e1000: Move out code that will be reused in e1000e

Code that will be shared moved to a separate files.

Signed-off-by: Dmitry Fleytman <dmitry.fleytman@ravellosystems.com>
Signed-off-by: Leonid Bloch <leonid.bloch@ravellosystems.com>
Reviewed-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Jason Wang <jasowang@redhat.com>
This commit is contained in:
Dmitry Fleytman 2016-06-01 11:23:44 +03:00 committed by Jason Wang
parent 06e7fa0ad7
commit 093454e21d
6 changed files with 594 additions and 323 deletions

View File

@ -980,6 +980,11 @@ F: hw/acpi/nvdimm.c
F: hw/mem/nvdimm.c F: hw/mem/nvdimm.c
F: include/hw/mem/nvdimm.h F: include/hw/mem/nvdimm.h
e1000x
M: Dmitry Fleytman <dmitry@daynix.com>
S: Maintained
F: hw/net/e1000x*
Subsystems Subsystems
---------- ----------
Audio Audio

View File

@ -6,7 +6,7 @@ common-obj-$(CONFIG_NE2000_PCI) += ne2000.o
common-obj-$(CONFIG_EEPRO100_PCI) += eepro100.o common-obj-$(CONFIG_EEPRO100_PCI) += eepro100.o
common-obj-$(CONFIG_PCNET_PCI) += pcnet-pci.o common-obj-$(CONFIG_PCNET_PCI) += pcnet-pci.o
common-obj-$(CONFIG_PCNET_COMMON) += pcnet.o common-obj-$(CONFIG_PCNET_COMMON) += pcnet.o
common-obj-$(CONFIG_E1000_PCI) += e1000.o common-obj-$(CONFIG_E1000_PCI) += e1000.o e1000x_common.o
common-obj-$(CONFIG_RTL8139_PCI) += rtl8139.o common-obj-$(CONFIG_RTL8139_PCI) += rtl8139.o
common-obj-$(CONFIG_VMXNET3_PCI) += net_tx_pkt.o net_rx_pkt.o common-obj-$(CONFIG_VMXNET3_PCI) += net_tx_pkt.o net_rx_pkt.o
common-obj-$(CONFIG_VMXNET3_PCI) += vmxnet3.o common-obj-$(CONFIG_VMXNET3_PCI) += vmxnet3.o

View File

@ -36,7 +36,7 @@
#include "qemu/iov.h" #include "qemu/iov.h"
#include "qemu/range.h" #include "qemu/range.h"
#include "e1000_regs.h" #include "e1000x_common.h"
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff}; static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
@ -64,11 +64,6 @@ static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
#define PNPMMIO_SIZE 0x20000 #define PNPMMIO_SIZE 0x20000
#define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */ #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
/* this is the size past which hardware will drop packets when setting LPE=0 */
#define MAXIMUM_ETHERNET_VLAN_SIZE 1522
/* this is the size past which hardware will drop packets when setting LPE=1 */
#define MAXIMUM_ETHERNET_LPE_SIZE 16384
#define MAXIMUM_ETHERNET_HDR_LEN (14+4) #define MAXIMUM_ETHERNET_HDR_LEN (14+4)
/* /*
@ -102,22 +97,9 @@ typedef struct E1000State_st {
unsigned char vlan[4]; unsigned char vlan[4];
unsigned char data[0x10000]; unsigned char data[0x10000];
uint16_t size; uint16_t size;
unsigned char sum_needed;
unsigned char vlan_needed; unsigned char vlan_needed;
uint8_t ipcss; e1000x_txd_props props;
uint8_t ipcso;
uint16_t ipcse;
uint8_t tucss;
uint8_t tucso;
uint16_t tucse;
uint8_t hdr_len;
uint16_t mss;
uint32_t paylen;
uint16_t tso_frames; uint16_t tso_frames;
char tse;
int8_t ip;
int8_t tcp;
char cptse; // current packet tse bit
} tx; } tx;
struct { struct {
@ -162,52 +144,19 @@ typedef struct E1000BaseClass {
#define E1000_DEVICE_GET_CLASS(obj) \ #define E1000_DEVICE_GET_CLASS(obj) \
OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE) OBJECT_GET_CLASS(E1000BaseClass, (obj), TYPE_E1000_BASE)
#define defreg(x) x = (E1000_##x>>2)
enum {
defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
defreg(RA), defreg(MTA), defreg(CRCERRS), defreg(VFTA),
defreg(VET), defreg(RDTR), defreg(RADV), defreg(TADV),
defreg(ITR), defreg(FCRUC), defreg(TDFH), defreg(TDFT),
defreg(TDFHS), defreg(TDFTS), defreg(TDFPC), defreg(RDFH),
defreg(RDFT), defreg(RDFHS), defreg(RDFTS), defreg(RDFPC),
defreg(IPAV), defreg(WUC), defreg(WUS), defreg(AIT),
defreg(IP6AT), defreg(IP4AT), defreg(FFLT), defreg(FFMT),
defreg(FFVT), defreg(WUPM), defreg(PBM), defreg(SCC),
defreg(ECOL), defreg(MCC), defreg(LATECOL), defreg(COLC),
defreg(DC), defreg(TNCRS), defreg(SEC), defreg(CEXTERR),
defreg(RLEC), defreg(XONRXC), defreg(XONTXC), defreg(XOFFRXC),
defreg(XOFFTXC), defreg(RFC), defreg(RJC), defreg(RNBC),
defreg(TSCTFC), defreg(MGTPRC), defreg(MGTPDC), defreg(MGTPTC),
defreg(RUC), defreg(ROC), defreg(GORCL), defreg(GORCH),
defreg(GOTCL), defreg(GOTCH), defreg(BPRC), defreg(MPRC),
defreg(TSCTC), defreg(PRC64), defreg(PRC127), defreg(PRC255),
defreg(PRC511), defreg(PRC1023), defreg(PRC1522), defreg(PTC64),
defreg(PTC127), defreg(PTC255), defreg(PTC511), defreg(PTC1023),
defreg(PTC1522), defreg(MPTC), defreg(BPTC)
};
static void
e1000_link_down(E1000State *s)
{
s->mac_reg[STATUS] &= ~E1000_STATUS_LU;
s->phy_reg[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
s->phy_reg[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
s->phy_reg[PHY_LP_ABILITY] &= ~MII_LPAR_LPACK;
}
static void static void
e1000_link_up(E1000State *s) e1000_link_up(E1000State *s)
{ {
s->mac_reg[STATUS] |= E1000_STATUS_LU; e1000x_update_regs_on_link_up(s->mac_reg, s->phy_reg);
s->phy_reg[PHY_STATUS] |= MII_SR_LINK_STATUS;
/* E1000_STATUS_LU is tested by e1000_can_receive() */
qemu_flush_queued_packets(qemu_get_queue(s->nic));
}
static void
e1000_autoneg_done(E1000State *s)
{
e1000x_update_regs_on_autoneg_done(s->mac_reg, s->phy_reg);
/* E1000_STATUS_LU is tested by e1000_can_receive() */ /* E1000_STATUS_LU is tested by e1000_can_receive() */
qemu_flush_queued_packets(qemu_get_queue(s->nic)); qemu_flush_queued_packets(qemu_get_queue(s->nic));
@ -233,10 +182,7 @@ set_phy_ctrl(E1000State *s, int index, uint16_t val)
* down. * down.
*/ */
if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) { if (have_autoneg(s) && (val & MII_CR_RESTART_AUTO_NEG)) {
e1000_link_down(s); e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
DBGOUT(PHY, "Start link auto negotiation\n");
timer_mod(s->autoneg_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
} }
} }
@ -401,43 +347,16 @@ e1000_autoneg_timer(void *opaque)
{ {
E1000State *s = opaque; E1000State *s = opaque;
if (!qemu_get_queue(s->nic)->link_down) { if (!qemu_get_queue(s->nic)->link_down) {
e1000_link_up(s); e1000_autoneg_done(s);
s->phy_reg[PHY_LP_ABILITY] |= MII_LPAR_LPACK;
s->phy_reg[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
DBGOUT(PHY, "Auto negotiation is completed\n");
set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */ set_ics(s, 0, E1000_ICS_LSC); /* signal link status change to guest */
} }
} }
static int
rxbufsize(uint32_t v)
{
v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
switch (v) {
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
return 16384;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
return 8192;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
return 4096;
case E1000_RCTL_SZ_1024:
return 1024;
case E1000_RCTL_SZ_512:
return 512;
case E1000_RCTL_SZ_256:
return 256;
}
return 2048;
}
static void e1000_reset(void *opaque) static void e1000_reset(void *opaque)
{ {
E1000State *d = opaque; E1000State *d = opaque;
E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d); E1000BaseClass *edc = E1000_DEVICE_GET_CLASS(d);
uint8_t *macaddr = d->conf.macaddr.a; uint8_t *macaddr = d->conf.macaddr.a;
int i;
timer_del(d->autoneg_timer); timer_del(d->autoneg_timer);
timer_del(d->mit_timer); timer_del(d->mit_timer);
@ -453,17 +372,10 @@ static void e1000_reset(void *opaque)
memset(&d->tx, 0, sizeof d->tx); memset(&d->tx, 0, sizeof d->tx);
if (qemu_get_queue(d->nic)->link_down) { if (qemu_get_queue(d->nic)->link_down) {
e1000_link_down(d); e1000x_update_regs_on_link_down(d->mac_reg, d->phy_reg);
} }
/* Some guests expect pre-initialized RAH/RAL (AddrValid flag + MACaddr) */ e1000x_reset_mac_addr(d->nic, d->mac_reg, macaddr);
d->mac_reg[RA] = 0;
d->mac_reg[RA + 1] = E1000_RAH_AV;
for (i = 0; i < 4; i++) {
d->mac_reg[RA] |= macaddr[i] << (8 * i);
d->mac_reg[RA + 1] |= (i < 2) ? macaddr[i + 4] << (8 * i) : 0;
}
qemu_format_nic_info_str(qemu_get_queue(d->nic), macaddr);
} }
static void static void
@ -477,7 +389,7 @@ static void
set_rx_control(E1000State *s, int index, uint32_t val) set_rx_control(E1000State *s, int index, uint32_t val)
{ {
s->mac_reg[RCTL] = val; s->mac_reg[RCTL] = val;
s->rxbuf_size = rxbufsize(val); s->rxbuf_size = e1000x_rxbufsize(val);
s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1; s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT], DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
s->mac_reg[RCTL]); s->mac_reg[RCTL]);
@ -597,90 +509,16 @@ putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
} }
} }
static inline void
inc_reg_if_not_full(E1000State *s, int index)
{
if (s->mac_reg[index] != 0xffffffff) {
s->mac_reg[index]++;
}
}
static inline void static inline void
inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr) inc_tx_bcast_or_mcast_count(E1000State *s, const unsigned char *arr)
{ {
if (!memcmp(arr, bcast, sizeof bcast)) { if (!memcmp(arr, bcast, sizeof bcast)) {
inc_reg_if_not_full(s, BPTC); e1000x_inc_reg_if_not_full(s->mac_reg, BPTC);
} else if (arr[0] & 1) { } else if (arr[0] & 1) {
inc_reg_if_not_full(s, MPTC); e1000x_inc_reg_if_not_full(s->mac_reg, MPTC);
} }
} }
static void
grow_8reg_if_not_full(E1000State *s, int index, int size)
{
uint64_t sum = s->mac_reg[index] | (uint64_t)s->mac_reg[index+1] << 32;
if (sum + size < sum) {
sum = ~0ULL;
} else {
sum += size;
}
s->mac_reg[index] = sum;
s->mac_reg[index+1] = sum >> 32;
}
static void
increase_size_stats(E1000State *s, const int *size_regs, int size)
{
if (size > 1023) {
inc_reg_if_not_full(s, size_regs[5]);
} else if (size > 511) {
inc_reg_if_not_full(s, size_regs[4]);
} else if (size > 255) {
inc_reg_if_not_full(s, size_regs[3]);
} else if (size > 127) {
inc_reg_if_not_full(s, size_regs[2]);
} else if (size > 64) {
inc_reg_if_not_full(s, size_regs[1]);
} else if (size == 64) {
inc_reg_if_not_full(s, size_regs[0]);
}
}
static inline int
vlan_enabled(E1000State *s)
{
return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
}
static inline int
vlan_rx_filter_enabled(E1000State *s)
{
return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
}
static inline int
is_vlan_packet(E1000State *s, const uint8_t *buf)
{
return (be16_to_cpup((uint16_t *)(buf + 12)) ==
le16_to_cpu(s->mac_reg[VET]));
}
static inline int
is_vlan_txd(uint32_t txd_lower)
{
return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
}
/* FCS aka Ethernet CRC-32. We don't get it from backends and can't
* fill it in, just pad descriptor length by 4 bytes unless guest
* told us to strip it off the packet. */
static inline int
fcs_len(E1000State *s)
{
return (s->mac_reg[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
}
static void static void
e1000_send_packet(E1000State *s, const uint8_t *buf, int size) e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
{ {
@ -694,7 +532,7 @@ e1000_send_packet(E1000State *s, const uint8_t *buf, int size)
qemu_send_packet(nc, buf, size); qemu_send_packet(nc, buf, size);
} }
inc_tx_bcast_or_mcast_count(s, buf); inc_tx_bcast_or_mcast_count(s, buf);
increase_size_stats(s, PTCregs, size); e1000x_increase_size_stats(s->mac_reg, PTCregs, size);
} }
static void static void
@ -704,34 +542,34 @@ xmit_seg(E1000State *s)
unsigned int frames = s->tx.tso_frames, css, sofar; unsigned int frames = s->tx.tso_frames, css, sofar;
struct e1000_tx *tp = &s->tx; struct e1000_tx *tp = &s->tx;
if (tp->tse && tp->cptse) { if (tp->props.tse && tp->props.cptse) {
css = tp->ipcss; css = tp->props.ipcss;
DBGOUT(TXSUM, "frames %d size %d ipcss %d\n", DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
frames, tp->size, css); frames, tp->size, css);
if (tp->ip) { /* IPv4 */ if (tp->props.ip) { /* IPv4 */
stw_be_p(tp->data+css+2, tp->size - css); stw_be_p(tp->data+css+2, tp->size - css);
stw_be_p(tp->data+css+4, stw_be_p(tp->data+css+4,
be16_to_cpup((uint16_t *)(tp->data+css+4))+frames); be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
} else { /* IPv6 */ } else { /* IPv6 */
stw_be_p(tp->data+css+4, tp->size - css); stw_be_p(tp->data+css+4, tp->size - css);
} }
css = tp->tucss; css = tp->props.tucss;
len = tp->size - css; len = tp->size - css;
DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len); DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->props.tcp, css, len);
if (tp->tcp) { if (tp->props.tcp) {
sofar = frames * tp->mss; sofar = frames * tp->props.mss;
stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */ stl_be_p(tp->data+css+4, ldl_be_p(tp->data+css+4)+sofar); /* seq */
if (tp->paylen - sofar > tp->mss) { if (tp->props.paylen - sofar > tp->props.mss) {
tp->data[css + 13] &= ~9; /* PSH, FIN */ tp->data[css + 13] &= ~9; /* PSH, FIN */
} else if (frames) { } else if (frames) {
inc_reg_if_not_full(s, TSCTC); e1000x_inc_reg_if_not_full(s->mac_reg, TSCTC);
} }
} else /* UDP */ } else /* UDP */
stw_be_p(tp->data+css+4, len); stw_be_p(tp->data+css+4, len);
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) { if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
unsigned int phsum; unsigned int phsum;
// add pseudo-header length before checksum calculation // add pseudo-header length before checksum calculation
sp = (uint16_t *)(tp->data + tp->tucso); sp = (uint16_t *)(tp->data + tp->props.tucso);
phsum = be16_to_cpup(sp) + len; phsum = be16_to_cpup(sp) + len;
phsum = (phsum >> 16) + (phsum & 0xffff); phsum = (phsum >> 16) + (phsum & 0xffff);
stw_be_p(sp, phsum); stw_be_p(sp, phsum);
@ -739,10 +577,14 @@ xmit_seg(E1000State *s)
tp->tso_frames++; tp->tso_frames++;
} }
if (tp->sum_needed & E1000_TXD_POPTS_TXSM) if (tp->props.sum_needed & E1000_TXD_POPTS_TXSM) {
putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse); putsum(tp->data, tp->size, tp->props.tucso,
if (tp->sum_needed & E1000_TXD_POPTS_IXSM) tp->props.tucss, tp->props.tucse);
putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse); }
if (tp->props.sum_needed & E1000_TXD_POPTS_IXSM) {
putsum(tp->data, tp->size, tp->props.ipcso,
tp->props.ipcss, tp->props.ipcse);
}
if (tp->vlan_needed) { if (tp->vlan_needed) {
memmove(tp->vlan, tp->data, 4); memmove(tp->vlan, tp->data, 4);
memmove(tp->data, tp->data + 4, 8); memmove(tp->data, tp->data + 4, 8);
@ -752,8 +594,8 @@ xmit_seg(E1000State *s)
e1000_send_packet(s, tp->data, tp->size); e1000_send_packet(s, tp->data, tp->size);
} }
inc_reg_if_not_full(s, TPT); e1000x_inc_reg_if_not_full(s->mac_reg, TPT);
grow_8reg_if_not_full(s, TOTL, s->tx.size); e1000x_grow_8reg_if_not_full(s->mac_reg, TOTL, s->tx.size);
s->mac_reg[GPTC] = s->mac_reg[TPT]; s->mac_reg[GPTC] = s->mac_reg[TPT];
s->mac_reg[GOTCL] = s->mac_reg[TOTL]; s->mac_reg[GOTCL] = s->mac_reg[TOTL];
s->mac_reg[GOTCH] = s->mac_reg[TOTH]; s->mac_reg[GOTCH] = s->mac_reg[TOTH];
@ -765,7 +607,7 @@ process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
PCIDevice *d = PCI_DEVICE(s); PCIDevice *d = PCI_DEVICE(s);
uint32_t txd_lower = le32_to_cpu(dp->lower.data); uint32_t txd_lower = le32_to_cpu(dp->lower.data);
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D); uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
unsigned int split_size = txd_lower & 0xffff, bytes, sz, op; unsigned int split_size = txd_lower & 0xffff, bytes, sz;
unsigned int msh = 0xfffff; unsigned int msh = 0xfffff;
uint64_t addr; uint64_t addr;
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp; struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
@ -773,38 +615,27 @@ process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE); s->mit_ide |= (txd_lower & E1000_TXD_CMD_IDE);
if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */ if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
op = le32_to_cpu(xp->cmd_and_length); e1000x_read_tx_ctx_descr(xp, &tp->props);
tp->ipcss = xp->lower_setup.ip_fields.ipcss;
tp->ipcso = xp->lower_setup.ip_fields.ipcso;
tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
tp->tucss = xp->upper_setup.tcp_fields.tucss;
tp->tucso = xp->upper_setup.tcp_fields.tucso;
tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
tp->paylen = op & 0xfffff;
tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
tp->tso_frames = 0; tp->tso_frames = 0;
if (tp->tucso == 0) { /* this is probably wrong */ if (tp->props.tucso == 0) { /* this is probably wrong */
DBGOUT(TXSUM, "TCP/UDP: cso 0!\n"); DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
tp->tucso = tp->tucss + (tp->tcp ? 16 : 6); tp->props.tucso = tp->props.tucss + (tp->props.tcp ? 16 : 6);
} }
return; return;
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) { } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
// data descriptor // data descriptor
if (tp->size == 0) { if (tp->size == 0) {
tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8; tp->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
} }
tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0; tp->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
} else { } else {
// legacy descriptor // legacy descriptor
tp->cptse = 0; tp->props.cptse = 0;
} }
if (vlan_enabled(s) && is_vlan_txd(txd_lower) && if (e1000x_vlan_enabled(s->mac_reg) &&
(tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) { e1000x_is_vlan_txd(txd_lower) &&
(tp->props.cptse || txd_lower & E1000_TXD_CMD_EOP)) {
tp->vlan_needed = 1; tp->vlan_needed = 1;
stw_be_p(tp->vlan_header, stw_be_p(tp->vlan_header,
le16_to_cpu(s->mac_reg[VET])); le16_to_cpu(s->mac_reg[VET]));
@ -813,8 +644,8 @@ process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
} }
addr = le64_to_cpu(dp->buffer_addr); addr = le64_to_cpu(dp->buffer_addr);
if (tp->tse && tp->cptse) { if (tp->props.tse && tp->props.cptse) {
msh = tp->hdr_len + tp->mss; msh = tp->props.hdr_len + tp->props.mss;
do { do {
bytes = split_size; bytes = split_size;
if (tp->size + bytes > msh) if (tp->size + bytes > msh)
@ -823,19 +654,19 @@ process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
bytes = MIN(sizeof(tp->data) - tp->size, bytes); bytes = MIN(sizeof(tp->data) - tp->size, bytes);
pci_dma_read(d, addr, tp->data + tp->size, bytes); pci_dma_read(d, addr, tp->data + tp->size, bytes);
sz = tp->size + bytes; sz = tp->size + bytes;
if (sz >= tp->hdr_len && tp->size < tp->hdr_len) { if (sz >= tp->props.hdr_len && tp->size < tp->props.hdr_len) {
memmove(tp->header, tp->data, tp->hdr_len); memmove(tp->header, tp->data, tp->props.hdr_len);
} }
tp->size = sz; tp->size = sz;
addr += bytes; addr += bytes;
if (sz == msh) { if (sz == msh) {
xmit_seg(s); xmit_seg(s);
memmove(tp->data, tp->header, tp->hdr_len); memmove(tp->data, tp->header, tp->props.hdr_len);
tp->size = tp->hdr_len; tp->size = tp->props.hdr_len;
} }
split_size -= bytes; split_size -= bytes;
} while (bytes && split_size); } while (bytes && split_size);
} else if (!tp->tse && tp->cptse) { } else if (!tp->props.tse && tp->props.cptse) {
// context descriptor TSE is not set, while data descriptor TSE is set // context descriptor TSE is not set, while data descriptor TSE is set
DBGOUT(TXERR, "TCP segmentation error\n"); DBGOUT(TXERR, "TCP segmentation error\n");
} else { } else {
@ -846,14 +677,14 @@ process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
if (!(txd_lower & E1000_TXD_CMD_EOP)) if (!(txd_lower & E1000_TXD_CMD_EOP))
return; return;
if (!(tp->tse && tp->cptse && tp->size < tp->hdr_len)) { if (!(tp->props.tse && tp->props.cptse && tp->size < tp->props.hdr_len)) {
xmit_seg(s); xmit_seg(s);
} }
tp->tso_frames = 0; tp->tso_frames = 0;
tp->sum_needed = 0; tp->props.sum_needed = 0;
tp->vlan_needed = 0; tp->vlan_needed = 0;
tp->size = 0; tp->size = 0;
tp->cptse = 0; tp->props.cptse = 0;
} }
static uint32_t static uint32_t
@ -925,11 +756,11 @@ start_xmit(E1000State *s)
static int static int
receive_filter(E1000State *s, const uint8_t *buf, int size) receive_filter(E1000State *s, const uint8_t *buf, int size)
{ {
static const int mta_shift[] = {4, 3, 2, 0}; uint32_t rctl = s->mac_reg[RCTL];
uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1); int isbcast = !memcmp(buf, bcast, sizeof bcast), ismcast = (buf[0] & 1);
if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) { if (e1000x_is_vlan_packet(buf, le16_to_cpu(s->mac_reg[VET])) &&
e1000x_vlan_rx_filter_enabled(s->mac_reg)) {
uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14)); uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) + uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
((vid >> 5) & 0x7f)); ((vid >> 5) & 0x7f));
@ -942,44 +773,16 @@ receive_filter(E1000State *s, const uint8_t *buf, int size)
} }
if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */ if (ismcast && (rctl & E1000_RCTL_MPE)) { /* promiscuous mcast */
inc_reg_if_not_full(s, MPRC); e1000x_inc_reg_if_not_full(s->mac_reg, MPRC);
return 1; return 1;
} }
if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */ if (isbcast && (rctl & E1000_RCTL_BAM)) { /* broadcast enabled */
inc_reg_if_not_full(s, BPRC); e1000x_inc_reg_if_not_full(s->mac_reg, BPRC);
return 1; return 1;
} }
for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) { return e1000x_rx_group_filter(s->mac_reg, buf);
if (!(rp[1] & E1000_RAH_AV))
continue;
ra[0] = cpu_to_le32(rp[0]);
ra[1] = cpu_to_le32(rp[1]);
if (!memcmp(buf, (uint8_t *)ra, 6)) {
DBGOUT(RXFILTER,
"unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
(int)(rp - s->mac_reg - RA)/2,
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
return 1;
}
}
DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
inc_reg_if_not_full(s, MPRC);
return 1;
}
DBGOUT(RXFILTER,
"dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
(rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
s->mac_reg[MTA + (f >> 5)]);
return 0;
} }
static void static void
@ -989,13 +792,11 @@ e1000_set_link_status(NetClientState *nc)
uint32_t old_status = s->mac_reg[STATUS]; uint32_t old_status = s->mac_reg[STATUS];
if (nc->link_down) { if (nc->link_down) {
e1000_link_down(s); e1000x_update_regs_on_link_down(s->mac_reg, s->phy_reg);
} else { } else {
if (have_autoneg(s) && if (have_autoneg(s) &&
!(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) { !(s->phy_reg[PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
/* emulate auto-negotiation if supported */ e1000x_restart_autoneg(s->mac_reg, s->phy_reg, s->autoneg_timer);
timer_mod(s->autoneg_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
} else { } else {
e1000_link_up(s); e1000_link_up(s);
} }
@ -1028,9 +829,7 @@ e1000_can_receive(NetClientState *nc)
{ {
E1000State *s = qemu_get_nic_opaque(nc); E1000State *s = qemu_get_nic_opaque(nc);
return (s->mac_reg[STATUS] & E1000_STATUS_LU) && return e1000x_rx_ready(&s->parent_obj, s->mac_reg) &&
(s->mac_reg[RCTL] & E1000_RCTL_EN) &&
(s->parent_obj.config[PCI_COMMAND] & PCI_COMMAND_MASTER) &&
e1000_has_rxbufs(s, 1); e1000_has_rxbufs(s, 1);
} }
@ -1061,14 +860,8 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
size_t desc_offset; size_t desc_offset;
size_t desc_size; size_t desc_size;
size_t total_size; size_t total_size;
static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
PRC1023, PRC1522 };
if (!(s->mac_reg[STATUS] & E1000_STATUS_LU)) { if (!e1000x_hw_rx_enabled(s->mac_reg)) {
return -1;
}
if (!(s->mac_reg[RCTL] & E1000_RCTL_EN)) {
return -1; return -1;
} }
@ -1076,7 +869,7 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
if (size < sizeof(min_buf)) { if (size < sizeof(min_buf)) {
iov_to_buf(iov, iovcnt, 0, min_buf, size); iov_to_buf(iov, iovcnt, 0, min_buf, size);
memset(&min_buf[size], 0, sizeof(min_buf) - size); memset(&min_buf[size], 0, sizeof(min_buf) - size);
inc_reg_if_not_full(s, RUC); e1000x_inc_reg_if_not_full(s->mac_reg, RUC);
min_iov.iov_base = filter_buf = min_buf; min_iov.iov_base = filter_buf = min_buf;
min_iov.iov_len = size = sizeof(min_buf); min_iov.iov_len = size = sizeof(min_buf);
iovcnt = 1; iovcnt = 1;
@ -1088,11 +881,7 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
} }
/* Discard oversized packets if !LPE and !SBP. */ /* Discard oversized packets if !LPE and !SBP. */
if ((size > MAXIMUM_ETHERNET_LPE_SIZE || if (e1000x_is_oversized(s->mac_reg, size)) {
(size > MAXIMUM_ETHERNET_VLAN_SIZE
&& !(s->mac_reg[RCTL] & E1000_RCTL_LPE)))
&& !(s->mac_reg[RCTL] & E1000_RCTL_SBP)) {
inc_reg_if_not_full(s, ROC);
return size; return size;
} }
@ -1100,7 +889,8 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
return size; return size;
} }
if (vlan_enabled(s) && is_vlan_packet(s, filter_buf)) { if (e1000x_vlan_enabled(s->mac_reg) &&
e1000x_is_vlan_packet(filter_buf, le16_to_cpu(s->mac_reg[VET]))) {
vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(filter_buf vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(filter_buf
+ 14))); + 14)));
iov_ofs = 4; iov_ofs = 4;
@ -1119,7 +909,7 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
rdh_start = s->mac_reg[RDH]; rdh_start = s->mac_reg[RDH];
desc_offset = 0; desc_offset = 0;
total_size = size + fcs_len(s); total_size = size + e1000x_fcs_len(s->mac_reg);
if (!e1000_has_rxbufs(s, total_size)) { if (!e1000_has_rxbufs(s, total_size)) {
set_ics(s, 0, E1000_ICS_RXO); set_ics(s, 0, E1000_ICS_RXO);
return -1; return -1;
@ -1179,17 +969,7 @@ e1000_receive_iov(NetClientState *nc, const struct iovec *iov, int iovcnt)
} }
} while (desc_offset < total_size); } while (desc_offset < total_size);
increase_size_stats(s, PRCregs, total_size); e1000x_update_rx_total_stats(s->mac_reg, size, total_size);
inc_reg_if_not_full(s, TPR);
s->mac_reg[GPRC] = s->mac_reg[TPR];
/* TOR - Total Octets Received:
* This register includes bytes received in a packet from the <Destination
* Address> field through the <CRC> field, inclusively.
* Always include FCS length (4) in size.
*/
grow_8reg_if_not_full(s, TORL, size+4);
s->mac_reg[GORCL] = s->mac_reg[TORL];
s->mac_reg[GORCH] = s->mac_reg[TORH];
n = E1000_ICS_RXT0; n = E1000_ICS_RXT0;
if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH]) if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
@ -1670,20 +1450,20 @@ static const VMStateDescription vmstate_e1000 = {
VMSTATE_UINT16(eecd_state.bitnum_out, E1000State), VMSTATE_UINT16(eecd_state.bitnum_out, E1000State),
VMSTATE_UINT16(eecd_state.reading, E1000State), VMSTATE_UINT16(eecd_state.reading, E1000State),
VMSTATE_UINT32(eecd_state.old_eecd, E1000State), VMSTATE_UINT32(eecd_state.old_eecd, E1000State),
VMSTATE_UINT8(tx.ipcss, E1000State), VMSTATE_UINT8(tx.props.ipcss, E1000State),
VMSTATE_UINT8(tx.ipcso, E1000State), VMSTATE_UINT8(tx.props.ipcso, E1000State),
VMSTATE_UINT16(tx.ipcse, E1000State), VMSTATE_UINT16(tx.props.ipcse, E1000State),
VMSTATE_UINT8(tx.tucss, E1000State), VMSTATE_UINT8(tx.props.tucss, E1000State),
VMSTATE_UINT8(tx.tucso, E1000State), VMSTATE_UINT8(tx.props.tucso, E1000State),
VMSTATE_UINT16(tx.tucse, E1000State), VMSTATE_UINT16(tx.props.tucse, E1000State),
VMSTATE_UINT32(tx.paylen, E1000State), VMSTATE_UINT32(tx.props.paylen, E1000State),
VMSTATE_UINT8(tx.hdr_len, E1000State), VMSTATE_UINT8(tx.props.hdr_len, E1000State),
VMSTATE_UINT16(tx.mss, E1000State), VMSTATE_UINT16(tx.props.mss, E1000State),
VMSTATE_UINT16(tx.size, E1000State), VMSTATE_UINT16(tx.size, E1000State),
VMSTATE_UINT16(tx.tso_frames, E1000State), VMSTATE_UINT16(tx.tso_frames, E1000State),
VMSTATE_UINT8(tx.sum_needed, E1000State), VMSTATE_UINT8(tx.props.sum_needed, E1000State),
VMSTATE_INT8(tx.ip, E1000State), VMSTATE_INT8(tx.props.ip, E1000State),
VMSTATE_INT8(tx.tcp, E1000State), VMSTATE_INT8(tx.props.tcp, E1000State),
VMSTATE_BUFFER(tx.header, E1000State), VMSTATE_BUFFER(tx.header, E1000State),
VMSTATE_BUFFER(tx.data, E1000State), VMSTATE_BUFFER(tx.data, E1000State),
VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64), VMSTATE_UINT16_ARRAY(eeprom_data, E1000State, 64),
@ -1806,15 +1586,11 @@ static void e1000_write_config(PCIDevice *pci_dev, uint32_t address,
} }
} }
static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp) static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
{ {
DeviceState *dev = DEVICE(pci_dev); DeviceState *dev = DEVICE(pci_dev);
E1000State *d = E1000(pci_dev); E1000State *d = E1000(pci_dev);
PCIDeviceClass *pdc = PCI_DEVICE_GET_CLASS(pci_dev);
uint8_t *pci_conf; uint8_t *pci_conf;
uint16_t checksum = 0;
int i;
uint8_t *macaddr; uint8_t *macaddr;
pci_dev->config_write = e1000_write_config; pci_dev->config_write = e1000_write_config;
@ -1832,17 +1608,14 @@ static void pci_e1000_realize(PCIDevice *pci_dev, Error **errp)
pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io); pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &d->io);
memmove(d->eeprom_data, e1000_eeprom_template,
sizeof e1000_eeprom_template);
qemu_macaddr_default_if_unset(&d->conf.macaddr); qemu_macaddr_default_if_unset(&d->conf.macaddr);
macaddr = d->conf.macaddr.a; macaddr = d->conf.macaddr.a;
for (i = 0; i < 3; i++)
d->eeprom_data[i] = (macaddr[2*i+1]<<8) | macaddr[2*i]; e1000x_core_prepare_eeprom(d->eeprom_data,
d->eeprom_data[11] = d->eeprom_data[13] = pdc->device_id; e1000_eeprom_template,
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) sizeof(e1000_eeprom_template),
checksum += d->eeprom_data[i]; PCI_DEVICE_GET_CLASS(pci_dev)->device_id,
checksum = (uint16_t) EEPROM_SUM - checksum; macaddr);
d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
d->nic = qemu_new_nic(&net_e1000_info, &d->conf, d->nic = qemu_new_nic(&net_e1000_info, &d->conf,
object_get_typename(OBJECT(d)), dev->id, d); object_get_typename(OBJECT(d)), dev->id, d);

267
hw/net/e1000x_common.c Normal file
View File

@ -0,0 +1,267 @@
/*
* QEMU e1000(e) emulation - shared code
*
* Copyright (c) 2008 Qumranet
*
* Based on work done by:
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/pci/pci.h"
#include "net/net.h"
#include "e1000x_common.h"
#include "trace.h"
bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac)
{
bool link_up = mac[STATUS] & E1000_STATUS_LU;
bool rx_enabled = mac[RCTL] & E1000_RCTL_EN;
bool pci_master = d->config[PCI_COMMAND] & PCI_COMMAND_MASTER;
if (!link_up || !rx_enabled || !pci_master) {
trace_e1000x_rx_can_recv_disabled(link_up, rx_enabled, pci_master);
return false;
}
return true;
}
bool e1000x_is_vlan_packet(const uint8_t *buf, uint16_t vet)
{
uint16_t eth_proto = be16_to_cpup((uint16_t *)(buf + 12));
bool res = (eth_proto == vet);
trace_e1000x_vlan_is_vlan_pkt(res, eth_proto, vet);
return res;
}
bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf)
{
static const int mta_shift[] = { 4, 3, 2, 0 };
uint32_t f, ra[2], *rp, rctl = mac[RCTL];
for (rp = mac + RA; rp < mac + RA + 32; rp += 2) {
if (!(rp[1] & E1000_RAH_AV)) {
continue;
}
ra[0] = cpu_to_le32(rp[0]);
ra[1] = cpu_to_le32(rp[1]);
if (!memcmp(buf, (uint8_t *)ra, 6)) {
trace_e1000x_rx_flt_ucast_match((int)(rp - mac - RA) / 2,
MAC_ARG(buf));
return true;
}
}
trace_e1000x_rx_flt_ucast_mismatch(MAC_ARG(buf));
f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
if (mac[MTA + (f >> 5)] & (1 << (f & 0x1f))) {
e1000x_inc_reg_if_not_full(mac, MPRC);
return true;
}
trace_e1000x_rx_flt_inexact_mismatch(MAC_ARG(buf),
(rctl >> E1000_RCTL_MO_SHIFT) & 3,
f >> 5,
mac[MTA + (f >> 5)]);
return false;
}
bool e1000x_hw_rx_enabled(uint32_t *mac)
{
if (!(mac[STATUS] & E1000_STATUS_LU)) {
trace_e1000x_rx_link_down(mac[STATUS]);
return false;
}
if (!(mac[RCTL] & E1000_RCTL_EN)) {
trace_e1000x_rx_disabled(mac[RCTL]);
return false;
}
return true;
}
bool e1000x_is_oversized(uint32_t *mac, size_t size)
{
/* this is the size past which hardware will
drop packets when setting LPE=0 */
static const int maximum_ethernet_vlan_size = 1522;
/* this is the size past which hardware will
drop packets when setting LPE=1 */
static const int maximum_ethernet_lpe_size = 16384;
if ((size > maximum_ethernet_lpe_size ||
(size > maximum_ethernet_vlan_size
&& !(mac[RCTL] & E1000_RCTL_LPE)))
&& !(mac[RCTL] & E1000_RCTL_SBP)) {
e1000x_inc_reg_if_not_full(mac, ROC);
trace_e1000x_rx_oversized(size);
return true;
}
return false;
}
void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer)
{
e1000x_update_regs_on_link_down(mac, phy);
trace_e1000x_link_negotiation_start();
timer_mod(timer, qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
}
void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
uint8_t *mac_addr)
{
int i;
mac_regs[RA] = 0;
mac_regs[RA + 1] = E1000_RAH_AV;
for (i = 0; i < 4; i++) {
mac_regs[RA] |= mac_addr[i] << (8 * i);
mac_regs[RA + 1] |=
(i < 2) ? mac_addr[i + 4] << (8 * i) : 0;
}
qemu_format_nic_info_str(qemu_get_queue(nic), mac_addr);
trace_e1000x_mac_indicate(MAC_ARG(mac_addr));
}
void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy)
{
e1000x_update_regs_on_link_up(mac, phy);
phy[PHY_LP_ABILITY] |= MII_LPAR_LPACK;
phy[PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
trace_e1000x_link_negotiation_done();
}
void
e1000x_core_prepare_eeprom(uint16_t *eeprom,
const uint16_t *templ,
uint32_t templ_size,
uint16_t dev_id,
const uint8_t *macaddr)
{
uint16_t checksum = 0;
int i;
memmove(eeprom, templ, templ_size);
for (i = 0; i < 3; i++) {
eeprom[i] = (macaddr[2 * i + 1] << 8) | macaddr[2 * i];
}
eeprom[11] = eeprom[13] = dev_id;
for (i = 0; i < EEPROM_CHECKSUM_REG; i++) {
checksum += eeprom[i];
}
checksum = (uint16_t) EEPROM_SUM - checksum;
eeprom[EEPROM_CHECKSUM_REG] = checksum;
}
uint32_t
e1000x_rxbufsize(uint32_t rctl)
{
rctl &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
switch (rctl) {
case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
return 16384;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
return 8192;
case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
return 4096;
case E1000_RCTL_SZ_1024:
return 1024;
case E1000_RCTL_SZ_512:
return 512;
case E1000_RCTL_SZ_256:
return 256;
}
return 2048;
}
void
e1000x_update_rx_total_stats(uint32_t *mac,
size_t data_size,
size_t data_fcs_size)
{
static const int PRCregs[6] = { PRC64, PRC127, PRC255, PRC511,
PRC1023, PRC1522 };
e1000x_increase_size_stats(mac, PRCregs, data_fcs_size);
e1000x_inc_reg_if_not_full(mac, TPR);
mac[GPRC] = mac[TPR];
/* TOR - Total Octets Received:
* This register includes bytes received in a packet from the <Destination
* Address> field through the <CRC> field, inclusively.
* Always include FCS length (4) in size.
*/
e1000x_grow_8reg_if_not_full(mac, TORL, data_size + 4);
mac[GORCL] = mac[TORL];
mac[GORCH] = mac[TORH];
}
void
e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size)
{
if (size > 1023) {
e1000x_inc_reg_if_not_full(mac, size_regs[5]);
} else if (size > 511) {
e1000x_inc_reg_if_not_full(mac, size_regs[4]);
} else if (size > 255) {
e1000x_inc_reg_if_not_full(mac, size_regs[3]);
} else if (size > 127) {
e1000x_inc_reg_if_not_full(mac, size_regs[2]);
} else if (size > 64) {
e1000x_inc_reg_if_not_full(mac, size_regs[1]);
} else if (size == 64) {
e1000x_inc_reg_if_not_full(mac, size_regs[0]);
}
}
void
e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
e1000x_txd_props *props)
{
uint32_t op = le32_to_cpu(d->cmd_and_length);
props->ipcss = d->lower_setup.ip_fields.ipcss;
props->ipcso = d->lower_setup.ip_fields.ipcso;
props->ipcse = le16_to_cpu(d->lower_setup.ip_fields.ipcse);
props->tucss = d->upper_setup.tcp_fields.tucss;
props->tucso = d->upper_setup.tcp_fields.tucso;
props->tucse = le16_to_cpu(d->upper_setup.tcp_fields.tucse);
props->paylen = op & 0xfffff;
props->hdr_len = d->tcp_seg_setup.fields.hdr_len;
props->mss = le16_to_cpu(d->tcp_seg_setup.fields.mss);
props->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
props->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
props->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
}

213
hw/net/e1000x_common.h Normal file
View File

@ -0,0 +1,213 @@
/*
* QEMU e1000(e) emulation - shared code
*
* Copyright (c) 2008 Qumranet
*
* Based on work done by:
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "e1000_regs.h"
#define defreg(x) x = (E1000_##x >> 2)
enum {
defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH0),
defreg(RDBAL0), defreg(RDH0), defreg(RDLEN0), defreg(RDT0),
defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
defreg(TDLEN1), defreg(TDBAL1), defreg(TDBAH1), defreg(TDH1),
defreg(TDT1), defreg(TORH), defreg(TORL), defreg(TOTH),
defreg(TOTL), defreg(TPR), defreg(TPT), defreg(TXDCTL),
defreg(WUFC), defreg(RA), defreg(MTA), defreg(CRCERRS),
defreg(VFTA), defreg(VET), defreg(RDTR), defreg(RADV),
defreg(TADV), defreg(ITR), defreg(SCC), defreg(ECOL),
defreg(MCC), defreg(LATECOL), defreg(COLC), defreg(DC),
defreg(TNCRS), defreg(SEC), defreg(CEXTERR), defreg(RLEC),
defreg(XONRXC), defreg(XONTXC), defreg(XOFFRXC), defreg(XOFFTXC),
defreg(FCRUC), defreg(AIT), defreg(TDFH), defreg(TDFT),
defreg(TDFHS), defreg(TDFTS), defreg(TDFPC), defreg(WUC),
defreg(WUS), defreg(POEMB), defreg(PBS), defreg(RDFH),
defreg(RDFT), defreg(RDFHS), defreg(RDFTS), defreg(RDFPC),
defreg(PBM), defreg(IPAV), defreg(IP4AT), defreg(IP6AT),
defreg(WUPM), defreg(FFLT), defreg(FFMT), defreg(FFVT),
defreg(TARC0), defreg(TARC1), defreg(IAM), defreg(EXTCNF_CTRL),
defreg(GCR), defreg(TIMINCA), defreg(EIAC), defreg(CTRL_EXT),
defreg(IVAR), defreg(MFUTP01), defreg(MFUTP23), defreg(MANC2H),
defreg(MFVAL), defreg(MDEF), defreg(FACTPS), defreg(FTFT),
defreg(RUC), defreg(ROC), defreg(RFC), defreg(RJC),
defreg(PRC64), defreg(PRC127), defreg(PRC255), defreg(PRC511),
defreg(PRC1023), defreg(PRC1522), defreg(PTC64), defreg(PTC127),
defreg(PTC255), defreg(PTC511), defreg(PTC1023), defreg(PTC1522),
defreg(GORCL), defreg(GORCH), defreg(GOTCL), defreg(GOTCH),
defreg(RNBC), defreg(BPRC), defreg(MPRC), defreg(RFCTL),
defreg(PSRCTL), defreg(MPTC), defreg(BPTC), defreg(TSCTFC),
defreg(IAC), defreg(MGTPRC), defreg(MGTPDC), defreg(MGTPTC),
defreg(TSCTC), defreg(RXCSUM), defreg(FUNCTAG), defreg(GSCL_1),
defreg(GSCL_2), defreg(GSCL_3), defreg(GSCL_4), defreg(GSCN_0),
defreg(GSCN_1), defreg(GSCN_2), defreg(GSCN_3), defreg(GCR2),
defreg(RAID), defreg(RSRPD), defreg(TIDV), defreg(EITR),
defreg(MRQC), defreg(RETA), defreg(RSSRK), defreg(RDBAH1),
defreg(RDBAL1), defreg(RDLEN1), defreg(RDH1), defreg(RDT1),
defreg(PBACLR), defreg(FCAL), defreg(FCAH), defreg(FCT),
defreg(FCRTH), defreg(FCRTL), defreg(FCTTV), defreg(FCRTV),
defreg(FLA), defreg(EEWR), defreg(FLOP), defreg(FLOL),
defreg(FLSWCTL), defreg(FLSWCNT), defreg(RXDCTL), defreg(RXDCTL1),
defreg(MAVTV0), defreg(MAVTV1), defreg(MAVTV2), defreg(MAVTV3),
defreg(TXSTMPL), defreg(TXSTMPH), defreg(SYSTIML), defreg(SYSTIMH),
defreg(RXCFGL), defreg(RXUDP), defreg(TIMADJL), defreg(TIMADJH),
defreg(RXSTMPH), defreg(RXSTMPL), defreg(RXSATRL), defreg(RXSATRH),
defreg(FLASHT), defreg(TIPG), defreg(RDH), defreg(RDT),
defreg(RDLEN), defreg(RDBAH), defreg(RDBAL),
defreg(TXDCTL1),
defreg(FLSWDATA),
defreg(CTRL_DUP),
defreg(EXTCNF_SIZE),
defreg(EEMNGCTL),
defreg(EEMNGDATA),
defreg(FLMNGCTL),
defreg(FLMNGDATA),
defreg(FLMNGCNT),
defreg(TSYNCRXCTL),
defreg(TSYNCTXCTL),
/* Aliases */
defreg(RDH0_A), defreg(RDT0_A), defreg(RDTR_A), defreg(RDFH_A),
defreg(RDFT_A), defreg(TDH_A), defreg(TDT_A), defreg(TIDV_A),
defreg(TDFH_A), defreg(TDFT_A), defreg(RA_A), defreg(RDBAL0_A),
defreg(TDBAL_A), defreg(TDLEN_A), defreg(VFTA_A), defreg(RDLEN0_A),
defreg(FCRTL_A), defreg(FCRTH_A)
};
static inline void
e1000x_inc_reg_if_not_full(uint32_t *mac, int index)
{
if (mac[index] != 0xffffffff) {
mac[index]++;
}
}
static inline void
e1000x_grow_8reg_if_not_full(uint32_t *mac, int index, int size)
{
uint64_t sum = mac[index] | (uint64_t)mac[index + 1] << 32;
if (sum + size < sum) {
sum = ~0ULL;
} else {
sum += size;
}
mac[index] = sum;
mac[index + 1] = sum >> 32;
}
static inline int
e1000x_vlan_enabled(uint32_t *mac)
{
return ((mac[CTRL] & E1000_CTRL_VME) != 0);
}
static inline int
e1000x_is_vlan_txd(uint32_t txd_lower)
{
return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
}
static inline int
e1000x_vlan_rx_filter_enabled(uint32_t *mac)
{
return ((mac[RCTL] & E1000_RCTL_VFE) != 0);
}
static inline int
e1000x_fcs_len(uint32_t *mac)
{
/* FCS aka Ethernet CRC-32. We don't get it from backends and can't
* fill it in, just pad descriptor length by 4 bytes unless guest
* told us to strip it off the packet. */
return (mac[RCTL] & E1000_RCTL_SECRC) ? 0 : 4;
}
static inline void
e1000x_update_regs_on_link_down(uint32_t *mac, uint16_t *phy)
{
mac[STATUS] &= ~E1000_STATUS_LU;
phy[PHY_STATUS] &= ~MII_SR_LINK_STATUS;
phy[PHY_STATUS] &= ~MII_SR_AUTONEG_COMPLETE;
phy[PHY_LP_ABILITY] &= ~MII_LPAR_LPACK;
}
static inline void
e1000x_update_regs_on_link_up(uint32_t *mac, uint16_t *phy)
{
mac[STATUS] |= E1000_STATUS_LU;
phy[PHY_STATUS] |= MII_SR_LINK_STATUS;
}
void e1000x_update_rx_total_stats(uint32_t *mac,
size_t data_size,
size_t data_fcs_size);
void e1000x_core_prepare_eeprom(uint16_t *eeprom,
const uint16_t *templ,
uint32_t templ_size,
uint16_t dev_id,
const uint8_t *macaddr);
uint32_t e1000x_rxbufsize(uint32_t rctl);
bool e1000x_rx_ready(PCIDevice *d, uint32_t *mac);
bool e1000x_is_vlan_packet(const uint8_t *buf, uint16_t vet);
bool e1000x_rx_group_filter(uint32_t *mac, const uint8_t *buf);
bool e1000x_hw_rx_enabled(uint32_t *mac);
bool e1000x_is_oversized(uint32_t *mac, size_t size);
void e1000x_restart_autoneg(uint32_t *mac, uint16_t *phy, QEMUTimer *timer);
void e1000x_reset_mac_addr(NICState *nic, uint32_t *mac_regs,
uint8_t *mac_addr);
void e1000x_update_regs_on_autoneg_done(uint32_t *mac, uint16_t *phy);
void e1000x_increase_size_stats(uint32_t *mac, const int *size_regs, int size);
typedef struct e1000x_txd_props {
unsigned char sum_needed;
uint8_t ipcss;
uint8_t ipcso;
uint16_t ipcse;
uint8_t tucss;
uint8_t tucso;
uint16_t tucse;
uint32_t paylen;
uint8_t hdr_len;
uint16_t mss;
int8_t ip;
int8_t tcp;
bool tse;
bool cptse;
} e1000x_txd_props;
void e1000x_read_tx_ctx_descr(struct e1000_context_desc *d,
e1000x_txd_props *props);

View File

@ -1954,3 +1954,16 @@ net_rx_pkt_rss_ip6(void) "Calculating IPv6 RSS hash"
net_rx_pkt_rss_ip6_ex(void) "Calculating IPv6/EX RSS hash" net_rx_pkt_rss_ip6_ex(void) "Calculating IPv6/EX RSS hash"
net_rx_pkt_rss_hash(size_t rss_length, uint32_t rss_hash) "RSS hash for %zu bytes: 0x%X" net_rx_pkt_rss_hash(size_t rss_length, uint32_t rss_hash) "RSS hash for %zu bytes: 0x%X"
net_rx_pkt_rss_add_chunk(void* ptr, size_t size, size_t input_offset) "Add RSS chunk %p, %zu bytes, RSS input offset %zu bytes" net_rx_pkt_rss_add_chunk(void* ptr, size_t size, size_t input_offset) "Add RSS chunk %p, %zu bytes, RSS input offset %zu bytes"
# hw/net/e1000x_common.c
e1000x_rx_can_recv_disabled(bool link_up, bool rx_enabled, bool pci_master) "link_up: %d, rx_enabled %d, pci_master %d"
e1000x_vlan_is_vlan_pkt(bool is_vlan_pkt, uint16_t eth_proto, uint16_t vet) "Is VLAN packet: %d, ETH proto: 0x%X, VET: 0x%X"
e1000x_rx_flt_ucast_match(uint32_t idx, uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x"
e1000x_rx_flt_ucast_mismatch(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x"
e1000x_rx_flt_inexact_mismatch(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5, uint32_t mo, uint32_t mta, uint32_t mta_val) "inexact mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x"
e1000x_rx_link_down(uint32_t status_reg) "Received packet dropped because the link is down STATUS = %u"
e1000x_rx_disabled(uint32_t rctl_reg) "Received packet dropped because receive is disabled RCTL = %u"
e1000x_rx_oversized(size_t size) "Received packet dropped because it was oversized (%zu bytes)"
e1000x_mac_indicate(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3, uint8_t b4, uint8_t b5) "Indicating MAC to guest: %02x:%02x:%02x:%02x:%02x:%02x"
e1000x_link_negotiation_start(void) "Start link auto negotiation"
e1000x_link_negotiation_done(void) "Auto negotiation is completed"