qemu/target/riscv/fpu_helper.c

762 lines
22 KiB
C
Raw Normal View History

/*
* RISC-V FPU Emulation Helpers for QEMU.
*
* Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/host-utils.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "internals.h"
target_ulong riscv_cpu_get_fflags(CPURISCVState *env)
{
int soft = get_float_exception_flags(&env->fp_status);
target_ulong hard = 0;
hard |= (soft & float_flag_inexact) ? FPEXC_NX : 0;
hard |= (soft & float_flag_underflow) ? FPEXC_UF : 0;
hard |= (soft & float_flag_overflow) ? FPEXC_OF : 0;
hard |= (soft & float_flag_divbyzero) ? FPEXC_DZ : 0;
hard |= (soft & float_flag_invalid) ? FPEXC_NV : 0;
return hard;
}
void riscv_cpu_set_fflags(CPURISCVState *env, target_ulong hard)
{
int soft = 0;
soft |= (hard & FPEXC_NX) ? float_flag_inexact : 0;
soft |= (hard & FPEXC_UF) ? float_flag_underflow : 0;
soft |= (hard & FPEXC_OF) ? float_flag_overflow : 0;
soft |= (hard & FPEXC_DZ) ? float_flag_divbyzero : 0;
soft |= (hard & FPEXC_NV) ? float_flag_invalid : 0;
set_float_exception_flags(soft, &env->fp_status);
}
void helper_set_rounding_mode(CPURISCVState *env, uint32_t rm)
{
int softrm;
if (rm == RISCV_FRM_DYN) {
rm = env->frm;
}
switch (rm) {
case RISCV_FRM_RNE:
softrm = float_round_nearest_even;
break;
case RISCV_FRM_RTZ:
softrm = float_round_to_zero;
break;
case RISCV_FRM_RDN:
softrm = float_round_down;
break;
case RISCV_FRM_RUP:
softrm = float_round_up;
break;
case RISCV_FRM_RMM:
softrm = float_round_ties_away;
break;
default:
riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
}
set_float_rounding_mode(softrm, &env->fp_status);
}
void helper_set_rounding_mode_chkfrm(CPURISCVState *env, uint32_t rm)
{
int softrm;
/* Always validate frm, even if rm != DYN. */
if (unlikely(env->frm >= 5)) {
riscv_raise_exception(env, RISCV_EXCP_ILLEGAL_INST, GETPC());
}
if (rm == RISCV_FRM_DYN) {
rm = env->frm;
}
switch (rm) {
case RISCV_FRM_RNE:
softrm = float_round_nearest_even;
break;
case RISCV_FRM_RTZ:
softrm = float_round_to_zero;
break;
case RISCV_FRM_RDN:
softrm = float_round_down;
break;
case RISCV_FRM_RUP:
softrm = float_round_up;
break;
case RISCV_FRM_RMM:
softrm = float_round_ties_away;
break;
case RISCV_FRM_ROD:
softrm = float_round_to_odd;
break;
default:
g_assert_not_reached();
}
set_float_rounding_mode(softrm, &env->fp_status);
}
static uint64_t do_fmadd_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2,
uint64_t rs3, int flags)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
float16 frs3 = check_nanbox_h(env, rs3);
return nanbox_h(env, float16_muladd(frs1, frs2, frs3, flags,
&env->fp_status));
}
static uint64_t do_fmadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2,
uint64_t rs3, int flags)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
float32 frs3 = check_nanbox_s(env, rs3);
return nanbox_s(env, float32_muladd(frs1, frs2, frs3, flags,
&env->fp_status));
}
uint64_t helper_fmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_s(env, frs1, frs2, frs3, 0);
}
uint64_t helper_fmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return float64_muladd(frs1, frs2, frs3, 0, &env->fp_status);
}
uint64_t helper_fmadd_h(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_h(env, frs1, frs2, frs3, 0);
}
uint64_t helper_fmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_c);
}
uint64_t helper_fmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c,
&env->fp_status);
}
uint64_t helper_fmsub_h(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_h(env, frs1, frs2, frs3, float_muladd_negate_c);
}
uint64_t helper_fnmsub_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_s(env, frs1, frs2, frs3, float_muladd_negate_product);
}
uint64_t helper_fnmsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_product,
&env->fp_status);
}
uint64_t helper_fnmsub_h(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_h(env, frs1, frs2, frs3, float_muladd_negate_product);
}
uint64_t helper_fnmadd_s(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_s(env, frs1, frs2, frs3,
float_muladd_negate_c | float_muladd_negate_product);
}
uint64_t helper_fnmadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return float64_muladd(frs1, frs2, frs3, float_muladd_negate_c |
float_muladd_negate_product, &env->fp_status);
}
uint64_t helper_fnmadd_h(CPURISCVState *env, uint64_t frs1, uint64_t frs2,
uint64_t frs3)
{
return do_fmadd_h(env, frs1, frs2, frs3,
float_muladd_negate_c | float_muladd_negate_product);
}
uint64_t helper_fadd_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, float32_add(frs1, frs2, &env->fp_status));
}
uint64_t helper_fsub_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, float32_sub(frs1, frs2, &env->fp_status));
}
uint64_t helper_fmul_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, float32_mul(frs1, frs2, &env->fp_status));
}
uint64_t helper_fdiv_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, float32_div(frs1, frs2, &env->fp_status));
}
uint64_t helper_fmin_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, env->priv_ver < PRIV_VERSION_1_11_0 ?
float32_minnum(frs1, frs2, &env->fp_status) :
float32_minimum_number(frs1, frs2, &env->fp_status));
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fminm_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
float32 ret = float32_min(frs1, frs2, &env->fp_status);
return nanbox_s(env, ret);
}
uint64_t helper_fmax_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return nanbox_s(env, env->priv_ver < PRIV_VERSION_1_11_0 ?
float32_maxnum(frs1, frs2, &env->fp_status) :
float32_maximum_number(frs1, frs2, &env->fp_status));
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fmaxm_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
float32 ret = float32_max(frs1, frs2, &env->fp_status);
return nanbox_s(env, ret);
}
uint64_t helper_fsqrt_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return nanbox_s(env, float32_sqrt(frs1, &env->fp_status));
}
target_ulong helper_fle_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return float32_le(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fleq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return float32_le_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_flt_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return float32_lt(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fltq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return float32_lt_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_feq_s(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float32 frs1 = check_nanbox_s(env, rs1);
float32 frs2 = check_nanbox_s(env, rs2);
return float32_eq_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_fcvt_w_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return float32_to_int32(frs1, &env->fp_status);
}
target_ulong helper_fcvt_wu_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return (int32_t)float32_to_uint32(frs1, &env->fp_status);
}
target_ulong helper_fcvt_l_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return float32_to_int64(frs1, &env->fp_status);
}
target_ulong helper_fcvt_lu_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return float32_to_uint64(frs1, &env->fp_status);
}
uint64_t helper_fcvt_s_w(CPURISCVState *env, target_ulong rs1)
{
return nanbox_s(env, int32_to_float32((int32_t)rs1, &env->fp_status));
}
uint64_t helper_fcvt_s_wu(CPURISCVState *env, target_ulong rs1)
{
return nanbox_s(env, uint32_to_float32((uint32_t)rs1, &env->fp_status));
}
uint64_t helper_fcvt_s_l(CPURISCVState *env, target_ulong rs1)
{
return nanbox_s(env, int64_to_float32(rs1, &env->fp_status));
}
uint64_t helper_fcvt_s_lu(CPURISCVState *env, target_ulong rs1)
{
return nanbox_s(env, uint64_to_float32(rs1, &env->fp_status));
}
target_ulong helper_fclass_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return fclass_s(frs1);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fround_s(CPURISCVState *env, uint64_t rs1)
{
float_status *fs = &env->fp_status;
uint16_t nx_old = get_float_exception_flags(fs) & float_flag_inexact;
float32 frs1 = check_nanbox_s(env, rs1);
frs1 = float32_round_to_int(frs1, fs);
/* Restore the original NX flag. */
uint16_t flags = get_float_exception_flags(fs);
flags &= ~float_flag_inexact;
flags |= nx_old;
set_float_exception_flags(flags, fs);
return nanbox_s(env, frs1);
}
uint64_t helper_froundnx_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
frs1 = float32_round_to_int(frs1, &env->fp_status);
return nanbox_s(env, frs1);
}
uint64_t helper_fadd_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_add(frs1, frs2, &env->fp_status);
}
uint64_t helper_fsub_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_sub(frs1, frs2, &env->fp_status);
}
uint64_t helper_fmul_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_mul(frs1, frs2, &env->fp_status);
}
uint64_t helper_fdiv_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_div(frs1, frs2, &env->fp_status);
}
uint64_t helper_fmin_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return env->priv_ver < PRIV_VERSION_1_11_0 ?
float64_minnum(frs1, frs2, &env->fp_status) :
float64_minimum_number(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fminm_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_min(frs1, frs2, &env->fp_status);
}
uint64_t helper_fmax_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return env->priv_ver < PRIV_VERSION_1_11_0 ?
float64_maxnum(frs1, frs2, &env->fp_status) :
float64_maximum_number(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fmaxm_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_max(frs1, frs2, &env->fp_status);
}
uint64_t helper_fcvt_s_d(CPURISCVState *env, uint64_t rs1)
{
return nanbox_s(env, float64_to_float32(rs1, &env->fp_status));
}
uint64_t helper_fcvt_d_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return float32_to_float64(frs1, &env->fp_status);
}
uint64_t helper_fsqrt_d(CPURISCVState *env, uint64_t frs1)
{
return float64_sqrt(frs1, &env->fp_status);
}
target_ulong helper_fle_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_le(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fleq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_le_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_flt_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_lt(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fltq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_lt_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_feq_d(CPURISCVState *env, uint64_t frs1, uint64_t frs2)
{
return float64_eq_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_fcvt_w_d(CPURISCVState *env, uint64_t frs1)
{
return float64_to_int32(frs1, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fcvtmod_w_d(CPURISCVState *env, uint64_t value)
{
return float64_to_int32_modulo(value, float_round_to_zero, &env->fp_status);
}
target_ulong helper_fcvt_wu_d(CPURISCVState *env, uint64_t frs1)
{
return (int32_t)float64_to_uint32(frs1, &env->fp_status);
}
target_ulong helper_fcvt_l_d(CPURISCVState *env, uint64_t frs1)
{
return float64_to_int64(frs1, &env->fp_status);
}
target_ulong helper_fcvt_lu_d(CPURISCVState *env, uint64_t frs1)
{
return float64_to_uint64(frs1, &env->fp_status);
}
uint64_t helper_fcvt_d_w(CPURISCVState *env, target_ulong rs1)
{
return int32_to_float64((int32_t)rs1, &env->fp_status);
}
uint64_t helper_fcvt_d_wu(CPURISCVState *env, target_ulong rs1)
{
return uint32_to_float64((uint32_t)rs1, &env->fp_status);
}
uint64_t helper_fcvt_d_l(CPURISCVState *env, target_ulong rs1)
{
return int64_to_float64(rs1, &env->fp_status);
}
uint64_t helper_fcvt_d_lu(CPURISCVState *env, target_ulong rs1)
{
return uint64_to_float64(rs1, &env->fp_status);
}
target_ulong helper_fclass_d(uint64_t frs1)
{
return fclass_d(frs1);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fround_d(CPURISCVState *env, uint64_t frs1)
{
float_status *fs = &env->fp_status;
uint16_t nx_old = get_float_exception_flags(fs) & float_flag_inexact;
frs1 = float64_round_to_int(frs1, fs);
/* Restore the original NX flag. */
uint16_t flags = get_float_exception_flags(fs);
flags &= ~float_flag_inexact;
flags |= nx_old;
set_float_exception_flags(flags, fs);
return frs1;
}
uint64_t helper_froundnx_d(CPURISCVState *env, uint64_t frs1)
{
return float64_round_to_int(frs1, &env->fp_status);
}
uint64_t helper_fadd_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, float16_add(frs1, frs2, &env->fp_status));
}
uint64_t helper_fsub_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, float16_sub(frs1, frs2, &env->fp_status));
}
uint64_t helper_fmul_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, float16_mul(frs1, frs2, &env->fp_status));
}
uint64_t helper_fdiv_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, float16_div(frs1, frs2, &env->fp_status));
}
uint64_t helper_fmin_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, env->priv_ver < PRIV_VERSION_1_11_0 ?
float16_minnum(frs1, frs2, &env->fp_status) :
float16_minimum_number(frs1, frs2, &env->fp_status));
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fminm_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
float16 ret = float16_min(frs1, frs2, &env->fp_status);
return nanbox_h(env, ret);
}
uint64_t helper_fmax_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return nanbox_h(env, env->priv_ver < PRIV_VERSION_1_11_0 ?
float16_maxnum(frs1, frs2, &env->fp_status) :
float16_maximum_number(frs1, frs2, &env->fp_status));
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fmaxm_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
float16 ret = float16_max(frs1, frs2, &env->fp_status);
return nanbox_h(env, ret);
}
uint64_t helper_fsqrt_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return nanbox_h(env, float16_sqrt(frs1, &env->fp_status));
}
target_ulong helper_fle_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return float16_le(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fleq_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return float16_le_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_flt_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return float16_lt(frs1, frs2, &env->fp_status);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
target_ulong helper_fltq_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return float16_lt_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_feq_h(CPURISCVState *env, uint64_t rs1, uint64_t rs2)
{
float16 frs1 = check_nanbox_h(env, rs1);
float16 frs2 = check_nanbox_h(env, rs2);
return float16_eq_quiet(frs1, frs2, &env->fp_status);
}
target_ulong helper_fclass_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return fclass_h(frs1);
}
riscv: Add support for the Zfa extension This patch introduces the RISC-V Zfa extension, which introduces additional floating-point instructions: * fli (load-immediate) with pre-defined immediates * fminm/fmaxm (like fmin/fmax but with different NaN behaviour) * fround/froundmx (round to integer) * fcvtmod.w.d (Modular Convert-to-Integer) * fmv* to access high bits of float register bigger than XLEN * Quiet comparison instructions (fleq/fltq) Zfa defines its instructions in combination with the following extensions: * single-precision floating-point (F) * double-precision floating-point (D) * quad-precision floating-point (Q) * half-precision floating-point (Zfh) Since QEMU does not support the RISC-V quad-precision floating-point ISA extension (Q), this patch does not include the instructions that depend on this extension. All other instructions are included in this patch. The Zfa specification can be found here: https://github.com/riscv/riscv-isa-manual/blob/master/src/zfa.tex The Zfa specifciation is frozen and is in public review since May 3, 2023: https://groups.google.com/a/groups.riscv.org/g/isa-dev/c/SED4ntBkabg The patch also includes a TCG test for the fcvtmod.w.d instruction. The test cases test for correct results and flag behaviour. Note, that the Zfa specification requires fcvtmod's flag behaviour to be identical to a fcvt with the same operands (which is also tested). Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Christoph Müllner <christoph.muellner@vrull.eu> Message-Id: <20230710071243.282464-1-christoph.muellner@vrull.eu> Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-07-10 10:12:43 +03:00
uint64_t helper_fround_h(CPURISCVState *env, uint64_t rs1)
{
float_status *fs = &env->fp_status;
uint16_t nx_old = get_float_exception_flags(fs) & float_flag_inexact;
float16 frs1 = check_nanbox_h(env, rs1);
frs1 = float16_round_to_int(frs1, fs);
/* Restore the original NX flag. */
uint16_t flags = get_float_exception_flags(fs);
flags &= ~float_flag_inexact;
flags |= nx_old;
set_float_exception_flags(flags, fs);
return nanbox_h(env, frs1);
}
uint64_t helper_froundnx_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_s(env, rs1);
frs1 = float16_round_to_int(frs1, &env->fp_status);
return nanbox_h(env, frs1);
}
target_ulong helper_fcvt_w_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return float16_to_int32(frs1, &env->fp_status);
}
target_ulong helper_fcvt_wu_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return (int32_t)float16_to_uint32(frs1, &env->fp_status);
}
target_ulong helper_fcvt_l_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return float16_to_int64(frs1, &env->fp_status);
}
target_ulong helper_fcvt_lu_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return float16_to_uint64(frs1, &env->fp_status);
}
uint64_t helper_fcvt_h_w(CPURISCVState *env, target_ulong rs1)
{
return nanbox_h(env, int32_to_float16((int32_t)rs1, &env->fp_status));
}
uint64_t helper_fcvt_h_wu(CPURISCVState *env, target_ulong rs1)
{
return nanbox_h(env, uint32_to_float16((uint32_t)rs1, &env->fp_status));
}
uint64_t helper_fcvt_h_l(CPURISCVState *env, target_ulong rs1)
{
return nanbox_h(env, int64_to_float16(rs1, &env->fp_status));
}
uint64_t helper_fcvt_h_lu(CPURISCVState *env, target_ulong rs1)
{
return nanbox_h(env, uint64_to_float16(rs1, &env->fp_status));
}
uint64_t helper_fcvt_h_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return nanbox_h(env, float32_to_float16(frs1, true, &env->fp_status));
}
uint64_t helper_fcvt_s_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return nanbox_s(env, float16_to_float32(frs1, true, &env->fp_status));
}
uint64_t helper_fcvt_h_d(CPURISCVState *env, uint64_t rs1)
{
return nanbox_h(env, float64_to_float16(rs1, true, &env->fp_status));
}
uint64_t helper_fcvt_d_h(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return float16_to_float64(frs1, true, &env->fp_status);
}
uint64_t helper_fcvt_bf16_s(CPURISCVState *env, uint64_t rs1)
{
float32 frs1 = check_nanbox_s(env, rs1);
return nanbox_h(env, float32_to_bfloat16(frs1, &env->fp_status));
}
uint64_t helper_fcvt_s_bf16(CPURISCVState *env, uint64_t rs1)
{
float16 frs1 = check_nanbox_h(env, rs1);
return nanbox_s(env, bfloat16_to_float32(frs1, &env->fp_status));
}