disas: Clean up CPUDebug initialization

Rename several functions, dropping "generic" and making "host"
vs "target" clearer.  Make a bunch of functions static that are
not used outside this file. Replace INIT_DISASSEMBLE_INFO with
a trio of functions.

Acked-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
Richard Henderson 2020-09-10 14:40:54 -07:00
parent 4c389f6edf
commit 12b6e9b27d
2 changed files with 151 additions and 241 deletions

322
disas.c
View File

@ -16,76 +16,66 @@ typedef struct CPUDebug {
/* Filled in by elfload.c. Simplistic, but will do for now. */ /* Filled in by elfload.c. Simplistic, but will do for now. */
struct syminfo *syminfos = NULL; struct syminfo *syminfos = NULL;
/* Get LENGTH bytes from info's buffer, at target address memaddr. /*
Transfer them to myaddr. */ * Get LENGTH bytes from info's buffer, at host address memaddr.
int * Transfer them to myaddr.
buffer_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length, */
static int host_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
struct disassemble_info *info) struct disassemble_info *info)
{ {
if (memaddr < info->buffer_vma if (memaddr < info->buffer_vma
|| memaddr + length > info->buffer_vma + info->buffer_length) || memaddr + length > info->buffer_vma + info->buffer_length) {
/* Out of bounds. Use EIO because GDB uses it. */ /* Out of bounds. Use EIO because GDB uses it. */
return EIO; return EIO;
}
memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length); memcpy (myaddr, info->buffer + (memaddr - info->buffer_vma), length);
return 0; return 0;
} }
/* Get LENGTH bytes from info's buffer, at target address memaddr. /*
Transfer them to myaddr. */ * Get LENGTH bytes from info's buffer, at target address memaddr.
static int * Transfer them to myaddr.
target_read_memory (bfd_vma memaddr, */
bfd_byte *myaddr, static int target_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
int length,
struct disassemble_info *info) struct disassemble_info *info)
{ {
CPUDebug *s = container_of(info, CPUDebug, info); CPUDebug *s = container_of(info, CPUDebug, info);
int r; int r = cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0);
r = cpu_memory_rw_debug(s->cpu, memaddr, myaddr, length, 0);
return r ? EIO : 0; return r ? EIO : 0;
} }
/* Print an error message. We can assume that this is in response to /*
an error return from buffer_read_memory. */ * Print an error message. We can assume that this is in response to
void * an error return from {host,target}_read_memory.
perror_memory (int status, bfd_vma memaddr, struct disassemble_info *info) */
static void perror_memory(int status, bfd_vma memaddr,
struct disassemble_info *info)
{ {
if (status != EIO) if (status != EIO) {
/* Can't happen. */ /* Can't happen. */
(*info->fprintf_func) (info->stream, "Unknown error %d\n", status); info->fprintf_func(info->stream, "Unknown error %d\n", status);
else } else {
/* Actually, address between memaddr and memaddr + len was /* Address between memaddr and memaddr + len was out of bounds. */
out of bounds. */ info->fprintf_func(info->stream,
(*info->fprintf_func) (info->stream, "Address 0x%" PRIx64 " is out of bounds.\n",
"Address 0x%" PRIx64 " is out of bounds.\n", memaddr); memaddr);
}
} }
/* This could be in a separate file, to save minuscule amounts of space /* Print address in hex. */
in statically linked executables. */ static void print_address(bfd_vma addr, struct disassemble_info *info)
/* Just print the address is hex. This is included for completeness even
though both GDB and objdump provide their own (to print symbolic
addresses). */
void
generic_print_address (bfd_vma addr, struct disassemble_info *info)
{ {
(*info->fprintf_func) (info->stream, "0x%" PRIx64, addr); info->fprintf_func(info->stream, "0x%" PRIx64, addr);
} }
/* Print address in hex, truncated to the width of a host virtual address. */ /* Print address in hex, truncated to the width of a host virtual address. */
static void static void host_print_address(bfd_vma addr, struct disassemble_info *info)
generic_print_host_address(bfd_vma addr, struct disassemble_info *info)
{ {
uint64_t mask = ~0ULL >> (64 - (sizeof(void *) * 8)); print_address((uintptr_t)addr, info);
generic_print_address(addr & mask, info);
} }
/* Just return the given address. */ /* Stub prevents some fruitless earching in optabs disassemblers. */
static int symbol_at_address(bfd_vma addr, struct disassemble_info *info)
int
generic_symbol_at_address (bfd_vma addr, struct disassemble_info *info)
{ {
return 1; return 1;
} }
@ -423,36 +413,116 @@ static bool cap_disas_monitor(disassemble_info *info, uint64_t pc, int count)
# define cap_disas_plugin(i, p, c) false # define cap_disas_plugin(i, p, c) false
#endif /* CONFIG_CAPSTONE */ #endif /* CONFIG_CAPSTONE */
static void initialize_debug(CPUDebug *s)
{
memset(s, 0, sizeof(*s));
s->info.arch = bfd_arch_unknown;
s->info.cap_arch = -1;
s->info.cap_insn_unit = 4;
s->info.cap_insn_split = 4;
s->info.memory_error_func = perror_memory;
s->info.symbol_at_address_func = symbol_at_address;
}
static void initialize_debug_target(CPUDebug *s, CPUState *cpu)
{
initialize_debug(s);
s->cpu = cpu;
s->info.read_memory_func = target_read_memory;
s->info.print_address_func = print_address;
#ifdef TARGET_WORDS_BIGENDIAN
s->info.endian = BFD_ENDIAN_BIG;
#else
s->info.endian = BFD_ENDIAN_LITTLE;
#endif
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->disas_set_info) {
cc->disas_set_info(cpu, &s->info);
}
}
static void initialize_debug_host(CPUDebug *s)
{
initialize_debug(s);
s->info.read_memory_func = host_read_memory;
s->info.print_address_func = host_print_address;
#ifdef HOST_WORDS_BIGENDIAN
s->info.endian = BFD_ENDIAN_BIG;
#else
s->info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(CONFIG_TCG_INTERPRETER)
s->info.print_insn = print_insn_tci;
#elif defined(__i386__)
s->info.mach = bfd_mach_i386_i386;
s->info.print_insn = print_insn_i386;
s->info.cap_arch = CS_ARCH_X86;
s->info.cap_mode = CS_MODE_32;
s->info.cap_insn_unit = 1;
s->info.cap_insn_split = 8;
#elif defined(__x86_64__)
s->info.mach = bfd_mach_x86_64;
s->info.print_insn = print_insn_i386;
s->info.cap_arch = CS_ARCH_X86;
s->info.cap_mode = CS_MODE_64;
s->info.cap_insn_unit = 1;
s->info.cap_insn_split = 8;
#elif defined(_ARCH_PPC)
s->info.disassembler_options = (char *)"any";
s->info.print_insn = print_insn_ppc;
s->info.cap_arch = CS_ARCH_PPC;
# ifdef _ARCH_PPC64
s->info.cap_mode = CS_MODE_64;
# endif
#elif defined(__riscv) && defined(CONFIG_RISCV_DIS)
#if defined(_ILP32) || (__riscv_xlen == 32)
s->info.print_insn = print_insn_riscv32;
#elif defined(_LP64)
s->info.print_insn = print_insn_riscv64;
#else
#error unsupported RISC-V ABI
#endif
#elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS)
s->info.print_insn = print_insn_arm_a64;
s->info.cap_arch = CS_ARCH_ARM64;
#elif defined(__alpha__)
s->info.print_insn = print_insn_alpha;
#elif defined(__sparc__)
s->info.print_insn = print_insn_sparc;
s->info.mach = bfd_mach_sparc_v9b;
#elif defined(__arm__)
/* TCG only generates code for arm mode. */
s->info.print_insn = print_insn_arm;
s->info.cap_arch = CS_ARCH_ARM;
#elif defined(__MIPSEB__)
s->info.print_insn = print_insn_big_mips;
#elif defined(__MIPSEL__)
s->info.print_insn = print_insn_little_mips;
#elif defined(__m68k__)
s->info.print_insn = print_insn_m68k;
#elif defined(__s390__)
s->info.print_insn = print_insn_s390;
#elif defined(__hppa__)
s->info.print_insn = print_insn_hppa;
#endif
}
/* Disassemble this for me please... (debugging). */ /* Disassemble this for me please... (debugging). */
void target_disas(FILE *out, CPUState *cpu, target_ulong code, void target_disas(FILE *out, CPUState *cpu, target_ulong code,
target_ulong size) target_ulong size)
{ {
CPUClass *cc = CPU_GET_CLASS(cpu);
target_ulong pc; target_ulong pc;
int count; int count;
CPUDebug s; CPUDebug s;
INIT_DISASSEMBLE_INFO(s.info, out, fprintf); initialize_debug_target(&s, cpu);
s.info.fprintf_func = fprintf;
s.cpu = cpu; s.info.stream = out;
s.info.read_memory_func = target_read_memory;
s.info.buffer_vma = code; s.info.buffer_vma = code;
s.info.buffer_length = size; s.info.buffer_length = size;
s.info.print_address_func = generic_print_address;
s.info.cap_arch = -1;
s.info.cap_mode = 0;
s.info.cap_insn_unit = 4;
s.info.cap_insn_split = 4;
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
if (cc->disas_set_info) {
cc->disas_set_info(cpu, &s.info);
}
if (s.info.cap_arch >= 0 && cap_disas_target(&s.info, code, size)) { if (s.info.cap_arch >= 0 && cap_disas_target(&s.info, code, size)) {
return; return;
@ -540,34 +610,17 @@ bool cap_disas_plugin(disassemble_info *info, uint64_t pc, size_t size)
*/ */
char *plugin_disas(CPUState *cpu, uint64_t addr, size_t size) char *plugin_disas(CPUState *cpu, uint64_t addr, size_t size)
{ {
CPUClass *cc = CPU_GET_CLASS(cpu);
int count; int count;
CPUDebug s; CPUDebug s;
GString *ds = g_string_set_size(&plugin_disas_output, 0); GString *ds = g_string_set_size(&plugin_disas_output, 0);
g_assert(ds == &plugin_disas_output); g_assert(ds == &plugin_disas_output);
INIT_DISASSEMBLE_INFO(s.info, NULL, plugin_printf); initialize_debug_target(&s, cpu);
s.info.fprintf_func = plugin_printf;
s.cpu = cpu;
s.info.read_memory_func = target_read_memory;
s.info.buffer_vma = addr; s.info.buffer_vma = addr;
s.info.buffer_length = size; s.info.buffer_length = size;
s.info.print_address_func = plugin_print_address; s.info.print_address_func = plugin_print_address;
s.info.cap_arch = -1;
s.info.cap_mode = 0;
s.info.cap_insn_unit = 4;
s.info.cap_insn_split = 4;
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
if (cc->disas_set_info) {
cc->disas_set_info(cpu, &s.info);
}
if (s.info.cap_arch >= 0 && cap_disas_plugin(&s.info, addr, size)) { if (s.info.cap_arch >= 0 && cap_disas_plugin(&s.info, addr, size)) {
return g_strdup(ds->str); return g_strdup(ds->str);
@ -593,89 +646,24 @@ void disas(FILE *out, void *code, unsigned long size)
uintptr_t pc; uintptr_t pc;
int count; int count;
CPUDebug s; CPUDebug s;
int (*print_insn)(bfd_vma pc, disassemble_info *info) = NULL;
INIT_DISASSEMBLE_INFO(s.info, out, fprintf);
s.info.print_address_func = generic_print_host_address;
initialize_debug_host(&s);
s.info.fprintf_func = fprintf;
s.info.stream = out;
s.info.buffer = code; s.info.buffer = code;
s.info.buffer_vma = (uintptr_t)code; s.info.buffer_vma = (uintptr_t)code;
s.info.buffer_length = size; s.info.buffer_length = size;
s.info.cap_arch = -1;
s.info.cap_mode = 0;
s.info.cap_insn_unit = 4;
s.info.cap_insn_split = 4;
#ifdef HOST_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
#if defined(CONFIG_TCG_INTERPRETER)
print_insn = print_insn_tci;
#elif defined(__i386__)
s.info.mach = bfd_mach_i386_i386;
print_insn = print_insn_i386;
s.info.cap_arch = CS_ARCH_X86;
s.info.cap_mode = CS_MODE_32;
s.info.cap_insn_unit = 1;
s.info.cap_insn_split = 8;
#elif defined(__x86_64__)
s.info.mach = bfd_mach_x86_64;
print_insn = print_insn_i386;
s.info.cap_arch = CS_ARCH_X86;
s.info.cap_mode = CS_MODE_64;
s.info.cap_insn_unit = 1;
s.info.cap_insn_split = 8;
#elif defined(_ARCH_PPC)
s.info.disassembler_options = (char *)"any";
print_insn = print_insn_ppc;
s.info.cap_arch = CS_ARCH_PPC;
# ifdef _ARCH_PPC64
s.info.cap_mode = CS_MODE_64;
# endif
#elif defined(__riscv) && defined(CONFIG_RISCV_DIS)
#if defined(_ILP32) || (__riscv_xlen == 32)
print_insn = print_insn_riscv32;
#elif defined(_LP64)
print_insn = print_insn_riscv64;
#else
#error unsupported RISC-V ABI
#endif
#elif defined(__aarch64__) && defined(CONFIG_ARM_A64_DIS)
print_insn = print_insn_arm_a64;
s.info.cap_arch = CS_ARCH_ARM64;
#elif defined(__alpha__)
print_insn = print_insn_alpha;
#elif defined(__sparc__)
print_insn = print_insn_sparc;
s.info.mach = bfd_mach_sparc_v9b;
#elif defined(__arm__)
print_insn = print_insn_arm;
s.info.cap_arch = CS_ARCH_ARM;
/* TCG only generates code for arm mode. */
#elif defined(__MIPSEB__)
print_insn = print_insn_big_mips;
#elif defined(__MIPSEL__)
print_insn = print_insn_little_mips;
#elif defined(__m68k__)
print_insn = print_insn_m68k;
#elif defined(__s390__)
print_insn = print_insn_s390;
#elif defined(__hppa__)
print_insn = print_insn_hppa;
#endif
if (s.info.cap_arch >= 0 && cap_disas_host(&s.info, code, size)) { if (s.info.cap_arch >= 0 && cap_disas_host(&s.info, code, size)) {
return; return;
} }
if (print_insn == NULL) { if (s.info.print_insn == NULL) {
print_insn = print_insn_od_host; s.info.print_insn = print_insn_od_host;
} }
for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) { for (pc = (uintptr_t)code; size > 0; pc += count, size -= count) {
fprintf(out, "0x%08" PRIxPTR ": ", pc); fprintf(out, "0x%08" PRIxPTR ": ", pc);
count = print_insn(pc, &s.info); count = s.info.print_insn(pc, &s.info);
fprintf(out, "\n"); fprintf(out, "\n");
if (count < 0) { if (count < 0) {
break; break;
@ -720,31 +708,15 @@ physical_read_memory(bfd_vma memaddr, bfd_byte *myaddr, int length,
void monitor_disas(Monitor *mon, CPUState *cpu, void monitor_disas(Monitor *mon, CPUState *cpu,
target_ulong pc, int nb_insn, int is_physical) target_ulong pc, int nb_insn, int is_physical)
{ {
CPUClass *cc = CPU_GET_CLASS(cpu);
int count, i; int count, i;
CPUDebug s; CPUDebug s;
INIT_DISASSEMBLE_INFO(s.info, NULL, qemu_fprintf); initialize_debug_target(&s, cpu);
s.info.fprintf_func = qemu_fprintf;
s.cpu = cpu; if (is_physical) {
s.info.read_memory_func s.info.read_memory_func = physical_read_memory;
= (is_physical ? physical_read_memory : target_read_memory);
s.info.print_address_func = generic_print_address;
s.info.buffer_vma = pc;
s.info.cap_arch = -1;
s.info.cap_mode = 0;
s.info.cap_insn_unit = 4;
s.info.cap_insn_split = 4;
#ifdef TARGET_WORDS_BIGENDIAN
s.info.endian = BFD_ENDIAN_BIG;
#else
s.info.endian = BFD_ENDIAN_LITTLE;
#endif
if (cc->disas_set_info) {
cc->disas_set_info(cpu, &s.info);
} }
s.info.buffer_vma = pc;
if (s.info.cap_arch >= 0 && cap_disas_monitor(&s.info, pc, nb_insn)) { if (s.info.cap_arch >= 0 && cap_disas_monitor(&s.info, pc, nb_insn)) {
return; return;

View File

@ -406,7 +406,6 @@ typedef struct disassemble_info {
} disassemble_info; } disassemble_info;
/* Standard disassemblers. Disassemble one instruction at the given /* Standard disassemblers. Disassemble one instruction at the given
target address. Return number of bytes processed. */ target address. Return number of bytes processed. */
typedef int (*disassembler_ftype) (bfd_vma, disassemble_info *); typedef int (*disassembler_ftype) (bfd_vma, disassemble_info *);
@ -461,67 +460,6 @@ int print_insn_riscv32 (bfd_vma, disassemble_info*);
int print_insn_riscv64 (bfd_vma, disassemble_info*); int print_insn_riscv64 (bfd_vma, disassemble_info*);
int print_insn_rx(bfd_vma, disassemble_info *); int print_insn_rx(bfd_vma, disassemble_info *);
#if 0
/* Fetch the disassembler for a given BFD, if that support is available. */
disassembler_ftype disassembler(bfd *);
#endif
/* This block of definitions is for particular callers who read instructions
into a buffer before calling the instruction decoder. */
/* Here is a function which callers may wish to use for read_memory_func.
It gets bytes from a buffer. */
int buffer_read_memory(bfd_vma, bfd_byte *, int, struct disassemble_info *);
/* This function goes with buffer_read_memory.
It prints a message using info->fprintf_func and info->stream. */
void perror_memory(int, bfd_vma, struct disassemble_info *);
/* Just print the address in hex. This is included for completeness even
though both GDB and objdump provide their own (to print symbolic
addresses). */
void generic_print_address(bfd_vma, struct disassemble_info *);
/* Always true. */
int generic_symbol_at_address(bfd_vma, struct disassemble_info *);
/* Macro to initialize a disassemble_info struct. This should be called
by all applications creating such a struct. */
#define INIT_DISASSEMBLE_INFO(INFO, STREAM, FPRINTF_FUNC) \
(INFO).flavour = bfd_target_unknown_flavour, \
(INFO).arch = bfd_arch_unknown, \
(INFO).mach = 0, \
(INFO).endian = BFD_ENDIAN_UNKNOWN, \
INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC)
/* Call this macro to initialize only the internal variables for the
disassembler. Architecture dependent things such as byte order, or machine
variant are not touched by this macro. This makes things much easier for
GDB which must initialize these things separately. */
#define INIT_DISASSEMBLE_INFO_NO_ARCH(INFO, STREAM, FPRINTF_FUNC) \
(INFO).fprintf_func = (FPRINTF_FUNC), \
(INFO).stream = (STREAM), \
(INFO).symbols = NULL, \
(INFO).num_symbols = 0, \
(INFO).private_data = NULL, \
(INFO).buffer = NULL, \
(INFO).buffer_vma = 0, \
(INFO).buffer_length = 0, \
(INFO).read_memory_func = buffer_read_memory, \
(INFO).memory_error_func = perror_memory, \
(INFO).print_address_func = generic_print_address, \
(INFO).print_insn = NULL, \
(INFO).symbol_at_address_func = generic_symbol_at_address, \
(INFO).flags = 0, \
(INFO).bytes_per_line = 0, \
(INFO).bytes_per_chunk = 0, \
(INFO).display_endian = BFD_ENDIAN_UNKNOWN, \
(INFO).disassembler_options = NULL, \
(INFO).insn_info_valid = 0
#ifndef ATTRIBUTE_UNUSED #ifndef ATTRIBUTE_UNUSED
#define ATTRIBUTE_UNUSED __attribute__((unused)) #define ATTRIBUTE_UNUSED __attribute__((unused))
#endif #endif