target/arm: Implement FPCR.EBF=1 semantics for bfdotadd()
Implement the FPCR.EBF=1 semantics for bfdotadd() operations: * is_ebf() sets up fpst and fpst_odd * bfdotadd_ebf() implements the fused paired-multiply-and-add operation that we need The paired-multiply-and-add is similar to f16_dotadd() and we use the same trick here as in that function, but the inputs here are bfloat16 rather than float16. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
This commit is contained in:
parent
09b0d9e0ad
commit
0e1850182a
@ -2792,7 +2792,20 @@ DO_MMLA_B(gvec_usmmla_b, do_usmmla_b)
|
||||
|
||||
bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp)
|
||||
{
|
||||
/* FPCR is ignored for BFDOT and BFMMLA. */
|
||||
/*
|
||||
* For BFDOT, BFMMLA, etc, the behaviour depends on FPCR.EBF.
|
||||
* For EBF = 0, we ignore the FPCR bits which determine rounding
|
||||
* mode and denormal-flushing, and we do unfused multiplies and
|
||||
* additions with intermediate rounding of all products and sums.
|
||||
* For EBF = 1, we honour FPCR rounding mode and denormal-flushing bits,
|
||||
* and we perform a fused two-way sum-of-products without intermediate
|
||||
* rounding of the products.
|
||||
* In either case, we don't set fp exception flags.
|
||||
*
|
||||
* EBF is AArch64 only, so even if it's set in the FPCR it has
|
||||
* no effect on AArch32 instructions.
|
||||
*/
|
||||
bool ebf = is_a64(env) && env->vfp.fpcr & FPCR_EBF;
|
||||
*statusp = (float_status){
|
||||
.tininess_before_rounding = float_tininess_before_rounding,
|
||||
.float_rounding_mode = float_round_to_odd_inf,
|
||||
@ -2801,7 +2814,18 @@ bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp)
|
||||
.default_nan_mode = true,
|
||||
};
|
||||
|
||||
return false;
|
||||
if (ebf) {
|
||||
float_status *fpst = &env->vfp.fp_status;
|
||||
set_flush_to_zero(get_flush_to_zero(fpst), statusp);
|
||||
set_flush_inputs_to_zero(get_flush_inputs_to_zero(fpst), statusp);
|
||||
set_float_rounding_mode(get_float_rounding_mode(fpst), statusp);
|
||||
|
||||
/* EBF=1 needs to do a step with round-to-odd semantics */
|
||||
*oddstatusp = *statusp;
|
||||
set_float_rounding_mode(float_round_to_odd, oddstatusp);
|
||||
}
|
||||
|
||||
return ebf;
|
||||
}
|
||||
|
||||
float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst)
|
||||
@ -2823,7 +2847,34 @@ float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst)
|
||||
float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2,
|
||||
float_status *fpst, float_status *fpst_odd)
|
||||
{
|
||||
g_assert_not_reached();
|
||||
/*
|
||||
* Compare f16_dotadd() in sme_helper.c, but here we have
|
||||
* bfloat16 inputs. In particular that means that we do not
|
||||
* want the FPCR.FZ16 flush semantics, so we use the normal
|
||||
* float_status for the input handling here.
|
||||
*/
|
||||
float64 e1r = float32_to_float64(e1 << 16, fpst);
|
||||
float64 e1c = float32_to_float64(e1 & 0xffff0000u, fpst);
|
||||
float64 e2r = float32_to_float64(e2 << 16, fpst);
|
||||
float64 e2c = float32_to_float64(e2 & 0xffff0000u, fpst);
|
||||
float64 t64;
|
||||
float32 t32;
|
||||
|
||||
/*
|
||||
* The ARM pseudocode function FPDot performs both multiplies
|
||||
* and the add with a single rounding operation. Emulate this
|
||||
* by performing the first multiply in round-to-odd, then doing
|
||||
* the second multiply as fused multiply-add, and rounding to
|
||||
* float32 all in one step.
|
||||
*/
|
||||
t64 = float64_mul(e1r, e2r, fpst_odd);
|
||||
t64 = float64r32_muladd(e1c, e2c, t64, 0, fpst);
|
||||
|
||||
/* This conversion is exact, because we've already rounded. */
|
||||
t32 = float64_to_float32(t64, fpst);
|
||||
|
||||
/* The final accumulation step is not fused. */
|
||||
return float32_add(sum, t32, fpst);
|
||||
}
|
||||
|
||||
void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va,
|
||||
|
Loading…
Reference in New Issue
Block a user