiet( float64, float64 STATUS_PARAM );
|
||||
char float64_lt_quiet( float64, float64 STATUS_PARAM );
|
||||
char float64_is_signaling_nan( float64 );
|
||||
|
||||
#ifdef FLOATX80
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int floatx80_to_int32( floatx80 STATUS_PARAM );
|
||||
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
||||
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
|
||||
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
|
||||
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
||||
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
||||
#ifdef FLOAT128
|
||||
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE extended double-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
||||
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
||||
char floatx80_eq( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_le( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_lt( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
|
||||
char floatx80_is_signaling_nan( floatx80 );
|
||||
|
||||
#endif
|
||||
|
||||
#ifdef FLOAT128
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision conversion routines.
|
||||
*----------------------------------------------------------------------------*/
|
||||
int float128_to_int32( float128 STATUS_PARAM );
|
||||
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
|
||||
int64_t float128_to_int64( float128 STATUS_PARAM );
|
||||
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
|
||||
float32 float128_to_float32( float128 STATUS_PARAM );
|
||||
float64 float128_to_float64( float128 STATUS_PARAM );
|
||||
#ifdef FLOATX80
|
||||
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
|
||||
#endif
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Software IEC/IEEE quadruple-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
float128 float128_round_to_int( float128 STATUS_PARAM );
|
||||
float128 float128_add( float128, float128 STATUS_PARAM );
|
||||
float128 float128_sub( float128, float128 STATUS_PARAM );
|
||||
float128 float128_mul( float128, float128 STATUS_PARAM );
|
||||
float128 float128_div( float128, float128 STATUS_PARAM );
|
||||
float128 float128_rem( float128, float128 STATUS_PARAM );
|
||||
float128 float128_sqrt( float128 STATUS_PARAM );
|
||||
char float128_eq( float128, float128 STATUS_PARAM );
|
||||
char float128_le( float128, float128 STATUS_PARAM );
|
||||
char float128_lt( float128, float128 STATUS_PARAM );
|
||||
char float128_eq_signaling( float128, float128 STATUS_PARAM );
|
||||
char float128_le_quiet( float128, float128 STATUS_PARAM );
|
||||
char float128_lt_quiet( float128, float128 STATUS_PARAM );
|
||||
char float128_is_signaling_nan( float128 );
|
||||
|
||||
#endif
|
||||
|
||||
#else /* CONFIG_SOFTFLOAT */
|
||||
|
||||
#include "softfloat-native.h"
|
||||
|
||||
#endif /* !CONFIG_SOFTFLOAT */
|
||||
|
||||
#endif /* !SOFTFLOAT_H */
|
Loading…
Reference in New Issue
Block a user