VMware 4 disk images support

git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@927 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
bellard 2004-06-16 20:34:33 +00:00
parent dbda808a4a
commit 05efe46eaa
3 changed files with 169 additions and 62 deletions

View File

@ -574,6 +574,14 @@ Since holes are used, the displayed size of the COW disk image is not
the real one. To know it, use the @code{ls -ls} command. the real one. To know it, use the @code{ls -ls} command.
@end enumerate @end enumerate
@subsection Convert VMware disk images to raw disk images
You can use the tool @file{vmdk2raw} to convert VMware disk images to
raw disk images directly usable by QEMU. The syntax is:
@example
vmdk2raw vmware_image output_image
@end example
@section Network emulation @section Network emulation
QEMU simulates up to 6 networks cards (NE2000 boards). Each card can QEMU simulates up to 6 networks cards (NE2000 boards). Each card can

24
vmdk.h
View File

@ -32,12 +32,11 @@
struct cowdisk_header struct cowdisk_header
{ {
char magic[4]; /* COWD */
uint32_t version; uint32_t version;
uint32_t flags; uint32_t flags;
uint32_t disk_sectors; uint32_t disk_sectors;
uint32_t granularity; uint32_t granularity;
uint32_t l1dir_sector; uint32_t l1dir_offset;
uint32_t l1dir_size; uint32_t l1dir_size;
uint32_t file_sectors; uint32_t file_sectors;
uint32_t cylinders; uint32_t cylinders;
@ -50,3 +49,24 @@ struct cowdisk_header2
uint32_t parent_ts; uint32_t parent_ts;
uint32_t timestamp; uint32_t timestamp;
}; };
/* based on vdk 3.1 10-11-2003 by Ken Kato */
struct vmdisk_header
{
uint32_t version;
uint32_t flags;
int64_t capacity;
int64_t granularity;
int64_t desc_offset;
int64_t desc_size;
int32_t num_gtes_per_gte;
int64_t rgd_offset;
int64_t gd_offset;
int64_t grain_offset;
char filler[1];
char check_bytes[4];
};

View File

@ -30,131 +30,210 @@
#include "vmdk.h" #include "vmdk.h"
#include "config-host.h" #include "config-host.h"
struct cowdisk_header header; static struct cowdisk_header header;
struct cowdisk_header2 header2; static struct vmdisk_header header4;
off_t disk_base, disk_limit; static off64_t disk_limit;
unsigned int granule_size; static unsigned int granule_size;
uint32_t l1dir[L1_SIZE]; static uint32_t *l1dir;
unsigned int cached_l2dir; static unsigned int cached_l2dir;
uint32_t l2dir[L2_SIZE]; static uint32_t l2dir[L2_SIZE];
size_t read_physical(int fd, off64_t offset, size_t length, void *buffer) static struct vmdk_prm {
uint32_t grain_table_size;
uint32_t sectors_per_grain;
uint32_t sectors_per_table;
uint32_t directory_size;
} vdsk;
static size_t read_physical(int fd, off64_t offset, size_t length, void *buffer)
{ {
size_t n; size_t n;
if (lseek64(fd, offset, SEEK_SET) == -1) if (lseek64(fd, offset, SEEK_SET) == -1) {
{ printf(" error trying to seek lseek to %lld", offset);
perror("lseek");
return -1; return -1;
} }
n = read(fd, buffer, length); n = read(fd, buffer, length);
if (n == -1)
{ if (n == -1) {
perror("read from disk"); printf("read from disk %lld", offset);
return -1; return -1;
} }
return n; return n;
} }
size_t copy_virtual(int in_fd, int out_fd, off64_t offset, void *buffer, size_t length) static int read_l1dir(int fd, size_t offset, int num)
{ {
unsigned int granule_index, granule_offset; l1dir = malloc(sizeof(*l1dir) * num);
unsigned int l1index, l2index; if (!l1dir)
return -1;
return read_physical(fd, offset << SECTOR_BITS, sizeof(*l1dir) * num, (char *)l1dir) != (sizeof(*l1dir) * num);
}
granule_index = offset / granule_size; static int read_l2dir(int fd, size_t offset, int num)
{
return read_physical(fd, offset << SECTOR_BITS, sizeof(l2dir[0]) * num, (char *)l2dir) != sizeof(l2dir);
}
static size_t copy_virtual(struct vmdk_prm *dsk, int in_fd, int out_fd, off64_t offset, void *buffer, size_t length)
{
unsigned int granule_offset;
unsigned int grain_index;
unsigned int sector_map_idx;
granule_offset = offset % granule_size; granule_offset = offset % granule_size;
length = MIN(length, granule_size - granule_offset); length = MIN(length, granule_size - granule_offset);
length = MIN(length, disk_limit - offset); length = MIN(length, disk_limit - offset);
l1index = (granule_index >> L2_BITS) & L1_MASK; sector_map_idx = (offset >> SECTOR_BITS) / dsk->sectors_per_table;
l2index = granule_index & L2_MASK;
if (sector_map_idx >= dsk->directory_size) {
if (l1dir[l1index] == 0) fprintf(stderr, "cannot locate grain table for %d in %d\n", sector_map_idx, dsk->directory_size);
goto zero_fill; return -1;
if (l1index != cached_l2dir)
{
if (read_physical(in_fd, (l1dir[l1index] << SECTOR_BITS), sizeof(l2dir), (char *)l2dir) != sizeof(l2dir))
return 0;
cached_l2dir = l1index;
} }
if (l2dir[l2index] == 0) if (l1dir[sector_map_idx] == 0)
goto zero_fill;
if (sector_map_idx != cached_l2dir) {
if (read_l2dir(in_fd, l1dir[sector_map_idx], dsk->grain_table_size)) {
fprintf(stderr, "read failed\n");
return -1;
}
cached_l2dir = sector_map_idx;
}
grain_index = ((offset >> SECTOR_BITS) % dsk->sectors_per_table) / dsk->sectors_per_grain;
if (grain_index >= dsk->grain_table_size) {
fprintf(stderr, "grain to large");
return -1;
}
if (l2dir[grain_index] == 0)
goto zero_fill; goto zero_fill;
if (read_physical(in_fd, (l2dir[l2index] << SECTOR_BITS) + granule_offset, length, buffer) != length) if (read_physical(in_fd, (l2dir[grain_index] << SECTOR_BITS) + granule_offset, length, buffer) != length) {
return 0; fprintf(stderr, "read error 2\n");
return -1;
}
write(out_fd, buffer, length); write(out_fd, buffer, length);
return length; return length;
zero_fill: zero_fill:
/* the last chunk of the file can not be sparse /* the last chunk of the file can not be sparse
* or the file will be truncated */ * or the file will be truncated */
if (offset + length < disk_limit) { if (offset + length >= disk_limit) {
memset(buffer, 0, length); if (lseek64(out_fd, length-1, SEEK_CUR) == (off_t)-1)
write(out_fd, buffer, length); perror("lseek");
/* write the last NULL byte instead of seeking */
const char nil = 0;
write(out_fd, &nil, 1);
} else { } else {
if (lseek(out_fd, length, SEEK_CUR) == (off_t)-1) if (lseek64(out_fd, length, SEEK_CUR) == (off_t)-1)
perror("lseek"); perror("lseek");
} }
return length; return length;
} }
static int open_vmdk4(int fd)
int open_vmdk(const char *filename)
{ {
int fd = open(filename, O_RDONLY | O_LARGEFILE); if (read(fd, &header4, sizeof(header4)) != sizeof(header4)) {
if (fd == -1)
{
perror(filename);
return -1;
}
if (read(fd, &header, sizeof(header)) != sizeof(header))
{
perror("read from disk"); perror("read from disk");
return -1; return -1;
} }
granule_size = header4.granularity << SECTOR_BITS;
disk_limit = header4.capacity << SECTOR_BITS;
cached_l2dir = -1;
vdsk.grain_table_size = header4.num_gtes_per_gte;
vdsk.sectors_per_grain = header4.granularity;
vdsk.sectors_per_table = vdsk.grain_table_size * vdsk.sectors_per_grain;
vdsk.directory_size = (header4.capacity + vdsk.sectors_per_table - 1) / vdsk.sectors_per_table + 1;
if (memcmp(header.magic, "COWD", 4) != 0) if (read_l1dir(fd, header4.rgd_offset, vdsk.directory_size))
{ return -1;
fprintf(stderr, "%s is not a VMware virtual disk image\n", filename);
return 0;
}
static int open_vmdk3(int fd)
{
if (read(fd, &header, sizeof(header)) != sizeof(header)) {
perror("read from disk\n");
return -1; return -1;
} }
granule_size = header.granularity << SECTOR_BITS; granule_size = header.granularity << SECTOR_BITS;
if (read_physical(fd, header.l1dir_sector << SECTOR_BITS, sizeof(l1dir), (char *)l1dir) != sizeof(l1dir)) vdsk.sectors_per_grain = header.granularity;
vdsk.grain_table_size = L2_SIZE;
vdsk.sectors_per_table = vdsk.grain_table_size * vdsk.sectors_per_grain;
vdsk.directory_size = L1_SIZE;
if (read_l1dir(fd, header.l1dir_offset, L1_SIZE))
return -1; return -1;
disk_limit = header.disk_sectors << SECTOR_BITS; disk_limit = header.disk_sectors << SECTOR_BITS;
return fd;
}
static int open_vmdk(const char *filename)
{
int fd = open(filename, O_RDONLY | O_LARGEFILE);
if (fd == -1) {
perror(filename);
return -1;
}
char magic[4];
if (read(fd, &magic, sizeof(magic)) != sizeof(magic)) {
perror("read from disk");
return -1;
}
if (!memcmp(magic, "KDMV", sizeof(magic))) {
open_vmdk4(fd);
} else if (!memcmp(magic, "COWD", sizeof(magic))) {
open_vmdk3(fd);
} else {
fprintf(stderr, "%s is not a VMware virtual disk image\n", filename);
return -1;
}
cached_l2dir = -1; cached_l2dir = -1;
return fd; return fd;
} }
void help(void) static void help(void)
{ {
printf("vmdk2raw\n" printf("vmdk2raw\n"
"usage: vmdk2raw vmware_image output_image\n" "usage: vmdk2raw vmware_image output_image\n"
"\n" "\n"
"vmware_image a vmware 2.x/3.x cow image\n" "vmware_image a vmware cow image\n"
"output_image the created disk image\n" "output_image the created disk image\n"
); );
exit(1); exit(1);
} }
#define BUF_SIZE granule_size #define BUF_SIZE 0x10000
void copy_disk(in_fd, out_fd) static void copy_disk(in_fd, out_fd)
{ {
char buf[BUF_SIZE]; char buf[BUF_SIZE];
off64_t i = 0; off64_t i = 0;
int ret;
while (i < disk_limit) { while (i < disk_limit) {
i += copy_virtual(in_fd, out_fd, i, buf, sizeof(buf)); ret = copy_virtual(&vdsk, in_fd, out_fd, i, buf, sizeof(buf));
if (ret < 0) {
fprintf(stderr, "copying failed\n");
exit(-1);
}
i += ret;
} }
} }
@ -170,7 +249,7 @@ int main(int argc, char **argv)
return -1; return -1;
} }
out_fd = open(argv[2], O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR); out_fd = open(argv[2], O_WRONLY | O_LARGEFILE | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR);
if (out_fd < 0) { if (out_fd < 0) {
perror(argv[2]); perror(argv[2]);
return -1; return -1;