2014-02-05 21:27:27 +04:00
|
|
|
// Copyright 2013, ARM Limited
|
|
|
|
// All rights reserved.
|
|
|
|
//
|
|
|
|
// Redistribution and use in source and binary forms, with or without
|
|
|
|
// modification, are permitted provided that the following conditions are met:
|
|
|
|
//
|
|
|
|
// * Redistributions of source code must retain the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer.
|
|
|
|
// * Redistributions in binary form must reproduce the above copyright notice,
|
|
|
|
// this list of conditions and the following disclaimer in the documentation
|
|
|
|
// and/or other materials provided with the distribution.
|
|
|
|
// * Neither the name of ARM Limited nor the names of its contributors may be
|
|
|
|
// used to endorse or promote products derived from this software without
|
|
|
|
// specific prior written permission.
|
|
|
|
//
|
|
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
|
|
|
|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
|
|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
|
|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
|
|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
|
|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
|
|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
|
|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
|
|
|
#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
|
|
|
|
#define VIXL_A64_INSTRUCTIONS_A64_H_
|
|
|
|
|
|
|
|
#include "globals.h"
|
|
|
|
#include "utils.h"
|
|
|
|
#include "a64/constants-a64.h"
|
|
|
|
|
|
|
|
namespace vixl {
|
|
|
|
// ISA constants. --------------------------------------------------------------
|
|
|
|
|
|
|
|
typedef uint32_t Instr;
|
|
|
|
const unsigned kInstructionSize = 4;
|
|
|
|
const unsigned kInstructionSizeLog2 = 2;
|
|
|
|
const unsigned kLiteralEntrySize = 4;
|
|
|
|
const unsigned kLiteralEntrySizeLog2 = 2;
|
|
|
|
const unsigned kMaxLoadLiteralRange = 1 * MBytes;
|
|
|
|
|
|
|
|
const unsigned kWRegSize = 32;
|
|
|
|
const unsigned kWRegSizeLog2 = 5;
|
|
|
|
const unsigned kWRegSizeInBytes = kWRegSize / 8;
|
2014-05-13 19:09:35 +04:00
|
|
|
const unsigned kWRegSizeInBytesLog2 = kWRegSizeLog2 - 3;
|
2014-02-05 21:27:27 +04:00
|
|
|
const unsigned kXRegSize = 64;
|
|
|
|
const unsigned kXRegSizeLog2 = 6;
|
|
|
|
const unsigned kXRegSizeInBytes = kXRegSize / 8;
|
2014-05-13 19:09:35 +04:00
|
|
|
const unsigned kXRegSizeInBytesLog2 = kXRegSizeLog2 - 3;
|
2014-02-05 21:27:27 +04:00
|
|
|
const unsigned kSRegSize = 32;
|
|
|
|
const unsigned kSRegSizeLog2 = 5;
|
|
|
|
const unsigned kSRegSizeInBytes = kSRegSize / 8;
|
2014-05-13 19:09:35 +04:00
|
|
|
const unsigned kSRegSizeInBytesLog2 = kSRegSizeLog2 - 3;
|
2014-02-05 21:27:27 +04:00
|
|
|
const unsigned kDRegSize = 64;
|
|
|
|
const unsigned kDRegSizeLog2 = 6;
|
|
|
|
const unsigned kDRegSizeInBytes = kDRegSize / 8;
|
2014-05-13 19:09:35 +04:00
|
|
|
const unsigned kDRegSizeInBytesLog2 = kDRegSizeLog2 - 3;
|
|
|
|
const uint64_t kWRegMask = UINT64_C(0xffffffff);
|
|
|
|
const uint64_t kXRegMask = UINT64_C(0xffffffffffffffff);
|
|
|
|
const uint64_t kSRegMask = UINT64_C(0xffffffff);
|
|
|
|
const uint64_t kDRegMask = UINT64_C(0xffffffffffffffff);
|
|
|
|
const uint64_t kSSignMask = UINT64_C(0x80000000);
|
|
|
|
const uint64_t kDSignMask = UINT64_C(0x8000000000000000);
|
|
|
|
const uint64_t kWSignMask = UINT64_C(0x80000000);
|
|
|
|
const uint64_t kXSignMask = UINT64_C(0x8000000000000000);
|
|
|
|
const uint64_t kByteMask = UINT64_C(0xff);
|
|
|
|
const uint64_t kHalfWordMask = UINT64_C(0xffff);
|
|
|
|
const uint64_t kWordMask = UINT64_C(0xffffffff);
|
|
|
|
const uint64_t kXMaxUInt = UINT64_C(0xffffffffffffffff);
|
|
|
|
const uint64_t kWMaxUInt = UINT64_C(0xffffffff);
|
|
|
|
const int64_t kXMaxInt = INT64_C(0x7fffffffffffffff);
|
|
|
|
const int64_t kXMinInt = INT64_C(0x8000000000000000);
|
|
|
|
const int32_t kWMaxInt = INT32_C(0x7fffffff);
|
|
|
|
const int32_t kWMinInt = INT32_C(0x80000000);
|
2014-02-05 21:27:27 +04:00
|
|
|
const unsigned kLinkRegCode = 30;
|
|
|
|
const unsigned kZeroRegCode = 31;
|
|
|
|
const unsigned kSPRegInternalCode = 63;
|
|
|
|
const unsigned kRegCodeMask = 0x1f;
|
|
|
|
|
|
|
|
// AArch64 floating-point specifics. These match IEEE-754.
|
|
|
|
const unsigned kDoubleMantissaBits = 52;
|
|
|
|
const unsigned kDoubleExponentBits = 11;
|
|
|
|
const unsigned kFloatMantissaBits = 23;
|
|
|
|
const unsigned kFloatExponentBits = 8;
|
|
|
|
|
|
|
|
const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
|
|
|
|
const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
|
2014-05-13 19:09:35 +04:00
|
|
|
const double kFP64PositiveInfinity =
|
|
|
|
rawbits_to_double(UINT64_C(0x7ff0000000000000));
|
|
|
|
const double kFP64NegativeInfinity =
|
|
|
|
rawbits_to_double(UINT64_C(0xfff0000000000000));
|
2014-02-05 21:27:27 +04:00
|
|
|
|
|
|
|
// This value is a signalling NaN as both a double and as a float (taking the
|
|
|
|
// least-significant word).
|
2014-05-13 19:09:35 +04:00
|
|
|
static const double kFP64SignallingNaN =
|
|
|
|
rawbits_to_double(UINT64_C(0x7ff000007f800001));
|
2014-02-05 21:27:27 +04:00
|
|
|
static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
|
|
|
|
|
|
|
|
// A similar value, but as a quiet NaN.
|
2014-05-13 19:09:35 +04:00
|
|
|
static const double kFP64QuietNaN =
|
|
|
|
rawbits_to_double(UINT64_C(0x7ff800007fc00001));
|
2014-02-05 21:27:27 +04:00
|
|
|
static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
|
|
|
|
|
2014-05-13 19:09:35 +04:00
|
|
|
// The default NaN values (for FPCR.DN=1).
|
|
|
|
static const double kFP64DefaultNaN =
|
|
|
|
rawbits_to_double(UINT64_C(0x7ff8000000000000));
|
|
|
|
static const float kFP32DefaultNaN = rawbits_to_float(0x7fc00000);
|
|
|
|
|
|
|
|
|
2014-02-05 21:27:27 +04:00
|
|
|
enum LSDataSize {
|
|
|
|
LSByte = 0,
|
|
|
|
LSHalfword = 1,
|
|
|
|
LSWord = 2,
|
|
|
|
LSDoubleWord = 3
|
|
|
|
};
|
|
|
|
|
|
|
|
LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
|
|
|
|
|
|
|
|
enum ImmBranchType {
|
|
|
|
UnknownBranchType = 0,
|
|
|
|
CondBranchType = 1,
|
|
|
|
UncondBranchType = 2,
|
|
|
|
CompareBranchType = 3,
|
|
|
|
TestBranchType = 4
|
|
|
|
};
|
|
|
|
|
|
|
|
enum AddrMode {
|
|
|
|
Offset,
|
|
|
|
PreIndex,
|
|
|
|
PostIndex
|
|
|
|
};
|
|
|
|
|
|
|
|
enum FPRounding {
|
|
|
|
// The first four values are encodable directly by FPCR<RMode>.
|
|
|
|
FPTieEven = 0x0,
|
|
|
|
FPPositiveInfinity = 0x1,
|
|
|
|
FPNegativeInfinity = 0x2,
|
|
|
|
FPZero = 0x3,
|
|
|
|
|
|
|
|
// The final rounding mode is only available when explicitly specified by the
|
|
|
|
// instruction (such as with fcvta). It cannot be set in FPCR.
|
|
|
|
FPTieAway
|
|
|
|
};
|
|
|
|
|
|
|
|
enum Reg31Mode {
|
|
|
|
Reg31IsStackPointer,
|
|
|
|
Reg31IsZeroRegister
|
|
|
|
};
|
|
|
|
|
|
|
|
// Instructions. ---------------------------------------------------------------
|
|
|
|
|
|
|
|
class Instruction {
|
|
|
|
public:
|
|
|
|
inline Instr InstructionBits() const {
|
|
|
|
return *(reinterpret_cast<const Instr*>(this));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void SetInstructionBits(Instr new_instr) {
|
|
|
|
*(reinterpret_cast<Instr*>(this)) = new_instr;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int Bit(int pos) const {
|
|
|
|
return (InstructionBits() >> pos) & 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline uint32_t Bits(int msb, int lsb) const {
|
|
|
|
return unsigned_bitextract_32(msb, lsb, InstructionBits());
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int32_t SignedBits(int msb, int lsb) const {
|
|
|
|
int32_t bits = *(reinterpret_cast<const int32_t*>(this));
|
|
|
|
return signed_bitextract_32(msb, lsb, bits);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Instr Mask(uint32_t mask) const {
|
|
|
|
return InstructionBits() & mask;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
|
|
|
|
inline int64_t Name() const { return Func(HighBit, LowBit); }
|
|
|
|
INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
|
|
|
|
#undef DEFINE_GETTER
|
|
|
|
|
|
|
|
// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
|
|
|
|
// formed from ImmPCRelLo and ImmPCRelHi.
|
|
|
|
int ImmPCRel() const {
|
|
|
|
int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
|
|
|
|
int const width = ImmPCRelLo_width + ImmPCRelHi_width;
|
|
|
|
return signed_bitextract_32(width-1, 0, offset);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t ImmLogical();
|
|
|
|
float ImmFP32();
|
|
|
|
double ImmFP64();
|
|
|
|
|
|
|
|
inline LSDataSize SizeLSPair() const {
|
|
|
|
return CalcLSPairDataSize(
|
|
|
|
static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// Helpers.
|
|
|
|
inline bool IsCondBranchImm() const {
|
|
|
|
return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsUncondBranchImm() const {
|
|
|
|
return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsCompareBranch() const {
|
|
|
|
return Mask(CompareBranchFMask) == CompareBranchFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsTestBranch() const {
|
|
|
|
return Mask(TestBranchFMask) == TestBranchFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsPCRelAddressing() const {
|
|
|
|
return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsLogicalImmediate() const {
|
|
|
|
return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsAddSubImmediate() const {
|
|
|
|
return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsAddSubExtended() const {
|
|
|
|
return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsLoadOrStore() const {
|
|
|
|
return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool IsMovn() const {
|
|
|
|
return (Mask(MoveWideImmediateMask) == MOVN_x) ||
|
|
|
|
(Mask(MoveWideImmediateMask) == MOVN_w);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Indicate whether Rd can be the stack pointer or the zero register. This
|
|
|
|
// does not check that the instruction actually has an Rd field.
|
|
|
|
inline Reg31Mode RdMode() const {
|
|
|
|
// The following instructions use sp or wsp as Rd:
|
|
|
|
// Add/sub (immediate) when not setting the flags.
|
|
|
|
// Add/sub (extended) when not setting the flags.
|
|
|
|
// Logical (immediate) when not setting the flags.
|
|
|
|
// Otherwise, r31 is the zero register.
|
|
|
|
if (IsAddSubImmediate() || IsAddSubExtended()) {
|
|
|
|
if (Mask(AddSubSetFlagsBit)) {
|
|
|
|
return Reg31IsZeroRegister;
|
|
|
|
} else {
|
|
|
|
return Reg31IsStackPointer;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (IsLogicalImmediate()) {
|
|
|
|
// Of the logical (immediate) instructions, only ANDS (and its aliases)
|
|
|
|
// can set the flags. The others can all write into sp.
|
|
|
|
// Note that some logical operations are not available to
|
|
|
|
// immediate-operand instructions, so we have to combine two masks here.
|
|
|
|
if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
|
|
|
|
return Reg31IsZeroRegister;
|
|
|
|
} else {
|
|
|
|
return Reg31IsStackPointer;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
return Reg31IsZeroRegister;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Indicate whether Rn can be the stack pointer or the zero register. This
|
|
|
|
// does not check that the instruction actually has an Rn field.
|
|
|
|
inline Reg31Mode RnMode() const {
|
|
|
|
// The following instructions use sp or wsp as Rn:
|
|
|
|
// All loads and stores.
|
|
|
|
// Add/sub (immediate).
|
|
|
|
// Add/sub (extended).
|
|
|
|
// Otherwise, r31 is the zero register.
|
|
|
|
if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
|
|
|
|
return Reg31IsStackPointer;
|
|
|
|
}
|
|
|
|
return Reg31IsZeroRegister;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline ImmBranchType BranchType() const {
|
|
|
|
if (IsCondBranchImm()) {
|
|
|
|
return CondBranchType;
|
|
|
|
} else if (IsUncondBranchImm()) {
|
|
|
|
return UncondBranchType;
|
|
|
|
} else if (IsCompareBranch()) {
|
|
|
|
return CompareBranchType;
|
|
|
|
} else if (IsTestBranch()) {
|
|
|
|
return TestBranchType;
|
|
|
|
} else {
|
|
|
|
return UnknownBranchType;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find the target of this instruction. 'this' may be a branch or a
|
|
|
|
// PC-relative addressing instruction.
|
|
|
|
Instruction* ImmPCOffsetTarget();
|
|
|
|
|
|
|
|
// Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
|
|
|
|
// a PC-relative addressing instruction.
|
|
|
|
void SetImmPCOffsetTarget(Instruction* target);
|
|
|
|
// Patch a literal load instruction to load from 'source'.
|
|
|
|
void SetImmLLiteral(Instruction* source);
|
|
|
|
|
|
|
|
inline uint8_t* LiteralAddress() {
|
|
|
|
int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
|
|
|
|
return reinterpret_cast<uint8_t*>(this) + offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline uint32_t Literal32() {
|
|
|
|
uint32_t literal;
|
|
|
|
memcpy(&literal, LiteralAddress(), sizeof(literal));
|
|
|
|
|
|
|
|
return literal;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline uint64_t Literal64() {
|
|
|
|
uint64_t literal;
|
|
|
|
memcpy(&literal, LiteralAddress(), sizeof(literal));
|
|
|
|
|
|
|
|
return literal;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline float LiteralFP32() {
|
|
|
|
return rawbits_to_float(Literal32());
|
|
|
|
}
|
|
|
|
|
|
|
|
inline double LiteralFP64() {
|
|
|
|
return rawbits_to_double(Literal64());
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Instruction* NextInstruction() {
|
|
|
|
return this + kInstructionSize;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline Instruction* InstructionAtOffset(int64_t offset) {
|
2014-05-13 19:09:35 +04:00
|
|
|
VIXL_ASSERT(IsWordAligned(this + offset));
|
2014-02-05 21:27:27 +04:00
|
|
|
return this + offset;
|
|
|
|
}
|
|
|
|
|
|
|
|
template<typename T> static inline Instruction* Cast(T src) {
|
|
|
|
return reinterpret_cast<Instruction*>(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
inline int ImmBranch() const;
|
|
|
|
|
|
|
|
void SetPCRelImmTarget(Instruction* target);
|
|
|
|
void SetBranchImmTarget(Instruction* target);
|
|
|
|
};
|
|
|
|
} // namespace vixl
|
|
|
|
|
|
|
|
#endif // VIXL_A64_INSTRUCTIONS_A64_H_
|