target-arm queue:

* xlnx-zdma: Fix endianness handling of descriptor loading
  * nrf51: Fix last GPIO CNF address
  * gicv3: Use gicr_typer in arm_gicv3_icc_reset
  * msf2: Add EMAC block to SmartFusion2 SoC
  * New clock modelling framework
  * hw/arm: versal: Setup the ADMA with 128bit bus-width
  * Cadence: gem: fix wraparound in 64bit descriptors
  * cadence_gem: clear RX control descriptor
  * target/arm: Vectorize integer comparison vs zero
  * hw/arm/virt: dt: add kaslr-seed property
  * hw/arm: xlnx-zcu102: Disable unsupported FDT firmware nodes
 -----BEGIN PGP SIGNATURE-----
 
 iQJNBAABCAA3FiEE4aXFk81BneKOgxXPPCUl7RQ2DN4FAl6q5CoZHHBldGVyLm1h
 eWRlbGxAbGluYXJvLm9yZwAKCRA8JSXtFDYM3pWPD/9zjcV3TlOUWg/2aRQOYWB1
 I/h2AGTI09Y/nGMmwvHEyQKyAg6mL8KfJwCUDHr1pE3DeTt4Z7dA+3rhk1uy+gKA
 Ot/7e4IVSMiNh28xkBiSPviBXjYtgmVjvSlgKn4fty6g+30wdGV8ymNz1wXO8II0
 5cuGlaz0VQ4N+W4qz9kuaJNEAsMSnmrJ9fUzZDllRsNy4li3aSR4sQ9CymsJ23+3
 9CdStk/ibA7tExDX5qkj4lKozENEAU/jethA91CQCMLnK/7aGfHbLqVyWu6xDuQ7
 oTdyXr7nrGIUjod+Cx7mLyUQKXVfsiw0x4kmjvOnaVZHh5oIgDj83vWXQ28nC6P4
 wVYCRWpg68GPuaEru8VeocdoATMa1ONjrv5/gFGOxlma4AjD07WQ53hTp2pL0HT2
 +uYPwm2iSYgYKX7QV/rbNzWHK1nYq6/3LDeVQc6nr/3jVewpZngnf2pMxChRUUoT
 qtdLwJL/om9hqV4lsU7cxHKSNnkocfDhjkwRy6wg0L/iXDftt1sKbZO+G78vvsow
 S+NqjpAo4m+P7ExS8DGiSsgvQIQIHvcjjpeym4fWmBxPaXep6oUIewzBuExcYWK8
 XogFZEnW6PNyr/CKLh7GYH9C0F6FI36+yPUZFxvdBpz4w5QBADYKyyG0/53P0uKa
 ez3ixFfplzcx8RIiy+nIsQ==
 =9plU
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20200430-1' into staging

target-arm queue:
 * xlnx-zdma: Fix endianness handling of descriptor loading
 * nrf51: Fix last GPIO CNF address
 * gicv3: Use gicr_typer in arm_gicv3_icc_reset
 * msf2: Add EMAC block to SmartFusion2 SoC
 * New clock modelling framework
 * hw/arm: versal: Setup the ADMA with 128bit bus-width
 * Cadence: gem: fix wraparound in 64bit descriptors
 * cadence_gem: clear RX control descriptor
 * target/arm: Vectorize integer comparison vs zero
 * hw/arm/virt: dt: add kaslr-seed property
 * hw/arm: xlnx-zcu102: Disable unsupported FDT firmware nodes

# gpg: Signature made Thu 30 Apr 2020 15:43:54 BST
# gpg:                using RSA key E1A5C593CD419DE28E8315CF3C2525ED14360CDE
# gpg:                issuer "peter.maydell@linaro.org"
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>" [ultimate]
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>" [ultimate]
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20200430-1: (30 commits)
  hw/arm: xlnx-zcu102: Disable unsupported FDT firmware nodes
  hw/arm: xlnx-zcu102: Move arm_boot_info into XlnxZCU102
  device_tree: Constify compat in qemu_fdt_node_path()
  device_tree: Allow name wildcards in qemu_fdt_node_path()
  target/arm/cpu: Update coding style to make checkpatch.pl happy
  target/arm: Make cpu_register() available for other files
  target/arm: Restrict the Address Translate write operation to TCG accel
  hw/arm/virt: dt: add kaslr-seed property
  hw/arm/virt: dt: move creation of /secure-chosen to create_fdt()
  target/arm: Vectorize integer comparison vs zero
  net: cadence_gem: clear RX control descriptor
  Cadence: gem: fix wraparound in 64bit descriptors
  hw/arm: versal: Setup the ADMA with 128bit bus-width
  qdev-monitor: print the device's clock with info qtree
  hw/arm/xilinx_zynq: connect uart clocks to slcr
  hw/char/cadence_uart: add clock support
  hw/misc/zynq_slcr: add clock generation for uarts
  docs/clocks: add device's clock documentation
  qdev-clock: introduce an init array to ease the device construction
  qdev: add clock input&output support to devices.
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2020-04-30 15:45:34 +01:00
commit 126eeee6c7
45 changed files with 2533 additions and 193 deletions

View File

@ -921,6 +921,8 @@ F: include/hw/arm/msf2-soc.h
F: include/hw/misc/msf2-sysreg.h
F: include/hw/timer/mss-timer.h
F: include/hw/ssi/mss-spi.h
F: hw/net/msf2-emac.c
F: include/hw/net/msf2-emac.h
Emcraft M2S-FG484
M: Subbaraya Sundeep <sundeep.lkml@gmail.com>

View File

@ -291,7 +291,7 @@ char **qemu_fdt_node_unit_path(void *fdt, const char *name, Error **errp)
return path_array;
}
char **qemu_fdt_node_path(void *fdt, const char *name, char *compat,
char **qemu_fdt_node_path(void *fdt, const char *name, const char *compat,
Error **errp)
{
int offset, len, ret;
@ -308,7 +308,7 @@ char **qemu_fdt_node_path(void *fdt, const char *name, char *compat,
offset = len;
break;
}
if (!strcmp(iter_name, name)) {
if (!name || !strcmp(iter_name, name)) {
char *path;
path = g_malloc(path_len);

391
docs/devel/clocks.rst Normal file
View File

@ -0,0 +1,391 @@
Modelling a clock tree in QEMU
==============================
What are clocks?
----------------
Clocks are QOM objects developed for the purpose of modelling the
distribution of clocks in QEMU.
They allow us to model the clock distribution of a platform and detect
configuration errors in the clock tree such as badly configured PLL, clock
source selection or disabled clock.
The object is *Clock* and its QOM name is ``clock`` (in C code, the macro
``TYPE_CLOCK``).
Clocks are typically used with devices where they are used to model inputs
and outputs. They are created in a similar way to GPIOs. Inputs and outputs
of different devices can be connected together.
In these cases a Clock object is a child of a Device object, but this
is not a requirement. Clocks can be independent of devices. For
example it is possible to create a clock outside of any device to
model the main clock source of a machine.
Here is an example of clocks::
+---------+ +----------------------+ +--------------+
| Clock 1 | | Device B | | Device C |
| | | +-------+ +-------+ | | +-------+ |
| |>>-+-->>|Clock 2| |Clock 3|>>--->>|Clock 6| |
+---------+ | | | (in) | | (out) | | | | (in) | |
| | +-------+ +-------+ | | +-------+ |
| | +-------+ | +--------------+
| | |Clock 4|>>
| | | (out) | | +--------------+
| | +-------+ | | Device D |
| | +-------+ | | +-------+ |
| | |Clock 5|>>--->>|Clock 7| |
| | | (out) | | | | (in) | |
| | +-------+ | | +-------+ |
| +----------------------+ | |
| | +-------+ |
+----------------------------->>|Clock 8| |
| | (in) | |
| +-------+ |
+--------------+
Clocks are defined in the ``include/hw/clock.h`` header and device
related functions are defined in the ``include/hw/qdev-clock.h``
header.
The clock state
---------------
The state of a clock is its period; it is stored as an integer
representing it in units of 2 :sup:`-32` ns. The special value of 0 is used to
represent the clock being inactive or gated. The clocks do not model
the signal itself (pin toggling) or other properties such as the duty
cycle.
All clocks contain this state: outputs as well as inputs. This allows
the current period of a clock to be fetched at any time. When a clock
is updated, the value is immediately propagated to all connected
clocks in the tree.
To ease interaction with clocks, helpers with a unit suffix are defined for
every clock state setter or getter. The suffixes are:
- ``_ns`` for handling periods in nanoseconds
- ``_hz`` for handling frequencies in hertz
The 0 period value is converted to 0 in hertz and vice versa. 0 always means
that the clock is disabled.
Adding a new clock
------------------
Adding clocks to a device must be done during the init method of the Device
instance.
To add an input clock to a device, the function ``qdev_init_clock_in()``
must be used. It takes the name, a callback and an opaque parameter
for the callback (this will be explained in a following section).
Output is simpler; only the name is required. Typically::
qdev_init_clock_in(DEVICE(dev), "clk_in", clk_in_callback, dev);
qdev_init_clock_out(DEVICE(dev), "clk_out");
Both functions return the created Clock pointer, which should be saved in the
device's state structure for further use.
These objects will be automatically deleted by the QOM reference mechanism.
Note that it is possible to create a static array describing clock inputs and
outputs. The function ``qdev_init_clocks()`` must be called with the array as
parameter to initialize the clocks: it has the same behaviour as calling the
``qdev_init_clock_in/out()`` for each clock in the array. To ease the array
construction, some macros are defined in ``include/hw/qdev-clock.h``.
As an example, the following creates 2 clocks to a device: one input and one
output.
.. code-block:: c
/* device structure containing pointers to the clock objects */
typedef struct MyDeviceState {
DeviceState parent_obj;
Clock *clk_in;
Clock *clk_out;
} MyDeviceState;
/*
* callback for the input clock (see "Callback on input clock
* change" section below for more information).
*/
static void clk_in_callback(void *opaque);
/*
* static array describing clocks:
* + a clock input named "clk_in", whose pointer is stored in
* the clk_in field of a MyDeviceState structure with callback
* clk_in_callback.
* + a clock output named "clk_out" whose pointer is stored in
* the clk_out field of a MyDeviceState structure.
*/
static const ClockPortInitArray mydev_clocks = {
QDEV_CLOCK_IN(MyDeviceState, clk_in, clk_in_callback),
QDEV_CLOCK_OUT(MyDeviceState, clk_out),
QDEV_CLOCK_END
};
/* device initialization function */
static void mydev_init(Object *obj)
{
/* cast to MyDeviceState */
MyDeviceState *mydev = MYDEVICE(obj);
/* create and fill the pointer fields in the MyDeviceState */
qdev_init_clocks(mydev, mydev_clocks);
[...]
}
An alternative way to create a clock is to simply call
``object_new(TYPE_CLOCK)``. In that case the clock will neither be an
input nor an output of a device. After the whole QOM hierarchy of the
clock has been set ``clock_setup_canonical_path()`` should be called.
At creation, the period of the clock is 0: the clock is disabled. You can
change it using ``clock_set_ns()`` or ``clock_set_hz()``.
Note that if you are creating a clock with a fixed period which will never
change (for example the main clock source of a board), then you'll have
nothing else to do. This value will be propagated to other clocks when
connecting the clocks together and devices will fetch the right value during
the first reset.
Retrieving clocks from a device
-------------------------------
``qdev_get_clock_in()`` and ``dev_get_clock_out()`` are available to
get the clock inputs or outputs of a device. For example:
.. code-block:: c
Clock *clk = qdev_get_clock_in(DEVICE(mydev), "clk_in");
or:
.. code-block:: c
Clock *clk = qdev_get_clock_out(DEVICE(mydev), "clk_out");
Connecting two clocks together
------------------------------
To connect two clocks together, use the ``clock_set_source()`` function.
Given two clocks ``clk1``, and ``clk2``, ``clock_set_source(clk2, clk1);``
configures ``clk2`` to follow the ``clk1`` period changes. Every time ``clk1``
is updated, ``clk2`` will be updated too.
When connecting clock between devices, prefer using the
``qdev_connect_clock_in()`` function to set the source of an input
device clock. For example, to connect the input clock ``clk2`` of
``devB`` to the output clock ``clk1`` of ``devA``, do:
.. code-block:: c
qdev_connect_clock_in(devB, "clk2", qdev_get_clock_out(devA, "clk1"))
We used ``qdev_get_clock_out()`` above, but any clock can drive an
input clock, even another input clock. The following diagram shows
some examples of connections. Note also that a clock can drive several
other clocks.
::
+------------+ +--------------------------------------------------+
| Device A | | Device B |
| | | +---------------------+ |
| | | | Device C | |
| +-------+ | | +-------+ | +-------+ +-------+ | +-------+ |
| |Clock 1|>>-->>|Clock 2|>>+-->>|Clock 3| |Clock 5|>>>>|Clock 6|>>
| | (out) | | | | (in) | | | | (in) | | (out) | | | (out) | |
| +-------+ | | +-------+ | | +-------+ +-------+ | +-------+ |
+------------+ | | +---------------------+ |
| | |
| | +--------------+ |
| | | Device D | |
| | | +-------+ | |
| +-->>|Clock 4| | |
| | | (in) | | |
| | +-------+ | |
| +--------------+ |
+--------------------------------------------------+
In the above example, when *Clock 1* is updated by *Device A*, three
clocks get the new clock period value: *Clock 2*, *Clock 3* and *Clock 4*.
It is not possible to disconnect a clock or to change the clock connection
after it is connected.
Unconnected input clocks
------------------------
A newly created input clock is disabled (period of 0). This means the
clock will be considered as disabled until the period is updated. If
the clock remains unconnected it will always keep its initial value
of 0. If this is not the desired behaviour, ``clock_set()``,
``clock_set_ns()`` or ``clock_set_hz()`` should be called on the Clock
object during device instance init. For example:
.. code-block:: c
clk = qdev_init_clock_in(DEVICE(dev), "clk-in", clk_in_callback,
dev);
/* set initial value to 10ns / 100MHz */
clock_set_ns(clk, 10);
Fetching clock frequency/period
-------------------------------
To get the current state of a clock, use the functions ``clock_get()``,
``clock_get_ns()`` or ``clock_get_hz()``.
It is also possible to register a callback on clock frequency changes.
Here is an example:
.. code-block:: c
void clock_callback(void *opaque) {
MyDeviceState *s = (MyDeviceState *) opaque;
/*
* 'opaque' is the argument passed to qdev_init_clock_in();
* usually this will be the device state pointer.
*/
/* do something with the new period */
fprintf(stdout, "device new period is %" PRIu64 "ns\n",
clock_get_ns(dev->my_clk_input));
}
Changing a clock period
-----------------------
A device can change its outputs using the ``clock_update()``,
``clock_update_ns()`` or ``clock_update_hz()`` function. It will trigger
updates on every connected input.
For example, let's say that we have an output clock *clkout* and we
have a pointer to it in the device state because we did the following
in init phase:
.. code-block:: c
dev->clkout = qdev_init_clock_out(DEVICE(dev), "clkout");
Then at any time (apart from the cases listed below), it is possible to
change the clock value by doing:
.. code-block:: c
clock_update_hz(dev->clkout, 1000 * 1000 * 1000); /* 1GHz */
Because updating a clock may trigger any side effects through
connected clocks and their callbacks, this operation must be done
while holding the qemu io lock.
For the same reason, one can update clocks only when it is allowed to have
side effects on other objects. In consequence, it is forbidden:
* during migration,
* and in the enter phase of reset.
Note that calling ``clock_update[_ns|_hz]()`` is equivalent to calling
``clock_set[_ns|_hz]()`` (with the same arguments) then
``clock_propagate()`` on the clock. Thus, setting the clock value can
be separated from triggering the side-effects. This is often required
to factorize code to handle reset and migration in devices.
Aliasing clocks
---------------
Sometimes, one needs to forward, or inherit, a clock from another
device. Typically, when doing device composition, a device might
expose a sub-device's clock without interfering with it. The function
``qdev_alias_clock()`` can be used to achieve this behaviour. Note
that it is possible to expose the clock under a different name.
``qdev_alias_clock()`` works for both input and output clocks.
For example, if device B is a child of device A,
``device_a_instance_init()`` may do something like this:
.. code-block:: c
void device_a_instance_init(Object *obj)
{
AState *A = DEVICE_A(obj);
BState *B;
/* create object B as child of A */
[...]
qdev_alias_clock(B, "clk", A, "b_clk");
/*
* Now A has a clock "b_clk" which is an alias to
* the clock "clk" of its child B.
*/
}
This function does not return any clock object. The new clock has the
same direction (input or output) as the original one. This function
only adds a link to the existing clock. In the above example, object B
remains the only object allowed to use the clock and device A must not
try to change the clock period or set a callback to the clock. This
diagram describes the example with an input clock::
+--------------------------+
| Device A |
| +--------------+ |
| | Device B | |
| | +-------+ | |
>>"b_clk">>>| "clk" | | |
| (in) | | (in) | | |
| | +-------+ | |
| +--------------+ |
+--------------------------+
Migration
---------
Clock state is not migrated automatically. Every device must handle its
clock migration. Alias clocks must not be migrated.
To ensure clock states are restored correctly during migration, there
are two solutions.
Clock states can be migrated by adding an entry into the device
vmstate description. You should use the ``VMSTATE_CLOCK`` macro for this.
This is typically used to migrate an input clock state. For example:
.. code-block:: c
MyDeviceState {
DeviceState parent_obj;
[...] /* some fields */
Clock *clk;
};
VMStateDescription my_device_vmstate = {
.name = "my_device",
.fields = (VMStateField[]) {
[...], /* other migrated fields */
VMSTATE_CLOCK(clk, MyDeviceState),
VMSTATE_END_OF_LIST()
}
};
The second solution is to restore the clock state using information already
at our disposal. This can be used to restore output clock states using the
device state. The functions ``clock_set[_ns|_hz]()`` can be used during the
``post_load()`` migration callback.
When adding clock support to an existing device, if you care about
migration compatibility you will need to be careful, as simply adding
a ``VMSTATE_CLOCK()`` line will break compatibility. Instead, you can
put the ``VMSTATE_CLOCK()`` line into a vmstate subsection with a
suitable ``needed`` function, and use ``clock_set()`` in a
``pre_load()`` function to set the default value that will be used if
the source virtual machine in the migration does not send the clock
state.
Care should be taken not to use ``clock_update[_ns|_hz]()`` or
``clock_propagate()`` during the whole migration procedure because it
will trigger side effects to other devices in an unknown state.

View File

@ -27,3 +27,4 @@ Contents:
bitops
reset
s390-dasd-ipl
clocks

View File

@ -222,7 +222,7 @@ void cpu_hotplug_hw_init(MemoryRegion *as, Object *owner,
state->devs[i].arch_id = id_list->cpus[i].arch_id;
}
memory_region_init_io(&state->ctrl_reg, owner, &cpu_hotplug_ops, state,
"acpi-mem-hotplug", ACPI_CPU_HOTPLUG_REG_LEN);
"acpi-cpu-hotplug", ACPI_CPU_HOTPLUG_REG_LEN);
memory_region_add_subregion(as, base_addr, &state->ctrl_reg);
}

View File

@ -1,7 +1,7 @@
/*
* SmartFusion2 SoC emulation.
*
* Copyright (c) 2017 Subbaraya Sundeep <sundeep.lkml@gmail.com>
* Copyright (c) 2017-2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
@ -35,11 +35,14 @@
#define MSF2_TIMER_BASE 0x40004000
#define MSF2_SYSREG_BASE 0x40038000
#define MSF2_EMAC_BASE 0x40041000
#define ENVM_BASE_ADDRESS 0x60000000
#define SRAM_BASE_ADDRESS 0x20000000
#define MSF2_EMAC_IRQ 12
#define MSF2_ENVM_MAX_SIZE (512 * KiB)
/*
@ -81,6 +84,13 @@ static void m2sxxx_soc_initfn(Object *obj)
sysbus_init_child_obj(obj, "spi[*]", &s->spi[i], sizeof(s->spi[i]),
TYPE_MSS_SPI);
}
sysbus_init_child_obj(obj, "emac", &s->emac, sizeof(s->emac),
TYPE_MSS_EMAC);
if (nd_table[0].used) {
qemu_check_nic_model(&nd_table[0], TYPE_MSS_EMAC);
qdev_set_nic_properties(DEVICE(&s->emac), &nd_table[0]);
}
}
static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
@ -192,6 +202,19 @@ static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
g_free(bus_name);
}
dev = DEVICE(&s->emac);
object_property_set_link(OBJECT(&s->emac), OBJECT(get_system_memory()),
"ahb-bus", &error_abort);
object_property_set_bool(OBJECT(&s->emac), true, "realized", &err);
if (err != NULL) {
error_propagate(errp, err);
return;
}
busdev = SYS_BUS_DEVICE(dev);
sysbus_mmio_map(busdev, 0, MSF2_EMAC_BASE);
sysbus_connect_irq(busdev, 0,
qdev_get_gpio_in(armv7m, MSF2_EMAC_IRQ));
/* Below devices are not modelled yet. */
create_unimplemented_device("i2c_0", 0x40002000, 0x1000);
create_unimplemented_device("dma", 0x40003000, 0x1000);
@ -202,7 +225,6 @@ static void m2sxxx_soc_realize(DeviceState *dev_soc, Error **errp)
create_unimplemented_device("can", 0x40015000, 0x1000);
create_unimplemented_device("rtc", 0x40017000, 0x1000);
create_unimplemented_device("apb_config", 0x40020000, 0x10000);
create_unimplemented_device("emac", 0x40041000, 0x1000);
create_unimplemented_device("usb", 0x40043000, 0x1000);
}

View File

@ -77,6 +77,7 @@
#include "hw/acpi/generic_event_device.h"
#include "hw/virtio/virtio-iommu.h"
#include "hw/char/pl011.h"
#include "qemu/guest-random.h"
#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
@ -213,6 +214,18 @@ static bool cpu_type_valid(const char *cpu)
return false;
}
static void create_kaslr_seed(VirtMachineState *vms, const char *node)
{
Error *err = NULL;
uint64_t seed;
if (qemu_guest_getrandom(&seed, sizeof(seed), &err)) {
error_free(err);
return;
}
qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
}
static void create_fdt(VirtMachineState *vms)
{
MachineState *ms = MACHINE(vms);
@ -233,6 +246,12 @@ static void create_fdt(VirtMachineState *vms)
/* /chosen must exist for load_dtb to fill in necessary properties later */
qemu_fdt_add_subnode(fdt, "/chosen");
create_kaslr_seed(vms, "/chosen");
if (vms->secure) {
qemu_fdt_add_subnode(fdt, "/secure-chosen");
create_kaslr_seed(vms, "/secure-chosen");
}
/* Clock node, for the benefit of the UART. The kernel device tree
* binding documentation claims the PL011 node clock properties are
@ -761,7 +780,6 @@ static void create_uart(const VirtMachineState *vms, int uart,
qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
nodename);
}

View File

@ -35,6 +35,15 @@
#include "hw/char/cadence_uart.h"
#include "hw/net/cadence_gem.h"
#include "hw/cpu/a9mpcore.h"
#include "hw/qdev-clock.h"
#include "sysemu/reset.h"
#define TYPE_ZYNQ_MACHINE MACHINE_TYPE_NAME("xilinx-zynq-a9")
#define ZYNQ_MACHINE(obj) \
OBJECT_CHECK(ZynqMachineState, (obj), TYPE_ZYNQ_MACHINE)
/* board base frequency: 33.333333 MHz */
#define PS_CLK_FREQUENCY (100 * 1000 * 1000 / 3)
#define NUM_SPI_FLASHES 4
#define NUM_QSPI_FLASHES 2
@ -75,6 +84,11 @@ static const int dma_irqs[8] = {
0xe3401000 + ARMV7_IMM16(extract32((val), 16, 16)), /* movt r1 ... */ \
0xe5801000 + (addr)
typedef struct ZynqMachineState {
MachineState parent;
Clock *ps_clk;
} ZynqMachineState;
static void zynq_write_board_setup(ARMCPU *cpu,
const struct arm_boot_info *info)
{
@ -159,10 +173,11 @@ static inline void zynq_init_spi_flashes(uint32_t base_addr, qemu_irq irq,
static void zynq_init(MachineState *machine)
{
ZynqMachineState *zynq_machine = ZYNQ_MACHINE(machine);
ARMCPU *cpu;
MemoryRegion *address_space_mem = get_system_memory();
MemoryRegion *ocm_ram = g_new(MemoryRegion, 1);
DeviceState *dev;
DeviceState *dev, *slcr;
SysBusDevice *busdev;
qemu_irq pic[64];
int n;
@ -206,9 +221,18 @@ static void zynq_init(MachineState *machine)
1, 0x0066, 0x0022, 0x0000, 0x0000, 0x0555, 0x2aa,
0);
dev = qdev_create(NULL, "xilinx,zynq_slcr");
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0xF8000000);
/* Create slcr, keep a pointer to connect clocks */
slcr = qdev_create(NULL, "xilinx,zynq_slcr");
qdev_init_nofail(slcr);
sysbus_mmio_map(SYS_BUS_DEVICE(slcr), 0, 0xF8000000);
/* Create the main clock source, and feed slcr with it */
zynq_machine->ps_clk = CLOCK(object_new(TYPE_CLOCK));
object_property_add_child(OBJECT(zynq_machine), "ps_clk",
OBJECT(zynq_machine->ps_clk), &error_abort);
object_unref(OBJECT(zynq_machine->ps_clk));
clock_set_hz(zynq_machine->ps_clk, PS_CLK_FREQUENCY);
qdev_connect_clock_in(slcr, "ps_clk", zynq_machine->ps_clk);
dev = qdev_create(NULL, TYPE_A9MPCORE_PRIV);
qdev_prop_set_uint32(dev, "num-cpu", 1);
@ -229,8 +253,12 @@ static void zynq_init(MachineState *machine)
sysbus_create_simple(TYPE_CHIPIDEA, 0xE0002000, pic[53 - IRQ_OFFSET]);
sysbus_create_simple(TYPE_CHIPIDEA, 0xE0003000, pic[76 - IRQ_OFFSET]);
cadence_uart_create(0xE0000000, pic[59 - IRQ_OFFSET], serial_hd(0));
cadence_uart_create(0xE0001000, pic[82 - IRQ_OFFSET], serial_hd(1));
dev = cadence_uart_create(0xE0000000, pic[59 - IRQ_OFFSET], serial_hd(0));
qdev_connect_clock_in(dev, "refclk",
qdev_get_clock_out(slcr, "uart0_ref_clk"));
dev = cadence_uart_create(0xE0001000, pic[82 - IRQ_OFFSET], serial_hd(1));
qdev_connect_clock_in(dev, "refclk",
qdev_get_clock_out(slcr, "uart1_ref_clk"));
sysbus_create_varargs("cadence_ttc", 0xF8001000,
pic[42-IRQ_OFFSET], pic[43-IRQ_OFFSET], pic[44-IRQ_OFFSET], NULL);
@ -308,8 +336,9 @@ static void zynq_init(MachineState *machine)
arm_load_kernel(ARM_CPU(first_cpu), machine, &zynq_binfo);
}
static void zynq_machine_init(MachineClass *mc)
static void zynq_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Xilinx Zynq Platform Baseboard for Cortex-A9";
mc->init = zynq_init;
mc->max_cpus = 1;
@ -319,4 +348,16 @@ static void zynq_machine_init(MachineClass *mc)
mc->default_ram_id = "zynq.ext_ram";
}
DEFINE_MACHINE("xilinx-zynq-a9", zynq_machine_init)
static const TypeInfo zynq_machine_type = {
.name = TYPE_ZYNQ_MACHINE,
.parent = TYPE_MACHINE,
.class_init = zynq_machine_class_init,
.instance_size = sizeof(ZynqMachineState),
};
static void zynq_machine_register_types(void)
{
type_register_static(&zynq_machine_type);
}
type_init(zynq_machine_register_types)

View File

@ -205,6 +205,8 @@ static void versal_create_admas(Versal *s, qemu_irq *pic)
dev = qdev_create(NULL, "xlnx.zdma");
s->lpd.iou.adma[i] = SYS_BUS_DEVICE(dev);
object_property_set_int(OBJECT(s->lpd.iou.adma[i]), 128, "bus-width",
&error_abort);
object_property_add_child(OBJECT(s), name, OBJECT(dev), &error_fatal);
qdev_init_nofail(dev);

View File

@ -23,6 +23,7 @@
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "sysemu/qtest.h"
#include "sysemu/device_tree.h"
typedef struct XlnxZCU102 {
MachineState parent_obj;
@ -31,13 +32,14 @@ typedef struct XlnxZCU102 {
bool secure;
bool virt;
struct arm_boot_info binfo;
} XlnxZCU102;
#define TYPE_ZCU102_MACHINE MACHINE_TYPE_NAME("xlnx-zcu102")
#define ZCU102_MACHINE(obj) \
OBJECT_CHECK(XlnxZCU102, (obj), TYPE_ZCU102_MACHINE)
static struct arm_boot_info xlnx_zcu102_binfo;
static bool zcu102_get_secure(Object *obj, Error **errp)
{
@ -67,6 +69,34 @@ static void zcu102_set_virt(Object *obj, bool value, Error **errp)
s->virt = value;
}
static void zcu102_modify_dtb(const struct arm_boot_info *binfo, void *fdt)
{
XlnxZCU102 *s = container_of(binfo, XlnxZCU102, binfo);
bool method_is_hvc;
char **node_path;
const char *r;
int prop_len;
int i;
/* If EL3 is enabled, we keep all firmware nodes active. */
if (!s->secure) {
node_path = qemu_fdt_node_path(fdt, NULL, "xlnx,zynqmp-firmware",
&error_fatal);
for (i = 0; node_path && node_path[i]; i++) {
r = qemu_fdt_getprop(fdt, node_path[i], "method", &prop_len, NULL);
method_is_hvc = r && !strcmp("hvc", r);
/* Allow HVC based firmware if EL2 is enabled. */
if (method_is_hvc && s->virt) {
continue;
}
qemu_fdt_setprop_string(fdt, node_path[i], "status", "disabled");
}
g_strfreev(node_path);
}
}
static void xlnx_zcu102_init(MachineState *machine)
{
XlnxZCU102 *s = ZCU102_MACHINE(machine);
@ -166,9 +196,10 @@ static void xlnx_zcu102_init(MachineState *machine)
/* TODO create and connect IDE devices for ide_drive_get() */
xlnx_zcu102_binfo.ram_size = ram_size;
xlnx_zcu102_binfo.loader_start = 0;
arm_load_kernel(s->soc.boot_cpu_ptr, machine, &xlnx_zcu102_binfo);
s->binfo.ram_size = ram_size;
s->binfo.loader_start = 0;
s->binfo.modify_dtb = zcu102_modify_dtb;
arm_load_kernel(s->soc.boot_cpu_ptr, machine, &s->binfo);
}
static void xlnx_zcu102_machine_instance_init(Object *obj)

View File

@ -31,6 +31,8 @@
#include "qemu/module.h"
#include "hw/char/cadence_uart.h"
#include "hw/irq.h"
#include "hw/qdev-clock.h"
#include "trace.h"
#ifdef CADENCE_UART_ERR_DEBUG
#define DB_PRINT(...) do { \
@ -97,7 +99,7 @@
#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
#define UART_INPUT_CLK 50000000
#define UART_DEFAULT_REF_CLK (50 * 1000 * 1000)
#define R_CR (0x00/4)
#define R_MR (0x04/4)
@ -171,12 +173,15 @@ static void uart_send_breaks(CadenceUARTState *s)
static void uart_parameters_setup(CadenceUARTState *s)
{
QEMUSerialSetParams ssp;
unsigned int baud_rate, packet_size;
unsigned int baud_rate, packet_size, input_clk;
input_clk = clock_get_hz(s->refclk);
baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
UART_INPUT_CLK / 8 : UART_INPUT_CLK;
baud_rate = (s->r[R_MR] & UART_MR_CLKS) ? input_clk / 8 : input_clk;
baud_rate /= (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
trace_cadence_uart_baudrate(baud_rate);
ssp.speed = baud_rate;
ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
packet_size = 1;
switch (s->r[R_MR] & UART_MR_PAR) {
@ -215,6 +220,13 @@ static void uart_parameters_setup(CadenceUARTState *s)
}
packet_size += ssp.data_bits + ssp.stop_bits;
if (ssp.speed == 0) {
/*
* Avoid division-by-zero below.
* TODO: find something better
*/
ssp.speed = 1;
}
s->char_tx_time = (NANOSECONDS_PER_SECOND / ssp.speed) * packet_size;
qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
}
@ -340,6 +352,11 @@ static void uart_receive(void *opaque, const uint8_t *buf, int size)
CadenceUARTState *s = opaque;
uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
return;
}
if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
uart_write_rx_fifo(opaque, buf, size);
}
@ -353,6 +370,11 @@ static void uart_event(void *opaque, QEMUChrEvent event)
CadenceUARTState *s = opaque;
uint8_t buf = '\0';
/* ignore characters when unclocked or in reset */
if (!clock_is_enabled(s->refclk) || device_is_in_reset(DEVICE(s))) {
return;
}
if (event == CHR_EVENT_BREAK) {
uart_write_rx_fifo(opaque, &buf, 1);
}
@ -462,9 +484,9 @@ static const MemoryRegionOps uart_ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void cadence_uart_reset(DeviceState *dev)
static void cadence_uart_reset_init(Object *obj, ResetType type)
{
CadenceUARTState *s = CADENCE_UART(dev);
CadenceUARTState *s = CADENCE_UART(obj);
s->r[R_CR] = 0x00000128;
s->r[R_IMR] = 0;
@ -473,6 +495,11 @@ static void cadence_uart_reset(DeviceState *dev)
s->r[R_BRGR] = 0x0000028B;
s->r[R_BDIV] = 0x0000000F;
s->r[R_TTRIG] = 0x00000020;
}
static void cadence_uart_reset_hold(Object *obj)
{
CadenceUARTState *s = CADENCE_UART(obj);
uart_rx_reset(s);
uart_tx_reset(s);
@ -491,6 +518,14 @@ static void cadence_uart_realize(DeviceState *dev, Error **errp)
uart_event, NULL, s, NULL, true);
}
static void cadence_uart_refclk_update(void *opaque)
{
CadenceUARTState *s = opaque;
/* recompute uart's speed on clock change */
uart_parameters_setup(s);
}
static void cadence_uart_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
@ -500,9 +535,23 @@ static void cadence_uart_init(Object *obj)
sysbus_init_mmio(sbd, &s->iomem);
sysbus_init_irq(sbd, &s->irq);
s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk",
cadence_uart_refclk_update, s);
/* initialize the frequency in case the clock remains unconnected */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
s->char_tx_time = (NANOSECONDS_PER_SECOND / 9600) * 10;
}
static int cadence_uart_pre_load(void *opaque)
{
CadenceUARTState *s = opaque;
/* the frequency will be overriden if the refclk field is present */
clock_set_hz(s->refclk, UART_DEFAULT_REF_CLK);
return 0;
}
static int cadence_uart_post_load(void *opaque, int version_id)
{
CadenceUARTState *s = opaque;
@ -521,8 +570,9 @@ static int cadence_uart_post_load(void *opaque, int version_id)
static const VMStateDescription vmstate_cadence_uart = {
.name = "cadence_uart",
.version_id = 2,
.version_id = 3,
.minimum_version_id = 2,
.pre_load = cadence_uart_pre_load,
.post_load = cadence_uart_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
@ -534,8 +584,9 @@ static const VMStateDescription vmstate_cadence_uart = {
VMSTATE_UINT32(tx_count, CadenceUARTState),
VMSTATE_UINT32(rx_wpos, CadenceUARTState),
VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
VMSTATE_CLOCK_V(refclk, CadenceUARTState, 3),
VMSTATE_END_OF_LIST()
}
},
};
static Property cadence_uart_properties[] = {
@ -546,10 +597,12 @@ static Property cadence_uart_properties[] = {
static void cadence_uart_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->realize = cadence_uart_realize;
dc->vmsd = &vmstate_cadence_uart;
dc->reset = cadence_uart_reset;
rc->phases.enter = cadence_uart_reset_init;
rc->phases.hold = cadence_uart_reset_hold;
device_class_set_props(dc, cadence_uart_properties);
}

View File

@ -97,3 +97,6 @@ exynos_uart_wo_read(uint32_t channel, const char *name, uint32_t reg) "UART%d: T
exynos_uart_rxsize(uint32_t channel, uint32_t size) "UART%d: Rx FIFO size: %d"
exynos_uart_channel_error(uint32_t channel) "Wrong UART channel number: %d"
exynos_uart_rx_timeout(uint32_t channel, uint32_t stat, uint32_t intsp) "UART%d: Rx timeout stat=0x%x intsp=0x%x"
# hw/char/cadence_uart.c
cadence_uart_baudrate(unsigned baudrate) "baudrate %u"

View File

@ -7,6 +7,7 @@ common-obj-y += hotplug.o
common-obj-y += vmstate-if.o
# irq.o needed for qdev GPIO handling:
common-obj-y += irq.o
common-obj-y += clock.o qdev-clock.o
common-obj-$(CONFIG_SOFTMMU) += reset.o
common-obj-$(CONFIG_SOFTMMU) += qdev-fw.o
@ -20,6 +21,7 @@ common-obj-$(CONFIG_SOFTMMU) += null-machine.o
common-obj-$(CONFIG_SOFTMMU) += loader.o
common-obj-$(CONFIG_SOFTMMU) += machine-hmp-cmds.o
common-obj-$(CONFIG_SOFTMMU) += numa.o
common-obj-$(CONFIG_SOFTMMU) += clock-vmstate.o
obj-$(CONFIG_SOFTMMU) += machine-qmp-cmds.o
common-obj-$(CONFIG_EMPTY_SLOT) += empty_slot.o

25
hw/core/clock-vmstate.c Normal file
View File

@ -0,0 +1,25 @@
/*
* Clock migration structure
*
* Copyright GreenSocs 2019-2020
*
* Authors:
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "migration/vmstate.h"
#include "hw/clock.h"
const VMStateDescription vmstate_clock = {
.name = "clock",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT64(period, Clock),
VMSTATE_END_OF_LIST()
}
};

130
hw/core/clock.c Normal file
View File

@ -0,0 +1,130 @@
/*
* Hardware Clocks
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/clock.h"
#include "trace.h"
#define CLOCK_PATH(_clk) (_clk->canonical_path)
void clock_setup_canonical_path(Clock *clk)
{
g_free(clk->canonical_path);
clk->canonical_path = object_get_canonical_path(OBJECT(clk));
}
void clock_set_callback(Clock *clk, ClockCallback *cb, void *opaque)
{
clk->callback = cb;
clk->callback_opaque = opaque;
}
void clock_clear_callback(Clock *clk)
{
clock_set_callback(clk, NULL, NULL);
}
void clock_set(Clock *clk, uint64_t period)
{
trace_clock_set(CLOCK_PATH(clk), CLOCK_PERIOD_TO_NS(clk->period),
CLOCK_PERIOD_TO_NS(period));
clk->period = period;
}
static void clock_propagate_period(Clock *clk, bool call_callbacks)
{
Clock *child;
QLIST_FOREACH(child, &clk->children, sibling) {
if (child->period != clk->period) {
child->period = clk->period;
trace_clock_update(CLOCK_PATH(child), CLOCK_PATH(clk),
CLOCK_PERIOD_TO_NS(clk->period),
call_callbacks);
if (call_callbacks && child->callback) {
child->callback(child->callback_opaque);
}
clock_propagate_period(child, call_callbacks);
}
}
}
void clock_propagate(Clock *clk)
{
assert(clk->source == NULL);
trace_clock_propagate(CLOCK_PATH(clk));
clock_propagate_period(clk, true);
}
void clock_set_source(Clock *clk, Clock *src)
{
/* changing clock source is not supported */
assert(!clk->source);
trace_clock_set_source(CLOCK_PATH(clk), CLOCK_PATH(src));
clk->period = src->period;
QLIST_INSERT_HEAD(&src->children, clk, sibling);
clk->source = src;
clock_propagate_period(clk, false);
}
static void clock_disconnect(Clock *clk)
{
if (clk->source == NULL) {
return;
}
trace_clock_disconnect(CLOCK_PATH(clk));
clk->source = NULL;
QLIST_REMOVE(clk, sibling);
}
static void clock_initfn(Object *obj)
{
Clock *clk = CLOCK(obj);
QLIST_INIT(&clk->children);
}
static void clock_finalizefn(Object *obj)
{
Clock *clk = CLOCK(obj);
Clock *child, *next;
/* clear our list of children */
QLIST_FOREACH_SAFE(child, &clk->children, sibling, next) {
clock_disconnect(child);
}
/* remove us from source's children list */
clock_disconnect(clk);
g_free(clk->canonical_path);
}
static const TypeInfo clock_info = {
.name = TYPE_CLOCK,
.parent = TYPE_OBJECT,
.instance_size = sizeof(Clock),
.instance_init = clock_initfn,
.instance_finalize = clock_finalizefn,
};
static void clock_register_types(void)
{
type_register_static(&clock_info);
}
type_init(clock_register_types)

185
hw/core/qdev-clock.c Normal file
View File

@ -0,0 +1,185 @@
/*
* Device's clock input and output
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/qdev-clock.h"
#include "hw/qdev-core.h"
#include "qapi/error.h"
/*
* qdev_init_clocklist:
* Add a new clock in a device
*/
static NamedClockList *qdev_init_clocklist(DeviceState *dev, const char *name,
bool output, Clock *clk)
{
NamedClockList *ncl;
/*
* Clock must be added before realize() so that we can compute the
* clock's canonical path during device_realize().
*/
assert(!dev->realized);
/*
* The ncl structure is freed by qdev_finalize_clocklist() which will
* be called during @dev's device_finalize().
*/
ncl = g_new0(NamedClockList, 1);
ncl->name = g_strdup(name);
ncl->output = output;
ncl->alias = (clk != NULL);
/*
* Trying to create a clock whose name clashes with some other
* clock or property is a bug in the caller and we will abort().
*/
if (clk == NULL) {
clk = CLOCK(object_new(TYPE_CLOCK));
object_property_add_child(OBJECT(dev), name, OBJECT(clk), &error_abort);
if (output) {
/*
* Remove object_new()'s initial reference.
* Note that for inputs, the reference created by object_new()
* will be deleted in qdev_finalize_clocklist().
*/
object_unref(OBJECT(clk));
}
} else {
object_property_add_link(OBJECT(dev), name,
object_get_typename(OBJECT(clk)),
(Object **) &ncl->clock,
NULL, OBJ_PROP_LINK_STRONG, &error_abort);
}
ncl->clock = clk;
QLIST_INSERT_HEAD(&dev->clocks, ncl, node);
return ncl;
}
void qdev_finalize_clocklist(DeviceState *dev)
{
/* called by @dev's device_finalize() */
NamedClockList *ncl, *ncl_next;
QLIST_FOREACH_SAFE(ncl, &dev->clocks, node, ncl_next) {
QLIST_REMOVE(ncl, node);
if (!ncl->output && !ncl->alias) {
/*
* We kept a reference on the input clock to ensure it lives up to
* this point so we can safely remove the callback.
* It avoids having a callback to a deleted object if ncl->clock
* is still referenced somewhere else (eg: by a clock output).
*/
clock_clear_callback(ncl->clock);
object_unref(OBJECT(ncl->clock));
}
g_free(ncl->name);
g_free(ncl);
}
}
Clock *qdev_init_clock_out(DeviceState *dev, const char *name)
{
NamedClockList *ncl;
assert(name);
ncl = qdev_init_clocklist(dev, name, true, NULL);
return ncl->clock;
}
Clock *qdev_init_clock_in(DeviceState *dev, const char *name,
ClockCallback *callback, void *opaque)
{
NamedClockList *ncl;
assert(name);
ncl = qdev_init_clocklist(dev, name, false, NULL);
if (callback) {
clock_set_callback(ncl->clock, callback, opaque);
}
return ncl->clock;
}
void qdev_init_clocks(DeviceState *dev, const ClockPortInitArray clocks)
{
const struct ClockPortInitElem *elem;
for (elem = &clocks[0]; elem->name != NULL; elem++) {
Clock **clkp;
/* offset cannot be inside the DeviceState part */
assert(elem->offset > sizeof(DeviceState));
clkp = (Clock **)(((void *) dev) + elem->offset);
if (elem->is_output) {
*clkp = qdev_init_clock_out(dev, elem->name);
} else {
*clkp = qdev_init_clock_in(dev, elem->name, elem->callback, dev);
}
}
}
static NamedClockList *qdev_get_clocklist(DeviceState *dev, const char *name)
{
NamedClockList *ncl;
QLIST_FOREACH(ncl, &dev->clocks, node) {
if (strcmp(name, ncl->name) == 0) {
return ncl;
}
}
return NULL;
}
Clock *qdev_get_clock_in(DeviceState *dev, const char *name)
{
NamedClockList *ncl;
assert(name);
ncl = qdev_get_clocklist(dev, name);
assert(!ncl->output);
return ncl->clock;
}
Clock *qdev_get_clock_out(DeviceState *dev, const char *name)
{
NamedClockList *ncl;
assert(name);
ncl = qdev_get_clocklist(dev, name);
assert(ncl->output);
return ncl->clock;
}
Clock *qdev_alias_clock(DeviceState *dev, const char *name,
DeviceState *alias_dev, const char *alias_name)
{
NamedClockList *ncl;
assert(name && alias_name);
ncl = qdev_get_clocklist(dev, name);
qdev_init_clocklist(alias_dev, alias_name, ncl->output, ncl->clock);
return ncl->clock;
}

View File

@ -37,6 +37,7 @@
#include "hw/qdev-properties.h"
#include "hw/boards.h"
#include "hw/sysbus.h"
#include "hw/qdev-clock.h"
#include "migration/vmstate.h"
#include "trace.h"
@ -855,6 +856,7 @@ static void device_set_realized(Object *obj, bool value, Error **errp)
DeviceClass *dc = DEVICE_GET_CLASS(dev);
HotplugHandler *hotplug_ctrl;
BusState *bus;
NamedClockList *ncl;
Error *local_err = NULL;
bool unattached_parent = false;
static int unattached_count;
@ -902,6 +904,13 @@ static void device_set_realized(Object *obj, bool value, Error **errp)
*/
g_free(dev->canonical_path);
dev->canonical_path = object_get_canonical_path(OBJECT(dev));
QLIST_FOREACH(ncl, &dev->clocks, node) {
if (ncl->alias) {
continue;
} else {
clock_setup_canonical_path(ncl->clock);
}
}
if (qdev_get_vmsd(dev)) {
if (vmstate_register_with_alias_id(VMSTATE_IF(dev),
@ -1025,6 +1034,7 @@ static void device_initfn(Object *obj)
dev->allow_unplug_during_migration = false;
QLIST_INIT(&dev->gpios);
QLIST_INIT(&dev->clocks);
}
static void device_post_init(Object *obj)
@ -1054,6 +1064,8 @@ static void device_finalize(Object *obj)
*/
}
qdev_finalize_clocklist(dev);
/* Only send event if the device had been completely realized */
if (dev->pending_deleted_event) {
g_assert(dev->canonical_path);

View File

@ -27,3 +27,10 @@ resettable_phase_exit_begin(void *obj, const char *objtype, unsigned count, int
resettable_phase_exit_exec(void *obj, const char *objtype, int has_method) "obj=%p(%s) method=%d"
resettable_phase_exit_end(void *obj, const char *objtype, unsigned count) "obj=%p(%s) count=%d"
resettable_transitional_function(void *obj, const char *objtype) "obj=%p(%s)"
# clock.c
clock_set_source(const char *clk, const char *src) "'%s', src='%s'"
clock_disconnect(const char *clk) "'%s'"
clock_set(const char *clk, uint64_t old, uint64_t new) "'%s', ns=%"PRIu64"->%"PRIu64
clock_propagate(const char *clk) "'%s'"
clock_update(const char *clk, const char *src, uint64_t val, int cb) "'%s', src='%s', ns=%"PRIu64", cb=%d"

View File

@ -299,19 +299,30 @@ static void zdma_put_regaddr64(XlnxZDMA *s, unsigned int basereg, uint64_t addr)
s->regs[basereg + 1] = addr >> 32;
}
static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr, void *buf)
static void zdma_load_descriptor_reg(XlnxZDMA *s, unsigned int reg,
XlnxZDMADescr *descr)
{
descr->addr = zdma_get_regaddr64(s, reg);
descr->size = s->regs[reg + 2];
descr->attr = s->regs[reg + 3];
}
static bool zdma_load_descriptor(XlnxZDMA *s, uint64_t addr,
XlnxZDMADescr *descr)
{
/* ZDMA descriptors must be aligned to their own size. */
if (addr % sizeof(XlnxZDMADescr)) {
qemu_log_mask(LOG_GUEST_ERROR,
"zdma: unaligned descriptor at %" PRIx64,
addr);
memset(buf, 0x0, sizeof(XlnxZDMADescr));
memset(descr, 0x0, sizeof(XlnxZDMADescr));
s->error = true;
return false;
}
address_space_read(s->dma_as, addr, s->attr, buf, sizeof(XlnxZDMADescr));
descr->addr = address_space_ldq_le(s->dma_as, addr, s->attr, NULL);
descr->size = address_space_ldl_le(s->dma_as, addr + 8, s->attr, NULL);
descr->attr = address_space_ldl_le(s->dma_as, addr + 12, s->attr, NULL);
return true;
}
@ -321,8 +332,7 @@ static void zdma_load_src_descriptor(XlnxZDMA *s)
unsigned int ptype = ARRAY_FIELD_EX32(s->regs, ZDMA_CH_CTRL0, POINT_TYPE);
if (ptype == PT_REG) {
memcpy(&s->dsc_src, &s->regs[R_ZDMA_CH_SRC_DSCR_WORD0],
sizeof(s->dsc_src));
zdma_load_descriptor_reg(s, R_ZDMA_CH_SRC_DSCR_WORD0, &s->dsc_src);
return;
}
@ -344,7 +354,7 @@ static void zdma_update_descr_addr(XlnxZDMA *s, bool type,
} else {
addr = zdma_get_regaddr64(s, basereg);
addr += sizeof(s->dsc_dst);
address_space_read(s->dma_as, addr, s->attr, (void *) &next, 8);
next = address_space_ldq_le(s->dma_as, addr, s->attr, NULL);
}
zdma_put_regaddr64(s, basereg, next);
@ -357,8 +367,7 @@ static void zdma_load_dst_descriptor(XlnxZDMA *s)
bool dst_type;
if (ptype == PT_REG) {
memcpy(&s->dsc_dst, &s->regs[R_ZDMA_CH_DST_DSCR_WORD0],
sizeof(s->dsc_dst));
zdma_load_descriptor_reg(s, R_ZDMA_CH_DST_DSCR_WORD0, &s->dsc_dst);
return;
}

View File

@ -658,13 +658,11 @@ static void kvm_arm_gicv3_get(GICv3State *s)
static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu;
GICv3State *s;
GICv3CPUState *c;
c = (GICv3CPUState *)env->gicv3state;
s = c->gic;
cpu = ARM_CPU(c->cpu);
c->icc_pmr_el1 = 0;
c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
@ -681,7 +679,7 @@ static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
/* Initialize to actual HW supported configuration */
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
KVM_VGIC_ATTR(ICC_CTLR_EL1, c->gicr_typer),
&c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];

View File

@ -22,6 +22,7 @@
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/registerfields.h"
#include "hw/qdev-clock.h"
#ifndef ZYNQ_SLCR_ERR_DEBUG
#define ZYNQ_SLCR_ERR_DEBUG 0
@ -45,6 +46,12 @@ REG32(LOCKSTA, 0x00c)
REG32(ARM_PLL_CTRL, 0x100)
REG32(DDR_PLL_CTRL, 0x104)
REG32(IO_PLL_CTRL, 0x108)
/* fields for [ARM|DDR|IO]_PLL_CTRL registers */
FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
REG32(PLL_STATUS, 0x10c)
REG32(ARM_PLL_CFG, 0x110)
REG32(DDR_PLL_CFG, 0x114)
@ -64,6 +71,10 @@ REG32(SMC_CLK_CTRL, 0x148)
REG32(LQSPI_CLK_CTRL, 0x14c)
REG32(SDIO_CLK_CTRL, 0x150)
REG32(UART_CLK_CTRL, 0x154)
FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
REG32(SPI_CLK_CTRL, 0x158)
REG32(CAN_CLK_CTRL, 0x15c)
REG32(CAN_MIOCLK_CTRL, 0x160)
@ -179,11 +190,127 @@ typedef struct ZynqSLCRState {
MemoryRegion iomem;
uint32_t regs[ZYNQ_SLCR_NUM_REGS];
Clock *ps_clk;
Clock *uart0_ref_clk;
Clock *uart1_ref_clk;
} ZynqSLCRState;
static void zynq_slcr_reset(DeviceState *d)
/*
* return the output frequency of ARM/DDR/IO pll
* using input frequency and PLL_CTRL register
*/
static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
{
ZynqSLCRState *s = ZYNQ_SLCR(d);
uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
/* first, check if pll is bypassed */
if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
return input;
}
/* is pll disabled ? */
if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
return 0;
}
/* frequency multiplier -> period division */
return input / mult;
}
/*
* return the output period of a clock given:
* + the periods in an array corresponding to input mux selector
* + the register xxx_CLK_CTRL value
* + enable bit index in ctrl register
*
* This function makes the assumption that the ctrl_reg value is organized as
* follows:
* + bits[13:8] clock frequency divisor
* + bits[5:4] clock mux selector (index in array)
* + bits[index] clock enable
*/
static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
uint32_t ctrl_reg,
unsigned index)
{
uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
/* first, check if clock is disabled */
if (((ctrl_reg >> index) & 1u) == 0) {
return 0;
}
/*
* according to the Zynq technical ref. manual UG585 v1.12.2 in
* Clocks chapter, section 25.10.1 page 705:
* "The 6-bit divider provides a divide range of 1 to 63"
* We follow here what is implemented in linux kernel and consider
* the 0 value as a bypass (no division).
*/
/* frequency divisor -> period multiplication */
return periods[srcsel] * (divisor ? divisor : 1u);
}
/*
* macro helper around zynq_slcr_compute_clock to avoid repeating
* the register name.
*/
#define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
zynq_slcr_compute_clock((plls), (state)->regs[reg], \
reg ## _ ## enable_field ## _SHIFT)
/**
* Compute and set the ouputs clocks periods.
* But do not propagate them further. Connected clocks
* will not receive any updates (See zynq_slcr_compute_clocks())
*/
static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
{
uint64_t ps_clk = clock_get(s->ps_clk);
/* consider outputs clocks are disabled while in reset */
if (device_is_in_reset(DEVICE(s))) {
ps_clk = 0;
}
uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
/* compute uartX reference clocks */
clock_set(s->uart0_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
clock_set(s->uart1_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
}
/**
* Propagate the outputs clocks.
* zynq_slcr_compute_clocks() should have been called before
* to configure them.
*/
static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
{
clock_propagate(s->uart0_ref_clk);
clock_propagate(s->uart1_ref_clk);
}
static void zynq_slcr_ps_clk_callback(void *opaque)
{
ZynqSLCRState *s = (ZynqSLCRState *) opaque;
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_init(Object *obj, ResetType type)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
int i;
DB_PRINT("RESET\n");
@ -277,6 +404,23 @@ static void zynq_slcr_reset(DeviceState *d)
s->regs[R_DDRIOB + 12] = 0x00000021;
}
static void zynq_slcr_reset_hold(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will disable all output clocks */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_exit(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will compute output clocks according to ps_clk and registers */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
{
@ -409,6 +553,13 @@ static void zynq_slcr_write(void *opaque, hwaddr offset,
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
}
break;
case R_IO_PLL_CTRL:
case R_ARM_PLL_CTRL:
case R_DDR_PLL_CTRL:
case R_UART_CLK_CTRL:
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
break;
}
}
@ -418,6 +569,13 @@ static const MemoryRegionOps slcr_ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const ClockPortInitArray zynq_slcr_clocks = {
QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
QDEV_CLOCK_END
};
static void zynq_slcr_init(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
@ -425,14 +583,17 @@ static void zynq_slcr_init(Object *obj)
memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
ZYNQ_SLCR_MMIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
}
static const VMStateDescription vmstate_zynq_slcr = {
.name = "zynq_slcr",
.version_id = 2,
.version_id = 3,
.minimum_version_id = 2,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
VMSTATE_END_OF_LIST()
}
};
@ -440,9 +601,12 @@ static const VMStateDescription vmstate_zynq_slcr = {
static void zynq_slcr_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->vmsd = &vmstate_zynq_slcr;
dc->reset = zynq_slcr_reset;
rc->phases.enter = zynq_slcr_reset_init;
rc->phases.hold = zynq_slcr_reset_hold;
rc->phases.exit = zynq_slcr_reset_exit;
}
static const TypeInfo zynq_slcr_info = {

View File

@ -55,3 +55,4 @@ common-obj-$(CONFIG_ROCKER) += rocker/rocker.o rocker/rocker_fp.o \
obj-$(call lnot,$(CONFIG_ROCKER)) += rocker/qmp-norocker.o
common-obj-$(CONFIG_CAN_BUS) += can/
common-obj-$(CONFIG_MSF2) += msf2-emac.o

View File

@ -411,6 +411,11 @@ static inline void rx_desc_set_sof(uint32_t *desc)
desc[1] |= DESC_1_RX_SOF;
}
static inline void rx_desc_clear_control(uint32_t *desc)
{
desc[1] = 0;
}
static inline void rx_desc_set_eof(uint32_t *desc)
{
desc[1] |= DESC_1_RX_EOF;
@ -999,6 +1004,8 @@ static ssize_t gem_receive(NetClientState *nc, const uint8_t *buf, size_t size)
rxbuf_ptr += MIN(bytes_to_copy, rxbufsize);
bytes_to_copy -= MIN(bytes_to_copy, rxbufsize);
rx_desc_clear_control(s->rx_desc[q]);
/* Update the descriptor. */
if (first_desc) {
rx_desc_set_sof(s->rx_desc[q]);
@ -1238,7 +1245,14 @@ static void gem_transmit(CadenceGEMState *s)
/* read next descriptor */
if (tx_desc_get_wrap(desc)) {
tx_desc_set_last(desc);
packet_desc_addr = s->regs[GEM_TXQBASE];
if (s->regs[GEM_DMACFG] & GEM_DMACFG_ADDR_64B) {
packet_desc_addr = s->regs[GEM_TBQPH];
packet_desc_addr <<= 32;
} else {
packet_desc_addr = 0;
}
packet_desc_addr |= s->regs[GEM_TXQBASE];
} else {
packet_desc_addr += 4 * gem_get_desc_len(s, false);
}

589
hw/net/msf2-emac.c Normal file
View File

@ -0,0 +1,589 @@
/*
* QEMU model of the Smartfusion2 Ethernet MAC.
*
* Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* Refer to section Ethernet MAC in the document:
* UG0331: SmartFusion2 Microcontroller Subsystem User Guide
* Datasheet URL:
* https://www.microsemi.com/document-portal/cat_view/56661-internal-documents/
* 56758-soc?lang=en&limit=20&limitstart=220
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "hw/registerfields.h"
#include "hw/net/msf2-emac.h"
#include "hw/net/mii.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "migration/vmstate.h"
REG32(CFG1, 0x0)
FIELD(CFG1, RESET, 31, 1)
FIELD(CFG1, RX_EN, 2, 1)
FIELD(CFG1, TX_EN, 0, 1)
FIELD(CFG1, LB_EN, 8, 1)
REG32(CFG2, 0x4)
REG32(IFG, 0x8)
REG32(HALF_DUPLEX, 0xc)
REG32(MAX_FRAME_LENGTH, 0x10)
REG32(MII_CMD, 0x24)
FIELD(MII_CMD, READ, 0, 1)
REG32(MII_ADDR, 0x28)
FIELD(MII_ADDR, REGADDR, 0, 5)
FIELD(MII_ADDR, PHYADDR, 8, 5)
REG32(MII_CTL, 0x2c)
REG32(MII_STS, 0x30)
REG32(STA1, 0x40)
REG32(STA2, 0x44)
REG32(FIFO_CFG0, 0x48)
REG32(FIFO_CFG4, 0x58)
FIELD(FIFO_CFG4, BCAST, 9, 1)
FIELD(FIFO_CFG4, MCAST, 8, 1)
REG32(FIFO_CFG5, 0x5C)
FIELD(FIFO_CFG5, BCAST, 9, 1)
FIELD(FIFO_CFG5, MCAST, 8, 1)
REG32(DMA_TX_CTL, 0x180)
FIELD(DMA_TX_CTL, EN, 0, 1)
REG32(DMA_TX_DESC, 0x184)
REG32(DMA_TX_STATUS, 0x188)
FIELD(DMA_TX_STATUS, PKTCNT, 16, 8)
FIELD(DMA_TX_STATUS, UNDERRUN, 1, 1)
FIELD(DMA_TX_STATUS, PKT_SENT, 0, 1)
REG32(DMA_RX_CTL, 0x18c)
FIELD(DMA_RX_CTL, EN, 0, 1)
REG32(DMA_RX_DESC, 0x190)
REG32(DMA_RX_STATUS, 0x194)
FIELD(DMA_RX_STATUS, PKTCNT, 16, 8)
FIELD(DMA_RX_STATUS, OVERFLOW, 2, 1)
FIELD(DMA_RX_STATUS, PKT_RCVD, 0, 1)
REG32(DMA_IRQ_MASK, 0x198)
REG32(DMA_IRQ, 0x19c)
#define EMPTY_MASK (1 << 31)
#define PKT_SIZE 0x7FF
#define PHYADDR 0x1
#define MAX_PKT_SIZE 2048
typedef struct {
uint32_t pktaddr;
uint32_t pktsize;
uint32_t next;
} EmacDesc;
static uint32_t emac_get_isr(MSF2EmacState *s)
{
uint32_t ier = s->regs[R_DMA_IRQ_MASK];
uint32_t tx = s->regs[R_DMA_TX_STATUS] & 0xF;
uint32_t rx = s->regs[R_DMA_RX_STATUS] & 0xF;
uint32_t isr = (rx << 4) | tx;
s->regs[R_DMA_IRQ] = ier & isr;
return s->regs[R_DMA_IRQ];
}
static void emac_update_irq(MSF2EmacState *s)
{
bool intr = emac_get_isr(s);
qemu_set_irq(s->irq, intr);
}
static void emac_load_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
{
address_space_read(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
/* Convert from LE into host endianness. */
d->pktaddr = le32_to_cpu(d->pktaddr);
d->pktsize = le32_to_cpu(d->pktsize);
d->next = le32_to_cpu(d->next);
}
static void emac_store_desc(MSF2EmacState *s, EmacDesc *d, hwaddr desc)
{
/* Convert from host endianness into LE. */
d->pktaddr = cpu_to_le32(d->pktaddr);
d->pktsize = cpu_to_le32(d->pktsize);
d->next = cpu_to_le32(d->next);
address_space_write(&s->dma_as, desc, MEMTXATTRS_UNSPECIFIED, d, sizeof *d);
}
static void msf2_dma_tx(MSF2EmacState *s)
{
NetClientState *nc = qemu_get_queue(s->nic);
hwaddr desc = s->regs[R_DMA_TX_DESC];
uint8_t buf[MAX_PKT_SIZE];
EmacDesc d;
int size;
uint8_t pktcnt;
uint32_t status;
if (!(s->regs[R_CFG1] & R_CFG1_TX_EN_MASK)) {
return;
}
while (1) {
emac_load_desc(s, &d, desc);
if (d.pktsize & EMPTY_MASK) {
break;
}
size = d.pktsize & PKT_SIZE;
address_space_read(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
buf, size);
/*
* This is very basic way to send packets. Ideally there should be
* a FIFO and packets should be sent out from FIFO only when
* R_CFG1 bit 0 is set.
*/
if (s->regs[R_CFG1] & R_CFG1_LB_EN_MASK) {
nc->info->receive(nc, buf, size);
} else {
qemu_send_packet(nc, buf, size);
}
d.pktsize |= EMPTY_MASK;
emac_store_desc(s, &d, desc);
/* update sent packets count */
status = s->regs[R_DMA_TX_STATUS];
pktcnt = FIELD_EX32(status, DMA_TX_STATUS, PKTCNT);
pktcnt++;
s->regs[R_DMA_TX_STATUS] = FIELD_DP32(status, DMA_TX_STATUS,
PKTCNT, pktcnt);
s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_PKT_SENT_MASK;
desc = d.next;
}
s->regs[R_DMA_TX_STATUS] |= R_DMA_TX_STATUS_UNDERRUN_MASK;
s->regs[R_DMA_TX_CTL] &= ~R_DMA_TX_CTL_EN_MASK;
}
static void msf2_phy_update_link(MSF2EmacState *s)
{
/* Autonegotiation status mirrors link status. */
if (qemu_get_queue(s->nic)->link_down) {
s->phy_regs[MII_BMSR] &= ~(MII_BMSR_AN_COMP |
MII_BMSR_LINK_ST);
} else {
s->phy_regs[MII_BMSR] |= (MII_BMSR_AN_COMP |
MII_BMSR_LINK_ST);
}
}
static void msf2_phy_reset(MSF2EmacState *s)
{
memset(&s->phy_regs[0], 0, sizeof(s->phy_regs));
s->phy_regs[MII_BMCR] = 0x1140;
s->phy_regs[MII_BMSR] = 0x7968;
s->phy_regs[MII_PHYID1] = 0x0022;
s->phy_regs[MII_PHYID2] = 0x1550;
s->phy_regs[MII_ANAR] = 0x01E1;
s->phy_regs[MII_ANLPAR] = 0xCDE1;
msf2_phy_update_link(s);
}
static void write_to_phy(MSF2EmacState *s)
{
uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
R_MII_ADDR_REGADDR_MASK;
uint16_t data = s->regs[R_MII_CTL] & 0xFFFF;
if (phy_addr != PHYADDR) {
return;
}
switch (reg_addr) {
case MII_BMCR:
if (data & MII_BMCR_RESET) {
/* Phy reset */
msf2_phy_reset(s);
data &= ~MII_BMCR_RESET;
}
if (data & MII_BMCR_AUTOEN) {
/* Complete autonegotiation immediately */
data &= ~MII_BMCR_AUTOEN;
s->phy_regs[MII_BMSR] |= MII_BMSR_AN_COMP;
}
break;
}
s->phy_regs[reg_addr] = data;
}
static uint16_t read_from_phy(MSF2EmacState *s)
{
uint8_t reg_addr = s->regs[R_MII_ADDR] & R_MII_ADDR_REGADDR_MASK;
uint8_t phy_addr = (s->regs[R_MII_ADDR] >> R_MII_ADDR_PHYADDR_SHIFT) &
R_MII_ADDR_REGADDR_MASK;
if (phy_addr == PHYADDR) {
return s->phy_regs[reg_addr];
} else {
return 0xFFFF;
}
}
static void msf2_emac_do_reset(MSF2EmacState *s)
{
memset(&s->regs[0], 0, sizeof(s->regs));
s->regs[R_CFG1] = 0x80000000;
s->regs[R_CFG2] = 0x00007000;
s->regs[R_IFG] = 0x40605060;
s->regs[R_HALF_DUPLEX] = 0x00A1F037;
s->regs[R_MAX_FRAME_LENGTH] = 0x00000600;
s->regs[R_FIFO_CFG5] = 0X3FFFF;
msf2_phy_reset(s);
}
static uint64_t emac_read(void *opaque, hwaddr addr, unsigned int size)
{
MSF2EmacState *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_DMA_IRQ:
r = emac_get_isr(s);
break;
default:
if (addr >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
return r;
}
r = s->regs[addr];
break;
}
return r;
}
static void emac_write(void *opaque, hwaddr addr, uint64_t val64,
unsigned int size)
{
MSF2EmacState *s = opaque;
uint32_t value = val64;
uint32_t enreqbits;
uint8_t pktcnt;
addr >>= 2;
switch (addr) {
case R_DMA_TX_CTL:
s->regs[addr] = value;
if (value & R_DMA_TX_CTL_EN_MASK) {
msf2_dma_tx(s);
}
break;
case R_DMA_RX_CTL:
s->regs[addr] = value;
if (value & R_DMA_RX_CTL_EN_MASK) {
s->rx_desc = s->regs[R_DMA_RX_DESC];
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
break;
case R_CFG1:
s->regs[addr] = value;
if (value & R_CFG1_RESET_MASK) {
msf2_emac_do_reset(s);
}
break;
case R_FIFO_CFG0:
/*
* For our implementation, turning on modules is instantaneous,
* so the states requested via the *ENREQ bits appear in the
* *ENRPLY bits immediately. Also the reset bits to reset PE-MCXMAC
* module are not emulated here since it deals with start of frames,
* inter-packet gap and control frames.
*/
enreqbits = extract32(value, 8, 5);
s->regs[addr] = deposit32(value, 16, 5, enreqbits);
break;
case R_DMA_TX_DESC:
if (value & 0x3) {
qemu_log_mask(LOG_GUEST_ERROR, "Tx Descriptor address should be"
" 32 bit aligned\n");
}
/* Ignore [1:0] bits */
s->regs[addr] = value & ~3;
break;
case R_DMA_RX_DESC:
if (value & 0x3) {
qemu_log_mask(LOG_GUEST_ERROR, "Rx Descriptor address should be"
" 32 bit aligned\n");
}
/* Ignore [1:0] bits */
s->regs[addr] = value & ~3;
break;
case R_DMA_TX_STATUS:
if (value & R_DMA_TX_STATUS_UNDERRUN_MASK) {
s->regs[addr] &= ~R_DMA_TX_STATUS_UNDERRUN_MASK;
}
if (value & R_DMA_TX_STATUS_PKT_SENT_MASK) {
pktcnt = FIELD_EX32(s->regs[addr], DMA_TX_STATUS, PKTCNT);
pktcnt--;
s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_TX_STATUS,
PKTCNT, pktcnt);
if (pktcnt == 0) {
s->regs[addr] &= ~R_DMA_TX_STATUS_PKT_SENT_MASK;
}
}
break;
case R_DMA_RX_STATUS:
if (value & R_DMA_RX_STATUS_OVERFLOW_MASK) {
s->regs[addr] &= ~R_DMA_RX_STATUS_OVERFLOW_MASK;
}
if (value & R_DMA_RX_STATUS_PKT_RCVD_MASK) {
pktcnt = FIELD_EX32(s->regs[addr], DMA_RX_STATUS, PKTCNT);
pktcnt--;
s->regs[addr] = FIELD_DP32(s->regs[addr], DMA_RX_STATUS,
PKTCNT, pktcnt);
if (pktcnt == 0) {
s->regs[addr] &= ~R_DMA_RX_STATUS_PKT_RCVD_MASK;
}
}
break;
case R_DMA_IRQ:
break;
case R_MII_CMD:
if (value & R_MII_CMD_READ_MASK) {
s->regs[R_MII_STS] = read_from_phy(s);
}
break;
case R_MII_CTL:
s->regs[addr] = value;
write_to_phy(s);
break;
case R_STA1:
s->regs[addr] = value;
/*
* R_STA1 [31:24] : octet 1 of mac address
* R_STA1 [23:16] : octet 2 of mac address
* R_STA1 [15:8] : octet 3 of mac address
* R_STA1 [7:0] : octet 4 of mac address
*/
stl_be_p(s->mac_addr, value);
break;
case R_STA2:
s->regs[addr] = value;
/*
* R_STA2 [31:24] : octet 5 of mac address
* R_STA2 [23:16] : octet 6 of mac address
*/
stw_be_p(s->mac_addr + 4, value >> 16);
break;
default:
if (addr >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__,
addr * 4);
return;
}
s->regs[addr] = value;
break;
}
emac_update_irq(s);
}
static const MemoryRegionOps emac_ops = {
.read = emac_read,
.write = emac_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl = {
.min_access_size = 4,
.max_access_size = 4
}
};
static bool emac_can_rx(NetClientState *nc)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
return (s->regs[R_CFG1] & R_CFG1_RX_EN_MASK) &&
(s->regs[R_DMA_RX_CTL] & R_DMA_RX_CTL_EN_MASK);
}
static bool addr_filter_ok(MSF2EmacState *s, const uint8_t *buf)
{
/* The broadcast MAC address: FF:FF:FF:FF:FF:FF */
const uint8_t broadcast_addr[] = { 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF };
bool bcast_en = true;
bool mcast_en = true;
if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_BCAST_MASK) {
bcast_en = true; /* Broadcast dont care for drop circuitry */
} else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_BCAST_MASK) {
bcast_en = false;
}
if (s->regs[R_FIFO_CFG5] & R_FIFO_CFG5_MCAST_MASK) {
mcast_en = true; /* Multicast dont care for drop circuitry */
} else if (s->regs[R_FIFO_CFG4] & R_FIFO_CFG4_MCAST_MASK) {
mcast_en = false;
}
if (!memcmp(buf, broadcast_addr, sizeof(broadcast_addr))) {
return bcast_en;
}
if (buf[0] & 1) {
return mcast_en;
}
return !memcmp(buf, s->mac_addr, sizeof(s->mac_addr));
}
static ssize_t emac_rx(NetClientState *nc, const uint8_t *buf, size_t size)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
EmacDesc d;
uint8_t pktcnt;
uint32_t status;
if (size > (s->regs[R_MAX_FRAME_LENGTH] & 0xFFFF)) {
return size;
}
if (!addr_filter_ok(s, buf)) {
return size;
}
emac_load_desc(s, &d, s->rx_desc);
if (d.pktsize & EMPTY_MASK) {
address_space_write(&s->dma_as, d.pktaddr, MEMTXATTRS_UNSPECIFIED,
buf, size & PKT_SIZE);
d.pktsize = size & PKT_SIZE;
emac_store_desc(s, &d, s->rx_desc);
/* update received packets count */
status = s->regs[R_DMA_RX_STATUS];
pktcnt = FIELD_EX32(status, DMA_RX_STATUS, PKTCNT);
pktcnt++;
s->regs[R_DMA_RX_STATUS] = FIELD_DP32(status, DMA_RX_STATUS,
PKTCNT, pktcnt);
s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_PKT_RCVD_MASK;
s->rx_desc = d.next;
} else {
s->regs[R_DMA_RX_CTL] &= ~R_DMA_RX_CTL_EN_MASK;
s->regs[R_DMA_RX_STATUS] |= R_DMA_RX_STATUS_OVERFLOW_MASK;
}
emac_update_irq(s);
return size;
}
static void msf2_emac_reset(DeviceState *dev)
{
MSF2EmacState *s = MSS_EMAC(dev);
msf2_emac_do_reset(s);
}
static void emac_set_link(NetClientState *nc)
{
MSF2EmacState *s = qemu_get_nic_opaque(nc);
msf2_phy_update_link(s);
}
static NetClientInfo net_msf2_emac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = emac_can_rx,
.receive = emac_rx,
.link_status_changed = emac_set_link,
};
static void msf2_emac_realize(DeviceState *dev, Error **errp)
{
MSF2EmacState *s = MSS_EMAC(dev);
if (!s->dma_mr) {
error_setg(errp, "MSS_EMAC 'ahb-bus' link not set");
return;
}
address_space_init(&s->dma_as, s->dma_mr, "emac-ahb");
qemu_macaddr_default_if_unset(&s->conf.macaddr);
s->nic = qemu_new_nic(&net_msf2_emac_info, &s->conf,
object_get_typename(OBJECT(dev)), dev->id, s);
qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a);
}
static void msf2_emac_init(Object *obj)
{
MSF2EmacState *s = MSS_EMAC(obj);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &emac_ops, s,
"msf2-emac", R_MAX * 4);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
}
static Property msf2_emac_properties[] = {
DEFINE_PROP_LINK("ahb-bus", MSF2EmacState, dma_mr,
TYPE_MEMORY_REGION, MemoryRegion *),
DEFINE_NIC_PROPERTIES(MSF2EmacState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vmstate_msf2_emac = {
.name = TYPE_MSS_EMAC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT8_ARRAY(mac_addr, MSF2EmacState, ETH_ALEN),
VMSTATE_UINT32(rx_desc, MSF2EmacState),
VMSTATE_UINT16_ARRAY(phy_regs, MSF2EmacState, PHY_MAX_REGS),
VMSTATE_UINT32_ARRAY(regs, MSF2EmacState, R_MAX),
VMSTATE_END_OF_LIST()
}
};
static void msf2_emac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = msf2_emac_realize;
dc->reset = msf2_emac_reset;
dc->vmsd = &vmstate_msf2_emac;
device_class_set_props(dc, msf2_emac_properties);
}
static const TypeInfo msf2_emac_info = {
.name = TYPE_MSS_EMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MSF2EmacState),
.instance_init = msf2_emac_init,
.class_init = msf2_emac_class_init,
};
static void msf2_emac_register_types(void)
{
type_register_static(&msf2_emac_info);
}
type_init(msf2_emac_register_types)

View File

@ -29,6 +29,7 @@
#include "hw/timer/mss-timer.h"
#include "hw/misc/msf2-sysreg.h"
#include "hw/ssi/mss-spi.h"
#include "hw/net/msf2-emac.h"
#define TYPE_MSF2_SOC "msf2-soc"
#define MSF2_SOC(obj) OBJECT_CHECK(MSF2State, (obj), TYPE_MSF2_SOC)
@ -62,6 +63,7 @@ typedef struct MSF2State {
MSF2SysregState sysreg;
MSSTimerState timer;
MSSSpiState spi[MSF2_NUM_SPIS];
MSF2EmacState emac;
} MSF2State;
#endif

View File

@ -49,6 +49,7 @@ typedef struct {
CharBackend chr;
qemu_irq irq;
QEMUTimer *fifo_trigger_handle;
Clock *refclk;
} CadenceUARTState;
static inline DeviceState *cadence_uart_create(hwaddr addr,

225
include/hw/clock.h Normal file
View File

@ -0,0 +1,225 @@
/*
* Hardware Clocks
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef QEMU_HW_CLOCK_H
#define QEMU_HW_CLOCK_H
#include "qom/object.h"
#include "qemu/queue.h"
#define TYPE_CLOCK "clock"
#define CLOCK(obj) OBJECT_CHECK(Clock, (obj), TYPE_CLOCK)
typedef void ClockCallback(void *opaque);
/*
* clock store a value representing the clock's period in 2^-32ns unit.
* It can represent:
* + periods from 2^-32ns up to 4seconds
* + frequency from ~0.25Hz 2e10Ghz
* Resolution of frequency representation decreases with frequency:
* + at 100MHz, resolution is ~2mHz
* + at 1Ghz, resolution is ~0.2Hz
* + at 10Ghz, resolution is ~20Hz
*/
#define CLOCK_PERIOD_1SEC (1000000000llu << 32)
/*
* macro helpers to convert to hertz / nanosecond
*/
#define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
#define CLOCK_PERIOD_TO_NS(per) ((per) / (CLOCK_PERIOD_1SEC / 1000000000llu))
#define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
#define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
/**
* Clock:
* @parent_obj: parent class
* @period: unsigned integer representing the period of the clock
* @canonical_path: clock path string cache (used for trace purpose)
* @callback: called when clock changes
* @callback_opaque: argument for @callback
* @source: source (or parent in clock tree) of the clock
* @children: list of clocks connected to this one (it is their source)
* @sibling: structure used to form a clock list
*/
typedef struct Clock Clock;
struct Clock {
/*< private >*/
Object parent_obj;
/* all fields are private and should not be modified directly */
/* fields */
uint64_t period;
char *canonical_path;
ClockCallback *callback;
void *callback_opaque;
/* Clocks are organized in a clock tree */
Clock *source;
QLIST_HEAD(, Clock) children;
QLIST_ENTRY(Clock) sibling;
};
/*
* vmstate description entry to be added in device vmsd.
*/
extern const VMStateDescription vmstate_clock;
#define VMSTATE_CLOCK(field, state) \
VMSTATE_CLOCK_V(field, state, 0)
#define VMSTATE_CLOCK_V(field, state, version) \
VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
/**
* clock_setup_canonical_path:
* @clk: clock
*
* compute the canonical path of the clock (used by log messages)
*/
void clock_setup_canonical_path(Clock *clk);
/**
* clock_set_callback:
* @clk: the clock to register the callback into
* @cb: the callback function
* @opaque: the argument to the callback
*
* Register a callback called on every clock update.
*/
void clock_set_callback(Clock *clk, ClockCallback *cb, void *opaque);
/**
* clock_clear_callback:
* @clk: the clock to delete the callback from
*
* Unregister the callback registered with clock_set_callback.
*/
void clock_clear_callback(Clock *clk);
/**
* clock_set_source:
* @clk: the clock.
* @src: the source clock
*
* Setup @src as the clock source of @clk. The current @src period
* value is also copied to @clk and its subtree but no callback is
* called.
* Further @src update will be propagated to @clk and its subtree.
*/
void clock_set_source(Clock *clk, Clock *src);
/**
* clock_set:
* @clk: the clock to initialize.
* @value: the clock's value, 0 means unclocked
*
* Set the local cached period value of @clk to @value.
*/
void clock_set(Clock *clk, uint64_t value);
static inline void clock_set_hz(Clock *clk, unsigned hz)
{
clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline void clock_set_ns(Clock *clk, unsigned ns)
{
clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_propagate:
* @clk: the clock
*
* Propagate the clock period that has been previously configured using
* @clock_set(). This will update recursively all connected clocks.
* It is an error to call this function on a clock which has a source.
* Note: this function must not be called during device inititialization
* or migration.
*/
void clock_propagate(Clock *clk);
/**
* clock_update:
* @clk: the clock to update.
* @value: the new clock's value, 0 means unclocked
*
* Update the @clk to the new @value. All connected clocks will be informed
* of this update. This is equivalent to call @clock_set() then
* @clock_propagate().
*/
static inline void clock_update(Clock *clk, uint64_t value)
{
clock_set(clk, value);
clock_propagate(clk);
}
static inline void clock_update_hz(Clock *clk, unsigned hz)
{
clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
}
static inline void clock_update_ns(Clock *clk, unsigned ns)
{
clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
}
/**
* clock_get:
* @clk: the clk to fetch the clock
*
* @return: the current period.
*/
static inline uint64_t clock_get(const Clock *clk)
{
return clk->period;
}
static inline unsigned clock_get_hz(Clock *clk)
{
return CLOCK_PERIOD_TO_HZ(clock_get(clk));
}
static inline unsigned clock_get_ns(Clock *clk)
{
return CLOCK_PERIOD_TO_NS(clock_get(clk));
}
/**
* clock_is_enabled:
* @clk: a clock
*
* @return: true if the clock is running.
*/
static inline bool clock_is_enabled(const Clock *clk)
{
return clock_get(clk) != 0;
}
static inline void clock_init(Clock *clk, uint64_t value)
{
clock_set(clk, value);
}
static inline void clock_init_hz(Clock *clk, uint64_t value)
{
clock_set_hz(clk, value);
}
static inline void clock_init_ns(Clock *clk, uint64_t value)
{
clock_set_ns(clk, value);
}
#endif /* QEMU_HW_CLOCK_H */

View File

@ -42,7 +42,7 @@
#define NRF51_GPIO_REG_DIRSET 0x518
#define NRF51_GPIO_REG_DIRCLR 0x51C
#define NRF51_GPIO_REG_CNF_START 0x700
#define NRF51_GPIO_REG_CNF_END 0x77F
#define NRF51_GPIO_REG_CNF_END 0x77C
#define NRF51_GPIO_PULLDOWN 1
#define NRF51_GPIO_PULLUP 3

View File

@ -0,0 +1,53 @@
/*
* QEMU model of the Smartfusion2 Ethernet MAC.
*
* Copyright (c) 2020 Subbaraya Sundeep <sundeep.lkml@gmail.com>.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/sysbus.h"
#include "exec/memory.h"
#include "net/net.h"
#include "net/eth.h"
#define TYPE_MSS_EMAC "msf2-emac"
#define MSS_EMAC(obj) \
OBJECT_CHECK(MSF2EmacState, (obj), TYPE_MSS_EMAC)
#define R_MAX (0x1a0 / 4)
#define PHY_MAX_REGS 32
typedef struct MSF2EmacState {
SysBusDevice parent;
MemoryRegion mmio;
MemoryRegion *dma_mr;
AddressSpace dma_as;
qemu_irq irq;
NICState *nic;
NICConf conf;
uint8_t mac_addr[ETH_ALEN];
uint32_t rx_desc;
uint16_t phy_regs[PHY_MAX_REGS];
uint32_t regs[R_MAX];
} MSF2EmacState;

159
include/hw/qdev-clock.h Normal file
View File

@ -0,0 +1,159 @@
/*
* Device's clock input and output
*
* Copyright GreenSocs 2016-2020
*
* Authors:
* Frederic Konrad
* Damien Hedde
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#ifndef QDEV_CLOCK_H
#define QDEV_CLOCK_H
#include "hw/clock.h"
/**
* qdev_init_clock_in:
* @dev: the device to add an input clock to
* @name: the name of the clock (can't be NULL).
* @callback: optional callback to be called on update or NULL.
* @opaque: argument for the callback
* @returns: a pointer to the newly added clock
*
* Add an input clock to device @dev as a clock named @name.
* This adds a child<> property.
* The callback will be called with @opaque as opaque parameter.
*/
Clock *qdev_init_clock_in(DeviceState *dev, const char *name,
ClockCallback *callback, void *opaque);
/**
* qdev_init_clock_out:
* @dev: the device to add an output clock to
* @name: the name of the clock (can't be NULL).
* @returns: a pointer to the newly added clock
*
* Add an output clock to device @dev as a clock named @name.
* This adds a child<> property.
*/
Clock *qdev_init_clock_out(DeviceState *dev, const char *name);
/**
* qdev_get_clock_in:
* @dev: the device which has the clock
* @name: the name of the clock (can't be NULL).
* @returns: a pointer to the clock
*
* Get the input clock @name from @dev or NULL if does not exist.
*/
Clock *qdev_get_clock_in(DeviceState *dev, const char *name);
/**
* qdev_get_clock_out:
* @dev: the device which has the clock
* @name: the name of the clock (can't be NULL).
* @returns: a pointer to the clock
*
* Get the output clock @name from @dev or NULL if does not exist.
*/
Clock *qdev_get_clock_out(DeviceState *dev, const char *name);
/**
* qdev_connect_clock_in:
* @dev: a device
* @name: the name of an input clock in @dev
* @source: the source clock (an output clock of another device for example)
*
* Set the source clock of input clock @name of device @dev to @source.
* @source period update will be propagated to @name clock.
*/
static inline void qdev_connect_clock_in(DeviceState *dev, const char *name,
Clock *source)
{
clock_set_source(qdev_get_clock_in(dev, name), source);
}
/**
* qdev_alias_clock:
* @dev: the device which has the clock
* @name: the name of the clock in @dev (can't be NULL)
* @alias_dev: the device to add the clock
* @alias_name: the name of the clock in @container
* @returns: a pointer to the clock
*
* Add a clock @alias_name in @alias_dev which is an alias of the clock @name
* in @dev. The direction _in_ or _out_ will the same as the original.
* An alias clock must not be modified or used by @alias_dev and should
* typically be only only for device composition purpose.
*/
Clock *qdev_alias_clock(DeviceState *dev, const char *name,
DeviceState *alias_dev, const char *alias_name);
/**
* qdev_finalize_clocklist:
* @dev: the device being finalized
*
* Clear the clocklist from @dev. Only used internally in qdev.
*/
void qdev_finalize_clocklist(DeviceState *dev);
/**
* ClockPortInitElem:
* @name: name of the clock (can't be NULL)
* @output: indicates whether the clock is input or output
* @callback: for inputs, optional callback to be called on clock's update
* with device as opaque
* @offset: optional offset to store the ClockIn or ClockOut pointer in device
* state structure (0 means unused)
*/
struct ClockPortInitElem {
const char *name;
bool is_output;
ClockCallback *callback;
size_t offset;
};
#define clock_offset_value(devstate, field) \
(offsetof(devstate, field) + \
type_check(Clock *, typeof_field(devstate, field)))
#define QDEV_CLOCK(out_not_in, devstate, field, cb) { \
.name = (stringify(field)), \
.is_output = out_not_in, \
.callback = cb, \
.offset = clock_offset_value(devstate, field), \
}
/**
* QDEV_CLOCK_(IN|OUT):
* @devstate: structure type. @dev argument of qdev_init_clocks below must be
* a pointer to that same type.
* @field: a field in @_devstate (must be Clock*)
* @callback: (for input only) callback (or NULL) to be called with the device
* state as argument
*
* The name of the clock will be derived from @field
*/
#define QDEV_CLOCK_IN(devstate, field, callback) \
QDEV_CLOCK(false, devstate, field, callback)
#define QDEV_CLOCK_OUT(devstate, field) \
QDEV_CLOCK(true, devstate, field, NULL)
#define QDEV_CLOCK_END { .name = NULL }
typedef struct ClockPortInitElem ClockPortInitArray[];
/**
* qdev_init_clocks:
* @dev: the device to add clocks to
* @clocks: a QDEV_CLOCK_END-terminated array which contains the
* clocks information.
*/
void qdev_init_clocks(DeviceState *dev, const ClockPortInitArray clocks);
#endif /* QDEV_CLOCK_H */

View File

@ -149,6 +149,17 @@ struct NamedGPIOList {
QLIST_ENTRY(NamedGPIOList) node;
};
typedef struct Clock Clock;
typedef struct NamedClockList NamedClockList;
struct NamedClockList {
char *name;
Clock *clock;
bool output;
bool alias;
QLIST_ENTRY(NamedClockList) node;
};
/**
* DeviceState:
* @realized: Indicates whether the device has been fully constructed.
@ -171,6 +182,7 @@ struct DeviceState {
bool allow_unplug_during_migration;
BusState *parent_bus;
QLIST_HEAD(, NamedGPIOList) gpios;
QLIST_HEAD(, NamedClockList) clocks;
QLIST_HEAD(, BusState) child_bus;
int num_child_bus;
int instance_id_alias;

View File

@ -39,8 +39,11 @@ void *load_device_tree_from_sysfs(void);
* NULL. If there is no error but no matching node was found, the
* returned array contains a single element equal to NULL. If an error
* was encountered when parsing the blob, the function returns NULL
*
* @name may be NULL to wildcard names and only match compatibility
* strings.
*/
char **qemu_fdt_node_path(void *fdt, const char *name, char *compat,
char **qemu_fdt_node_path(void *fdt, const char *name, const char *compat,
Error **errp);
/**

View File

@ -38,6 +38,7 @@
#include "migration/misc.h"
#include "migration/migration.h"
#include "qemu/cutils.h"
#include "hw/clock.h"
/*
* Aliases were a bad idea from the start. Let's keep them
@ -737,6 +738,7 @@ static void qdev_print(Monitor *mon, DeviceState *dev, int indent)
ObjectClass *class;
BusState *child;
NamedGPIOList *ngl;
NamedClockList *ncl;
qdev_printf("dev: %s, id \"%s\"\n", object_get_typename(OBJECT(dev)),
dev->id ? dev->id : "");
@ -751,6 +753,13 @@ static void qdev_print(Monitor *mon, DeviceState *dev, int indent)
ngl->num_out);
}
}
QLIST_FOREACH(ncl, &dev->clocks, node) {
qdev_printf("clock-%s%s \"%s\" freq_hz=%e\n",
ncl->output ? "out" : "in",
ncl->alias ? " (alias)" : "",
ncl->name,
CLOCK_PERIOD_TO_HZ(1.0 * clock_get(ncl->clock)));
}
class = object_get_class(OBJECT(dev));
do {
qdev_print_props(mon, dev, DEVICE_CLASS(class)->props_, indent);

View File

@ -35,7 +35,14 @@ struct arm_boot_info;
#define TYPE_ARM_MAX_CPU "max-" TYPE_ARM_CPU
typedef struct ARMCPUInfo ARMCPUInfo;
typedef struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
} ARMCPUInfo;
void arm_cpu_register(const ARMCPUInfo *info);
void aarch64_cpu_register(const ARMCPUInfo *info);
/**
* ARMCPUClass:

View File

@ -582,7 +582,8 @@ static bool arm_v7m_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
CPUARMState *env = &cpu->env;
bool ret = false;
/* ARMv7-M interrupt masking works differently than -A or -R.
/*
* ARMv7-M interrupt masking works differently than -A or -R.
* There is no FIQ/IRQ distinction. Instead of I and F bits
* masking FIQ and IRQ interrupts, an exception is taken only
* if it is higher priority than the current execution priority
@ -1912,7 +1913,8 @@ static void arm1026_initfn(Object *obj)
static void arm1136_r2_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
/*
* What qemu calls "arm1136_r2" is actually the 1136 r0p2, ie an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
* These ID register values are correct for 1136 but may be wrong
@ -2693,18 +2695,13 @@ static void arm_max_initfn(Object *obj)
#endif /* !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64) */
struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
};
static const ARMCPUInfo arm_cpus[] = {
#if !defined(CONFIG_USER_ONLY) || !defined(TARGET_AARCH64)
{ .name = "arm926", .initfn = arm926_initfn },
{ .name = "arm946", .initfn = arm946_initfn },
{ .name = "arm1026", .initfn = arm1026_initfn },
/* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
/*
* What QEMU calls "arm1136-r2" is actually the 1136 r0p2, i.e. an
* older core than plain "arm1136". In particular this does not
* have the v6K features.
*/
@ -2864,7 +2861,7 @@ static void cpu_register_class_init(ObjectClass *oc, void *data)
acc->info = data;
}
static void cpu_register(const ARMCPUInfo *info)
void arm_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_ARM_CPU,
@ -2905,7 +2902,7 @@ static void arm_cpu_register_types(void)
type_register_static(&idau_interface_type_info);
while (info->name) {
cpu_register(info);
arm_cpu_register(info);
info++;
}

View File

@ -737,12 +737,6 @@ static void aarch64_max_initfn(Object *obj)
cpu_max_set_sve_max_vq, NULL, NULL, &error_fatal);
}
struct ARMCPUInfo {
const char *name;
void (*initfn)(Object *obj);
void (*class_init)(ObjectClass *oc, void *data);
};
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a57", .initfn = aarch64_a57_initfn },
{ .name = "cortex-a53", .initfn = aarch64_a53_initfn },
@ -825,7 +819,7 @@ static void cpu_register_class_init(ObjectClass *oc, void *data)
acc->info = data;
}
static void aarch64_cpu_register(const ARMCPUInfo *info)
void aarch64_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_AARCH64_CPU,

View File

@ -3442,6 +3442,7 @@ static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
return CP_ACCESS_OK;
}
#ifdef CONFIG_TCG
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
MMUAccessType access_type, ARMMMUIdx mmu_idx)
{
@ -3602,9 +3603,11 @@ static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
}
return par64;
}
#endif /* CONFIG_TCG */
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
uint64_t par64;
ARMMMUIdx mmu_idx;
@ -3664,17 +3667,26 @@ static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
par64 = do_ats_write(env, value, access_type, mmu_idx);
A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
uint64_t par64;
par64 = do_ats_write(env, value, access_type, ARMMMUIdx_E2);
A32_BANKED_CURRENT_REG_SET(env, par, par64);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
@ -3689,6 +3701,7 @@ static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value)
{
#ifdef CONFIG_TCG
MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
ARMMMUIdx mmu_idx;
int secure = arm_is_secure_below_el3(env);
@ -3728,6 +3741,10 @@ static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
}
env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
#else
/* Handled by hardware accelerator. */
g_assert_not_reached();
#endif /* CONFIG_TCG */
}
#endif

View File

@ -275,19 +275,6 @@ DEF_HELPER_2(neon_hsub_u16, i32, i32, i32)
DEF_HELPER_2(neon_hsub_s32, s32, s32, s32)
DEF_HELPER_2(neon_hsub_u32, i32, i32, i32)
DEF_HELPER_2(neon_cgt_u8, i32, i32, i32)
DEF_HELPER_2(neon_cgt_s8, i32, i32, i32)
DEF_HELPER_2(neon_cgt_u16, i32, i32, i32)
DEF_HELPER_2(neon_cgt_s16, i32, i32, i32)
DEF_HELPER_2(neon_cgt_u32, i32, i32, i32)
DEF_HELPER_2(neon_cgt_s32, i32, i32, i32)
DEF_HELPER_2(neon_cge_u8, i32, i32, i32)
DEF_HELPER_2(neon_cge_s8, i32, i32, i32)
DEF_HELPER_2(neon_cge_u16, i32, i32, i32)
DEF_HELPER_2(neon_cge_s16, i32, i32, i32)
DEF_HELPER_2(neon_cge_u32, i32, i32, i32)
DEF_HELPER_2(neon_cge_s32, i32, i32, i32)
DEF_HELPER_2(neon_pmin_u8, i32, i32, i32)
DEF_HELPER_2(neon_pmin_s8, i32, i32, i32)
DEF_HELPER_2(neon_pmin_u16, i32, i32, i32)
@ -347,9 +334,6 @@ DEF_HELPER_2(neon_mul_u16, i32, i32, i32)
DEF_HELPER_2(neon_tst_u8, i32, i32, i32)
DEF_HELPER_2(neon_tst_u16, i32, i32, i32)
DEF_HELPER_2(neon_tst_u32, i32, i32, i32)
DEF_HELPER_2(neon_ceq_u8, i32, i32, i32)
DEF_HELPER_2(neon_ceq_u16, i32, i32, i32)
DEF_HELPER_2(neon_ceq_u32, i32, i32, i32)
DEF_HELPER_1(neon_clz_u8, i32, i32)
DEF_HELPER_1(neon_clz_u16, i32, i32)
@ -686,6 +670,17 @@ DEF_HELPER_FLAGS_2(frint64_s, TCG_CALL_NO_RWG, f32, f32, ptr)
DEF_HELPER_FLAGS_2(frint32_d, TCG_CALL_NO_RWG, f64, f64, ptr)
DEF_HELPER_FLAGS_2(frint64_d, TCG_CALL_NO_RWG, f64, f64, ptr)
DEF_HELPER_FLAGS_3(gvec_ceq0_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_ceq0_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_clt0_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_clt0_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cle0_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cle0_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cgt0_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cgt0_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cge0_b, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_3(gvec_cge0_h, TCG_CALL_NO_RWG, void, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(gvec_sshl_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(gvec_sshl_h, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32)
DEF_HELPER_FLAGS_4(gvec_ushl_b, TCG_CALL_NO_RWG, void, ptr, ptr, ptr, i32)

View File

@ -562,24 +562,6 @@ uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
return dest;
}
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
NEON_VOP(cgt_s8, neon_s8, 4)
NEON_VOP(cgt_u8, neon_u8, 4)
NEON_VOP(cgt_s16, neon_s16, 2)
NEON_VOP(cgt_u16, neon_u16, 2)
NEON_VOP(cgt_s32, neon_s32, 1)
NEON_VOP(cgt_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
NEON_VOP(cge_s8, neon_s8, 4)
NEON_VOP(cge_u8, neon_u8, 4)
NEON_VOP(cge_s16, neon_s16, 2)
NEON_VOP(cge_u16, neon_u16, 2)
NEON_VOP(cge_s32, neon_s32, 1)
NEON_VOP(cge_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
NEON_POP(pmin_s8, neon_s8, 4)
NEON_POP(pmin_u8, neon_u8, 4)
@ -1135,12 +1117,6 @@ NEON_VOP(tst_u16, neon_u16, 2)
NEON_VOP(tst_u32, neon_u32, 1)
#undef NEON_FN
#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
NEON_VOP(ceq_u8, neon_u8, 4)
NEON_VOP(ceq_u16, neon_u16, 2)
NEON_VOP(ceq_u32, neon_u32, 1)
#undef NEON_FN
/* Count Leading Sign/Zero Bits. */
static inline int do_clz8(uint8_t x)
{

View File

@ -594,6 +594,14 @@ static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
is_q ? 16 : 8, vec_full_reg_size(s));
}
/* Expand a 2-operand AdvSIMD vector operation using an op descriptor. */
static void gen_gvec_op2(DisasContext *s, bool is_q, int rd,
int rn, const GVecGen2 *gvec_op)
{
tcg_gen_gvec_2(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
is_q ? 16 : 8, vec_full_reg_size(s), gvec_op);
}
/* Expand a 2-operand + immediate AdvSIMD vector operation using
* an op descriptor.
*/
@ -12366,6 +12374,15 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
return;
}
break;
case 0x8: /* CMGT, CMGE */
gen_gvec_op2(s, is_q, rd, rn, u ? &cge0_op[size] : &cgt0_op[size]);
return;
case 0x9: /* CMEQ, CMLE */
gen_gvec_op2(s, is_q, rd, rn, u ? &cle0_op[size] : &ceq0_op[size]);
return;
case 0xa: /* CMLT */
gen_gvec_op2(s, is_q, rd, rn, &clt0_op[size]);
return;
case 0xb:
if (u) { /* ABS, NEG */
gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
@ -12403,29 +12420,12 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
TCGv_i32 tcg_op = tcg_temp_new_i32();
TCGv_i32 tcg_res = tcg_temp_new_i32();
TCGCond cond;
read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
if (size == 2) {
/* Special cases for 32 bit elements */
switch (opcode) {
case 0xa: /* CMLT */
/* 32 bit integer comparison against zero, result is
* test ? (2^32 - 1) : 0. We implement via setcond(test)
* and inverting.
*/
cond = TCG_COND_LT;
do_cmop:
tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
tcg_gen_neg_i32(tcg_res, tcg_res);
break;
case 0x8: /* CMGT, CMGE */
cond = u ? TCG_COND_GE : TCG_COND_GT;
goto do_cmop;
case 0x9: /* CMEQ, CMLE */
cond = u ? TCG_COND_LE : TCG_COND_EQ;
goto do_cmop;
case 0x4: /* CLS */
if (u) {
tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
@ -12522,36 +12522,6 @@ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
genfn(tcg_res, cpu_env, tcg_op);
break;
}
case 0x8: /* CMGT, CMGE */
case 0x9: /* CMEQ, CMLE */
case 0xa: /* CMLT */
{
static NeonGenTwoOpFn * const fns[3][2] = {
{ gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
{ gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
{ gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
};
NeonGenTwoOpFn *genfn;
int comp;
bool reverse;
TCGv_i32 tcg_zero = tcg_const_i32(0);
/* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
comp = (opcode - 0x8) * 2 + u;
/* ...but LE, LT are implemented as reverse GE, GT */
reverse = (comp > 2);
if (reverse) {
comp = 4 - comp;
}
genfn = fns[comp][size];
if (reverse) {
genfn(tcg_res, tcg_zero, tcg_op);
} else {
genfn(tcg_res, tcg_op, tcg_zero);
}
tcg_temp_free_i32(tcg_zero);
break;
}
case 0x4: /* CLS, CLZ */
if (u) {
if (size == 0) {

View File

@ -3917,6 +3917,205 @@ static int do_v81_helper(DisasContext *s, gen_helper_gvec_3_ptr *fn,
return 1;
}
static void gen_ceq0_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_setcondi_i32(TCG_COND_EQ, d, a, 0);
tcg_gen_neg_i32(d, d);
}
static void gen_ceq0_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_setcondi_i64(TCG_COND_EQ, d, a, 0);
tcg_gen_neg_i64(d, d);
}
static void gen_ceq0_vec(unsigned vece, TCGv_vec d, TCGv_vec a)
{
TCGv_vec zero = tcg_const_zeros_vec_matching(d);
tcg_gen_cmp_vec(TCG_COND_EQ, vece, d, a, zero);
tcg_temp_free_vec(zero);
}
static const TCGOpcode vecop_list_cmp[] = {
INDEX_op_cmp_vec, 0
};
const GVecGen2 ceq0_op[4] = {
{ .fno = gen_helper_gvec_ceq0_b,
.fniv = gen_ceq0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_8 },
{ .fno = gen_helper_gvec_ceq0_h,
.fniv = gen_ceq0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_16 },
{ .fni4 = gen_ceq0_i32,
.fniv = gen_ceq0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_32 },
{ .fni8 = gen_ceq0_i64,
.fniv = gen_ceq0_vec,
.opt_opc = vecop_list_cmp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static void gen_cle0_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_setcondi_i32(TCG_COND_LE, d, a, 0);
tcg_gen_neg_i32(d, d);
}
static void gen_cle0_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_setcondi_i64(TCG_COND_LE, d, a, 0);
tcg_gen_neg_i64(d, d);
}
static void gen_cle0_vec(unsigned vece, TCGv_vec d, TCGv_vec a)
{
TCGv_vec zero = tcg_const_zeros_vec_matching(d);
tcg_gen_cmp_vec(TCG_COND_LE, vece, d, a, zero);
tcg_temp_free_vec(zero);
}
const GVecGen2 cle0_op[4] = {
{ .fno = gen_helper_gvec_cle0_b,
.fniv = gen_cle0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_8 },
{ .fno = gen_helper_gvec_cle0_h,
.fniv = gen_cle0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_16 },
{ .fni4 = gen_cle0_i32,
.fniv = gen_cle0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_32 },
{ .fni8 = gen_cle0_i64,
.fniv = gen_cle0_vec,
.opt_opc = vecop_list_cmp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static void gen_cge0_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_setcondi_i32(TCG_COND_GE, d, a, 0);
tcg_gen_neg_i32(d, d);
}
static void gen_cge0_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_setcondi_i64(TCG_COND_GE, d, a, 0);
tcg_gen_neg_i64(d, d);
}
static void gen_cge0_vec(unsigned vece, TCGv_vec d, TCGv_vec a)
{
TCGv_vec zero = tcg_const_zeros_vec_matching(d);
tcg_gen_cmp_vec(TCG_COND_GE, vece, d, a, zero);
tcg_temp_free_vec(zero);
}
const GVecGen2 cge0_op[4] = {
{ .fno = gen_helper_gvec_cge0_b,
.fniv = gen_cge0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_8 },
{ .fno = gen_helper_gvec_cge0_h,
.fniv = gen_cge0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_16 },
{ .fni4 = gen_cge0_i32,
.fniv = gen_cge0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_32 },
{ .fni8 = gen_cge0_i64,
.fniv = gen_cge0_vec,
.opt_opc = vecop_list_cmp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static void gen_clt0_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_setcondi_i32(TCG_COND_LT, d, a, 0);
tcg_gen_neg_i32(d, d);
}
static void gen_clt0_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_setcondi_i64(TCG_COND_LT, d, a, 0);
tcg_gen_neg_i64(d, d);
}
static void gen_clt0_vec(unsigned vece, TCGv_vec d, TCGv_vec a)
{
TCGv_vec zero = tcg_const_zeros_vec_matching(d);
tcg_gen_cmp_vec(TCG_COND_LT, vece, d, a, zero);
tcg_temp_free_vec(zero);
}
const GVecGen2 clt0_op[4] = {
{ .fno = gen_helper_gvec_clt0_b,
.fniv = gen_clt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_8 },
{ .fno = gen_helper_gvec_clt0_h,
.fniv = gen_clt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_16 },
{ .fni4 = gen_clt0_i32,
.fniv = gen_clt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_32 },
{ .fni8 = gen_clt0_i64,
.fniv = gen_clt0_vec,
.opt_opc = vecop_list_cmp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static void gen_cgt0_i32(TCGv_i32 d, TCGv_i32 a)
{
tcg_gen_setcondi_i32(TCG_COND_GT, d, a, 0);
tcg_gen_neg_i32(d, d);
}
static void gen_cgt0_i64(TCGv_i64 d, TCGv_i64 a)
{
tcg_gen_setcondi_i64(TCG_COND_GT, d, a, 0);
tcg_gen_neg_i64(d, d);
}
static void gen_cgt0_vec(unsigned vece, TCGv_vec d, TCGv_vec a)
{
TCGv_vec zero = tcg_const_zeros_vec_matching(d);
tcg_gen_cmp_vec(TCG_COND_GT, vece, d, a, zero);
tcg_temp_free_vec(zero);
}
const GVecGen2 cgt0_op[4] = {
{ .fno = gen_helper_gvec_cgt0_b,
.fniv = gen_cgt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_8 },
{ .fno = gen_helper_gvec_cgt0_h,
.fniv = gen_cgt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_16 },
{ .fni4 = gen_cgt0_i32,
.fniv = gen_cgt0_vec,
.opt_opc = vecop_list_cmp,
.vece = MO_32 },
{ .fni8 = gen_cgt0_i64,
.fniv = gen_cgt0_vec,
.opt_opc = vecop_list_cmp,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
.vece = MO_64 },
};
static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift)
{
tcg_gen_vec_sar8i_i64(a, a, shift);
@ -6481,6 +6680,27 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
tcg_gen_gvec_abs(size, rd_ofs, rm_ofs, vec_size, vec_size);
break;
case NEON_2RM_VCEQ0:
tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size,
vec_size, &ceq0_op[size]);
break;
case NEON_2RM_VCGT0:
tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size,
vec_size, &cgt0_op[size]);
break;
case NEON_2RM_VCLE0:
tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size,
vec_size, &cle0_op[size]);
break;
case NEON_2RM_VCGE0:
tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size,
vec_size, &cge0_op[size]);
break;
case NEON_2RM_VCLT0:
tcg_gen_gvec_2(rd_ofs, rm_ofs, vec_size,
vec_size, &clt0_op[size]);
break;
default:
elementwise:
for (pass = 0; pass < (q ? 4 : 2); pass++) {
@ -6543,42 +6763,6 @@ static int disas_neon_data_insn(DisasContext *s, uint32_t insn)
default: abort();
}
break;
case NEON_2RM_VCGT0: case NEON_2RM_VCLE0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_cgt_s8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_cgt_s16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_cgt_s32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
if (op == NEON_2RM_VCLE0) {
tcg_gen_not_i32(tmp, tmp);
}
break;
case NEON_2RM_VCGE0: case NEON_2RM_VCLT0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_cge_s8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_cge_s16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_cge_s32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
if (op == NEON_2RM_VCLT0) {
tcg_gen_not_i32(tmp, tmp);
}
break;
case NEON_2RM_VCEQ0:
tmp2 = tcg_const_i32(0);
switch(size) {
case 0: gen_helper_neon_ceq_u8(tmp, tmp, tmp2); break;
case 1: gen_helper_neon_ceq_u16(tmp, tmp, tmp2); break;
case 2: gen_helper_neon_ceq_u32(tmp, tmp, tmp2); break;
default: abort();
}
tcg_temp_free_i32(tmp2);
break;
case NEON_2RM_VCGT0_F:
{
TCGv_ptr fpstatus = get_fpstatus_ptr(1);

View File

@ -275,6 +275,11 @@ static inline void gen_swstep_exception(DisasContext *s, int isv, int ex)
uint64_t vfp_expand_imm(int size, uint8_t imm8);
/* Vector operations shared between ARM and AArch64. */
extern const GVecGen2 ceq0_op[4];
extern const GVecGen2 clt0_op[4];
extern const GVecGen2 cgt0_op[4];
extern const GVecGen2 cle0_op[4];
extern const GVecGen2 cge0_op[4];
extern const GVecGen3 mla_op[4];
extern const GVecGen3 mls_op[4];
extern const GVecGen3 cmtst_op[4];

View File

@ -1257,3 +1257,28 @@ void HELPER(sve2_pmull_h)(void *vd, void *vn, void *vm, uint32_t desc)
}
}
#endif
#define DO_CMP0(NAME, TYPE, OP) \
void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
{ \
intptr_t i, opr_sz = simd_oprsz(desc); \
for (i = 0; i < opr_sz; i += sizeof(TYPE)) { \
TYPE nn = *(TYPE *)(vn + i); \
*(TYPE *)(vd + i) = -(nn OP 0); \
} \
clear_tail(vd, opr_sz, simd_maxsz(desc)); \
}
DO_CMP0(gvec_ceq0_b, int8_t, ==)
DO_CMP0(gvec_clt0_b, int8_t, <)
DO_CMP0(gvec_cle0_b, int8_t, <=)
DO_CMP0(gvec_cgt0_b, int8_t, >)
DO_CMP0(gvec_cge0_b, int8_t, >=)
DO_CMP0(gvec_ceq0_h, int16_t, ==)
DO_CMP0(gvec_clt0_h, int16_t, <)
DO_CMP0(gvec_cle0_h, int16_t, <=)
DO_CMP0(gvec_cgt0_h, int16_t, >)
DO_CMP0(gvec_cge0_h, int16_t, >=)
#undef DO_CMP0

View File

@ -439,6 +439,7 @@ tests/test-qdev-global-props$(EXESUF): tests/test-qdev-global-props.o \
hw/core/fw-path-provider.o \
hw/core/reset.o \
hw/core/vmstate-if.o \
hw/core/clock.o hw/core/qdev-clock.o \
$(test-qapi-obj-y)
tests/test-vmstate$(EXESUF): tests/test-vmstate.o \
migration/vmstate.o migration/vmstate-types.o migration/qemu-file.o \

View File

@ -336,13 +336,13 @@ class BootLinuxConsole(Test):
"""
uboot_url = ('https://raw.githubusercontent.com/'
'Subbaraya-Sundeep/qemu-test-binaries/'
'fa030bd77a014a0b8e360d3b7011df89283a2f0b/u-boot')
uboot_hash = 'abba5d9c24cdd2d49cdc2a8aa92976cf20737eff'
'fe371d32e50ca682391e1e70ab98c2942aeffb01/u-boot')
uboot_hash = 'cbb8cbab970f594bf6523b9855be209c08374ae2'
uboot_path = self.fetch_asset(uboot_url, asset_hash=uboot_hash)
spi_url = ('https://raw.githubusercontent.com/'
'Subbaraya-Sundeep/qemu-test-binaries/'
'fa030bd77a014a0b8e360d3b7011df89283a2f0b/spi.bin')
spi_hash = '85f698329d38de63aea6e884a86fbde70890a78a'
'fe371d32e50ca682391e1e70ab98c2942aeffb01/spi.bin')
spi_hash = '65523a1835949b6f4553be96dec1b6a38fb05501'
spi_path = self.fetch_asset(spi_url, asset_hash=spi_hash)
self.vm.set_console()
@ -352,7 +352,12 @@ class BootLinuxConsole(Test):
'-drive', 'file=' + spi_path + ',if=mtd,format=raw',
'-no-reboot')
self.vm.launch()
self.wait_for_console_pattern('init started: BusyBox')
self.wait_for_console_pattern('Enter \'help\' for a list')
exec_command_and_wait_for_pattern(self, 'ifconfig eth0 10.0.2.15',
'eth0: link becomes ready')
exec_command_and_wait_for_pattern(self, 'ping -c 3 10.0.2.2',
'3 packets transmitted, 3 packets received, 0% packet loss')
def do_test_arm_raspi2(self, uart_id):
"""