qemu/target/s390x/tcg/mem_helper.c

2897 lines
84 KiB
C
Raw Normal View History

/*
* S/390 memory access helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "tcg_s390x.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "hw/core/tcg-cpu-ops.h"
#include "qemu/int128.h"
#include "qemu/atomic128.h"
#include "trace.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/s390x/storage-keys.h"
#include "hw/boards.h"
#endif
#ifdef CONFIG_USER_ONLY
# define user_or_likely(X) true
#else
# define user_or_likely(X) likely(X)
#endif
/*****************************************************************************/
/* Softmmu support */
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
static inline bool psw_key_valid(CPUS390XState *env, uint8_t psw_key)
{
uint16_t pkm = env->cregs[3] >> 16;
if (env->psw.mask & PSW_MASK_PSTATE) {
/* PSW key has range 0..15, it is valid if the bit is 1 in the PKM */
return pkm & (0x8000 >> psw_key);
}
return true;
}
static bool is_destructive_overlap(CPUS390XState *env, uint64_t dest,
uint64_t src, uint32_t len)
{
if (!len || src == dest) {
return false;
}
/* Take care of wrapping at the end of address space. */
if (unlikely(wrap_address(env, src + len - 1) < src)) {
return dest > src || dest <= wrap_address(env, src + len - 1);
}
return dest > src && dest <= src + len - 1;
}
/* Trigger a SPECIFICATION exception if an address or a length is not
naturally aligned. */
static inline void check_alignment(CPUS390XState *env, uint64_t v,
int wordsize, uintptr_t ra)
{
if (v % wordsize) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
}
/* Load a value from memory according to its size. */
static inline uint64_t cpu_ldusize_data_ra(CPUS390XState *env, uint64_t addr,
int wordsize, uintptr_t ra)
{
switch (wordsize) {
case 1:
return cpu_ldub_data_ra(env, addr, ra);
case 2:
return cpu_lduw_data_ra(env, addr, ra);
default:
abort();
}
}
/* Store a to memory according to its size. */
static inline void cpu_stsize_data_ra(CPUS390XState *env, uint64_t addr,
uint64_t value, int wordsize,
uintptr_t ra)
{
switch (wordsize) {
case 1:
cpu_stb_data_ra(env, addr, value, ra);
break;
case 2:
cpu_stw_data_ra(env, addr, value, ra);
break;
default:
abort();
}
}
/* An access covers at most 4096 bytes and therefore at most two pages. */
typedef struct S390Access {
target_ulong vaddr1;
target_ulong vaddr2;
void *haddr1;
void *haddr2;
uint16_t size1;
uint16_t size2;
/*
* If we can't access the host page directly, we'll have to do I/O access
* via ld/st helpers. These are internal details, so we store the
* mmu idx to do the access here instead of passing it around in the
* helpers.
*/
int mmu_idx;
} S390Access;
/*
* With nonfault=1, return the PGM_ exception that would have been injected
* into the guest; return 0 if no exception was detected.
*
* For !CONFIG_USER_ONLY, the TEC is stored stored to env->tlb_fill_tec.
* For CONFIG_USER_ONLY, the faulting address is stored to env->__excp_addr.
*/
static inline int s390_probe_access(CPUArchState *env, target_ulong addr,
int size, MMUAccessType access_type,
int mmu_idx, bool nonfault,
void **phost, uintptr_t ra)
{
accel/tcg: Add 'size' param to probe_access_flags() probe_access_flags() as it is today uses probe_access_full(), which in turn uses probe_access_internal() with size = 0. probe_access_internal() then uses the size to call the tlb_fill() callback for the given CPU. This size param ('fault_size' as probe_access_internal() calls it) is ignored by most existing .tlb_fill callback implementations, e.g. arm_cpu_tlb_fill(), ppc_cpu_tlb_fill(), x86_cpu_tlb_fill() and mips_cpu_tlb_fill() to name a few. But RISC-V riscv_cpu_tlb_fill() actually uses it. The 'size' parameter is used to check for PMP (Physical Memory Protection) access. This is necessary because PMP does not make any guarantees about all the bytes of the same page having the same permissions, i.e. the same page can have different PMP properties, so we're forced to make sub-page range checks. To allow RISC-V emulation to do a probe_acess_flags() that covers PMP, we need to either add a 'size' param to the existing probe_acess_flags() or create a new interface (e.g. probe_access_range_flags). There are quite a few probe_* APIs already, so let's add a 'size' param to probe_access_flags() and re-use this API. This is done by open coding what probe_access_full() does inside probe_acess_flags() and passing the 'size' param to probe_acess_internal(). Existing probe_access_flags() callers use size = 0 to not change their current API usage. 'size' is asserted to enforce single page access like probe_access() already does. No behavioral changes intended. Signed-off-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com> Message-Id: <20230223234427.521114-2-dbarboza@ventanamicro.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-02-24 02:44:24 +03:00
int flags = probe_access_flags(env, addr, 0, access_type, mmu_idx,
nonfault, phost, ra);
if (unlikely(flags & TLB_INVALID_MASK)) {
#ifdef CONFIG_USER_ONLY
/* Address is in TEC in system mode; see s390_cpu_record_sigsegv. */
env->__excp_addr = addr & TARGET_PAGE_MASK;
return (page_get_flags(addr) & PAGE_VALID
? PGM_PROTECTION : PGM_ADDRESSING);
#else
return env->tlb_fill_exc;
#endif
}
#ifndef CONFIG_USER_ONLY
if (unlikely(flags & TLB_WATCHPOINT)) {
/* S390 does not presently use transaction attributes. */
cpu_check_watchpoint(env_cpu(env), addr, size,
MEMTXATTRS_UNSPECIFIED,
(access_type == MMU_DATA_STORE
? BP_MEM_WRITE : BP_MEM_READ), ra);
}
#endif
return 0;
}
static int access_prepare_nf(S390Access *access, CPUS390XState *env,
bool nonfault, vaddr vaddr1, int size,
MMUAccessType access_type,
int mmu_idx, uintptr_t ra)
{
int size1, size2, exc;
assert(size > 0 && size <= 4096);
size1 = MIN(size, -(vaddr1 | TARGET_PAGE_MASK)),
size2 = size - size1;
memset(access, 0, sizeof(*access));
access->vaddr1 = vaddr1;
access->size1 = size1;
access->size2 = size2;
access->mmu_idx = mmu_idx;
exc = s390_probe_access(env, vaddr1, size1, access_type, mmu_idx, nonfault,
&access->haddr1, ra);
if (unlikely(exc)) {
return exc;
}
if (unlikely(size2)) {
/* The access crosses page boundaries. */
vaddr vaddr2 = wrap_address(env, vaddr1 + size1);
access->vaddr2 = vaddr2;
exc = s390_probe_access(env, vaddr2, size2, access_type, mmu_idx,
nonfault, &access->haddr2, ra);
if (unlikely(exc)) {
return exc;
}
}
return 0;
}
static inline void access_prepare(S390Access *ret, CPUS390XState *env,
vaddr vaddr, int size,
MMUAccessType access_type, int mmu_idx,
uintptr_t ra)
{
int exc = access_prepare_nf(ret, env, false, vaddr, size,
access_type, mmu_idx, ra);
assert(!exc);
}
/* Helper to handle memset on a single page. */
static void do_access_memset(CPUS390XState *env, vaddr vaddr, char *haddr,
uint8_t byte, uint16_t size, int mmu_idx,
uintptr_t ra)
{
#ifdef CONFIG_USER_ONLY
memset(haddr, byte, size);
#else
if (likely(haddr)) {
memset(haddr, byte, size);
} else {
MemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
for (int i = 0; i < size; i++) {
cpu_stb_mmu(env, vaddr + i, byte, oi, ra);
}
}
#endif
}
static void access_memset(CPUS390XState *env, S390Access *desta,
uint8_t byte, uintptr_t ra)
{
do_access_memset(env, desta->vaddr1, desta->haddr1, byte, desta->size1,
desta->mmu_idx, ra);
if (likely(!desta->size2)) {
return;
}
do_access_memset(env, desta->vaddr2, desta->haddr2, byte, desta->size2,
desta->mmu_idx, ra);
}
static uint8_t access_get_byte(CPUS390XState *env, S390Access *access,
int offset, uintptr_t ra)
{
target_ulong vaddr = access->vaddr1;
void *haddr = access->haddr1;
if (unlikely(offset >= access->size1)) {
offset -= access->size1;
vaddr = access->vaddr2;
haddr = access->haddr2;
}
if (user_or_likely(haddr)) {
return ldub_p(haddr + offset);
} else {
MemOpIdx oi = make_memop_idx(MO_UB, access->mmu_idx);
return cpu_ldb_mmu(env, vaddr + offset, oi, ra);
}
}
static void access_set_byte(CPUS390XState *env, S390Access *access,
int offset, uint8_t byte, uintptr_t ra)
{
target_ulong vaddr = access->vaddr1;
void *haddr = access->haddr1;
if (unlikely(offset >= access->size1)) {
offset -= access->size1;
vaddr = access->vaddr2;
haddr = access->haddr2;
}
if (user_or_likely(haddr)) {
stb_p(haddr + offset, byte);
} else {
MemOpIdx oi = make_memop_idx(MO_UB, access->mmu_idx);
cpu_stb_mmu(env, vaddr + offset, byte, oi, ra);
}
}
/*
* Move data with the same semantics as memmove() in case ranges don't overlap
* or src > dest. Undefined behavior on destructive overlaps.
*/
static void access_memmove(CPUS390XState *env, S390Access *desta,
S390Access *srca, uintptr_t ra)
{
int len = desta->size1 + desta->size2;
int diff;
assert(len == srca->size1 + srca->size2);
/* Fallback to slow access in case we don't have access to all host pages */
if (unlikely(!desta->haddr1 || (desta->size2 && !desta->haddr2) ||
!srca->haddr1 || (srca->size2 && !srca->haddr2))) {
int i;
for (i = 0; i < len; i++) {
uint8_t byte = access_get_byte(env, srca, i, ra);
access_set_byte(env, desta, i, byte, ra);
}
return;
}
diff = desta->size1 - srca->size1;
if (likely(diff == 0)) {
memmove(desta->haddr1, srca->haddr1, srca->size1);
if (unlikely(srca->size2)) {
memmove(desta->haddr2, srca->haddr2, srca->size2);
}
} else if (diff > 0) {
memmove(desta->haddr1, srca->haddr1, srca->size1);
memmove(desta->haddr1 + srca->size1, srca->haddr2, diff);
if (likely(desta->size2)) {
memmove(desta->haddr2, srca->haddr2 + diff, desta->size2);
}
} else {
diff = -diff;
memmove(desta->haddr1, srca->haddr1, desta->size1);
memmove(desta->haddr2, srca->haddr1 + desta->size1, diff);
if (likely(srca->size2)) {
memmove(desta->haddr2 + diff, srca->haddr2, srca->size2);
}
}
}
static int mmu_idx_from_as(uint8_t as)
{
switch (as) {
case AS_PRIMARY:
return MMU_PRIMARY_IDX;
case AS_SECONDARY:
return MMU_SECONDARY_IDX;
case AS_HOME:
return MMU_HOME_IDX;
default:
/* FIXME AS_ACCREG */
g_assert_not_reached();
}
}
/* and on array */
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca1, srca2, desta;
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* NC always processes one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca1, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&srca2, env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < l; i++) {
const uint8_t x = access_get_byte(env, &srca1, i, ra) &
access_get_byte(env, &srca2, i, ra);
c |= x;
access_set_byte(env, &desta, i, x, ra);
}
return c != 0;
}
uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_nc(env, l, dest, src, GETPC());
}
/* xor on array */
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca1, srca2, desta;
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* XC always processes one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca1, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&srca2, env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
/* xor with itself is the same as memset(0) */
if (src == dest) {
access_memset(env, &desta, 0, ra);
return 0;
}
for (i = 0; i < l; i++) {
const uint8_t x = access_get_byte(env, &srca1, i, ra) ^
access_get_byte(env, &srca2, i, ra);
c |= x;
access_set_byte(env, &desta, i, x, ra);
}
return c != 0;
}
uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_xc(env, l, dest, src, GETPC());
}
/* or on array */
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca1, srca2, desta;
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* OC always processes one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca1, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&srca2, env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < l; i++) {
const uint8_t x = access_get_byte(env, &srca1, i, ra) |
access_get_byte(env, &srca2, i, ra);
c |= x;
access_set_byte(env, &desta, i, x, ra);
}
return c != 0;
}
uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_oc(env, l, dest, src, GETPC());
}
/* memmove */
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca, desta;
uint32_t i;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* MVC always copies one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
/*
* "When the operands overlap, the result is obtained as if the operands
* were processed one byte at a time". Only non-destructive overlaps
* behave like memmove().
*/
if (dest == src + 1) {
access_memset(env, &desta, access_get_byte(env, &srca, 0, ra), ra);
} else if (!is_destructive_overlap(env, dest, src, l)) {
access_memmove(env, &desta, &srca, ra);
} else {
for (i = 0; i < l; i++) {
uint8_t byte = access_get_byte(env, &srca, i, ra);
access_set_byte(env, &desta, i, byte, ra);
}
}
return env->cc_op;
}
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
do_helper_mvc(env, l, dest, src, GETPC());
}
/* move right to left */
void HELPER(mvcrl)(CPUS390XState *env, uint64_t l, uint64_t dest, uint64_t src)
{
const int mmu_idx = cpu_mmu_index(env, false);
const uint64_t ra = GETPC();
S390Access srca, desta;
int32_t i;
/* MVCRL always copies one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = l - 1; i >= 0; i--) {
uint8_t byte = access_get_byte(env, &srca, i, ra);
access_set_byte(env, &desta, i, byte, ra);
}
}
/* move inverse */
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca, desta;
uintptr_t ra = GETPC();
int i;
/* MVCIN always copies one more byte than specified - maximum is 256 */
l++;
src = wrap_address(env, src - l + 1);
access_prepare(&srca, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < l; i++) {
const uint8_t x = access_get_byte(env, &srca, l - i - 1, ra);
access_set_byte(env, &desta, i, x, ra);
}
}
/* move numerics */
void HELPER(mvn)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca1, srca2, desta;
uintptr_t ra = GETPC();
int i;
/* MVN always copies one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca1, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&srca2, env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < l; i++) {
const uint8_t x = (access_get_byte(env, &srca1, i, ra) & 0x0f) |
(access_get_byte(env, &srca2, i, ra) & 0xf0);
access_set_byte(env, &desta, i, x, ra);
}
}
/* move with offset */
void HELPER(mvo)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
const int mmu_idx = cpu_mmu_index(env, false);
/* MVO always processes one more byte than specified - maximum is 16 */
const int len_dest = (l >> 4) + 1;
const int len_src = (l & 0xf) + 1;
uintptr_t ra = GETPC();
uint8_t byte_dest, byte_src;
S390Access srca, desta;
int i, j;
access_prepare(&srca, env, src, len_src, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, len_dest, MMU_DATA_STORE, mmu_idx, ra);
/* Handle rightmost byte */
byte_dest = cpu_ldub_data_ra(env, dest + len_dest - 1, ra);
byte_src = access_get_byte(env, &srca, len_src - 1, ra);
byte_dest = (byte_dest & 0x0f) | (byte_src << 4);
access_set_byte(env, &desta, len_dest - 1, byte_dest, ra);
/* Process remaining bytes from right to left */
for (i = len_dest - 2, j = len_src - 2; i >= 0; i--, j--) {
byte_dest = byte_src >> 4;
if (j >= 0) {
byte_src = access_get_byte(env, &srca, j, ra);
} else {
byte_src = 0;
}
byte_dest |= byte_src << 4;
access_set_byte(env, &desta, i, byte_dest, ra);
}
}
/* move zones */
void HELPER(mvz)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
const int mmu_idx = cpu_mmu_index(env, false);
S390Access srca1, srca2, desta;
uintptr_t ra = GETPC();
int i;
/* MVZ always copies one more byte than specified - maximum is 256 */
l++;
access_prepare(&srca1, env, src, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&srca2, env, dest, l, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, l, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < l; i++) {
const uint8_t x = (access_get_byte(env, &srca1, i, ra) & 0xf0) |
(access_get_byte(env, &srca2, i, ra) & 0x0f);
access_set_byte(env, &desta, i, x, ra);
}
}
/* compare unsigned byte arrays */
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
uint64_t s2, uintptr_t ra)
{
uint32_t i;
uint32_t cc = 0;
HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
__func__, l, s1, s2);
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
if (x < y) {
cc = 1;
break;
} else if (x > y) {
cc = 2;
break;
}
}
HELPER_LOG("\n");
return cc;
}
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
{
return do_helper_clc(env, l, s1, s2, GETPC());
}
/* compare logical under mask */
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
uint64_t addr)
{
uintptr_t ra = GETPC();
uint32_t cc = 0;
HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
mask, addr);
while (mask) {
if (mask & 8) {
uint8_t d = cpu_ldub_data_ra(env, addr, ra);
uint8_t r = extract32(r1, 24, 8);
HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
addr);
if (r < d) {
cc = 1;
break;
} else if (r > d) {
cc = 2;
break;
}
addr++;
}
mask = (mask << 1) & 0xf;
r1 <<= 8;
}
HELPER_LOG("\n");
return cc;
}
static inline uint64_t get_address(CPUS390XState *env, int reg)
{
return wrap_address(env, env->regs[reg]);
}
/*
* Store the address to the given register, zeroing out unused leftmost
* bits in bit positions 32-63 (24-bit and 31-bit mode only).
*/
static inline void set_address_zero(CPUS390XState *env, int reg,
uint64_t address)
{
if (env->psw.mask & PSW_MASK_64) {
env->regs[reg] = address;
} else {
if (!(env->psw.mask & PSW_MASK_32)) {
address &= 0x00ffffff;
} else {
address &= 0x7fffffff;
}
env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
}
}
static inline void set_address(CPUS390XState *env, int reg, uint64_t address)
{
if (env->psw.mask & PSW_MASK_64) {
/* 64-Bit mode */
env->regs[reg] = address;
} else {
if (!(env->psw.mask & PSW_MASK_32)) {
/* 24-Bit mode. According to the PoO it is implementation
dependent if bits 32-39 remain unchanged or are set to
zeros. Choose the former so that the function can also be
used for TRT. */
env->regs[reg] = deposit64(env->regs[reg], 0, 24, address);
} else {
/* 31-Bit mode. According to the PoO it is implementation
dependent if bit 32 remains unchanged or is set to zero.
Choose the latter so that the function can also be used for
TRT. */
address &= 0x7fffffff;
env->regs[reg] = deposit64(env->regs[reg], 0, 32, address);
}
}
}
static inline uint64_t wrap_length32(CPUS390XState *env, uint64_t length)
{
if (!(env->psw.mask & PSW_MASK_64)) {
return (uint32_t)length;
}
return length;
}
static inline uint64_t wrap_length31(CPUS390XState *env, uint64_t length)
{
if (!(env->psw.mask & PSW_MASK_64)) {
/* 24-Bit and 31-Bit mode */
length &= 0x7fffffff;
}
return length;
}
static inline uint64_t get_length(CPUS390XState *env, int reg)
{
return wrap_length31(env, env->regs[reg]);
}
static inline void set_length(CPUS390XState *env, int reg, uint64_t length)
{
if (env->psw.mask & PSW_MASK_64) {
/* 64-Bit mode */
env->regs[reg] = length;
} else {
/* 24-Bit and 31-Bit mode */
env->regs[reg] = deposit64(env->regs[reg], 0, 32, length);
}
}
/* search string (c is byte to search, r2 is string, r1 end of string) */
void HELPER(srst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
uintptr_t ra = GETPC();
uint64_t end, str;
uint32_t len;
uint8_t v, c = env->regs[0];
/* Bits 32-55 must contain all 0. */
if (env->regs[0] & 0xffffff00u) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
str = get_address(env, r2);
end = get_address(env, r1);
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; ++len) {
if (str + len == end) {
/* Character not found. R1 & R2 are unmodified. */
env->cc_op = 2;
return;
}
v = cpu_ldub_data_ra(env, str + len, ra);
if (v == c) {
/* Character found. Set R1 to the location; R2 is unmodified. */
env->cc_op = 1;
set_address(env, r1, str + len);
return;
}
}
/* CPU-determined bytes processed. Advance R2 to next byte to process. */
env->cc_op = 3;
set_address(env, r2, str + len);
}
void HELPER(srstu)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
uintptr_t ra = GETPC();
uint32_t len;
uint16_t v, c = env->regs[0];
uint64_t end, str, adj_end;
/* Bits 32-47 of R0 must be zero. */
if (env->regs[0] & 0xffff0000u) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
str = get_address(env, r2);
end = get_address(env, r1);
/* If the LSB of the two addresses differ, use one extra byte. */
adj_end = end + ((str ^ end) & 1);
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; len += 2) {
if (str + len == adj_end) {
/* End of input found. */
env->cc_op = 2;
return;
}
v = cpu_lduw_data_ra(env, str + len, ra);
if (v == c) {
/* Character found. Set R1 to the location; R2 is unmodified. */
env->cc_op = 1;
set_address(env, r1, str + len);
return;
}
}
/* CPU-determined bytes processed. Advance R2 to next byte to process. */
env->cc_op = 3;
set_address(env, r2, str + len);
}
/* unsigned string compare (c is string terminator) */
Int128 HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
{
uintptr_t ra = GETPC();
uint32_t len;
c = c & 0xff;
s1 = wrap_address(env, s1);
s2 = wrap_address(env, s2);
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; ++len) {
uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
if (v1 == v2) {
if (v1 == c) {
/* Equal. CC=0, and don't advance the registers. */
env->cc_op = 0;
return int128_make128(s2, s1);
}
} else {
/* Unequal. CC={1,2}, and advance the registers. Note that
the terminator need not be zero, but the string that contains
the terminator is by definition "low". */
env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
return int128_make128(s2 + len, s1 + len);
}
}
/* CPU-determined bytes equal; advance the registers. */
env->cc_op = 3;
return int128_make128(s2 + len, s1 + len);
}
/* move page */
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint32_t r1, uint32_t r2)
{
const uint64_t src = get_address(env, r2) & TARGET_PAGE_MASK;
const uint64_t dst = get_address(env, r1) & TARGET_PAGE_MASK;
const int mmu_idx = cpu_mmu_index(env, false);
const bool f = extract64(r0, 11, 1);
const bool s = extract64(r0, 10, 1);
const bool cco = extract64(r0, 8, 1);
uintptr_t ra = GETPC();
S390Access srca, desta;
int exc;
if ((f && s) || extract64(r0, 12, 4)) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
/*
* We always manually handle exceptions such that we can properly store
* r1/r2 to the lowcore on page-translation exceptions.
*
* TODO: Access key handling
*/
exc = access_prepare_nf(&srca, env, true, src, TARGET_PAGE_SIZE,
MMU_DATA_LOAD, mmu_idx, ra);
if (exc) {
if (cco) {
return 2;
}
goto inject_exc;
}
exc = access_prepare_nf(&desta, env, true, dst, TARGET_PAGE_SIZE,
MMU_DATA_STORE, mmu_idx, ra);
if (exc) {
if (cco && exc != PGM_PROTECTION) {
return 1;
}
goto inject_exc;
}
access_memmove(env, &desta, &srca, ra);
return 0; /* data moved */
inject_exc:
#if !defined(CONFIG_USER_ONLY)
if (exc != PGM_ADDRESSING) {
stq_phys(env_cpu(env)->as, env->psa + offsetof(LowCore, trans_exc_code),
env->tlb_fill_tec);
}
if (exc == PGM_PAGE_TRANS) {
stb_phys(env_cpu(env)->as, env->psa + offsetof(LowCore, op_access_id),
r1 << 4 | r2);
}
#endif
tcg_s390_program_interrupt(env, exc, ra);
}
/* string copy */
uint32_t HELPER(mvst)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
const int mmu_idx = cpu_mmu_index(env, false);
const uint64_t d = get_address(env, r1);
const uint64_t s = get_address(env, r2);
const uint8_t c = env->regs[0];
const int len = MIN(-(d | TARGET_PAGE_MASK), -(s | TARGET_PAGE_MASK));
S390Access srca, desta;
uintptr_t ra = GETPC();
int i;
if (env->regs[0] & 0xffffff00ull) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
/*
* Our access should not exceed single pages, as we must not report access
* exceptions exceeding the actually copied range (which we don't know at
* this point). We might over-indicate watchpoints within the pages
* (if we ever care, we have to limit processing to a single byte).
*/
access_prepare(&srca, env, s, len, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, d, len, MMU_DATA_STORE, mmu_idx, ra);
for (i = 0; i < len; i++) {
const uint8_t v = access_get_byte(env, &srca, i, ra);
access_set_byte(env, &desta, i, v, ra);
if (v == c) {
set_address_zero(env, r1, d + i);
return 1;
}
}
set_address_zero(env, r1, d + len);
set_address_zero(env, r2, s + len);
return 3;
}
/* load access registers r1 to r3 from memory at a2 */
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
int i;
if (a2 & 0x3) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
a2 += 4;
if (i == r3) {
break;
}
}
}
/* store access registers r1 to r3 in memory at a2 */
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
int i;
if (a2 & 0x3) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
cpu_stl_data_ra(env, a2, env->aregs[i], ra);
a2 += 4;
if (i == r3) {
break;
}
}
}
/* move long helper */
static inline uint32_t do_mvcl(CPUS390XState *env,
uint64_t *dest, uint64_t *destlen,
uint64_t *src, uint64_t *srclen,
uint16_t pad, int wordsize, uintptr_t ra)
{
const int mmu_idx = cpu_mmu_index(env, false);
int len = MIN(*destlen, -(*dest | TARGET_PAGE_MASK));
S390Access srca, desta;
int i, cc;
if (*destlen == *srclen) {
cc = 0;
} else if (*destlen < *srclen) {
cc = 1;
} else {
cc = 2;
}
if (!*destlen) {
return cc;
}
/*
* Only perform one type of type of operation (move/pad) at a time.
* Stay within single pages.
*/
if (*srclen) {
/* Copy the src array */
len = MIN(MIN(*srclen, -(*src | TARGET_PAGE_MASK)), len);
*destlen -= len;
*srclen -= len;
access_prepare(&srca, env, *src, len, MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
access_memmove(env, &desta, &srca, ra);
*src = wrap_address(env, *src + len);
*dest = wrap_address(env, *dest + len);
} else if (wordsize == 1) {
/* Pad the remaining area */
*destlen -= len;
access_prepare(&desta, env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
access_memset(env, &desta, pad, ra);
*dest = wrap_address(env, *dest + len);
} else {
access_prepare(&desta, env, *dest, len, MMU_DATA_STORE, mmu_idx, ra);
/* The remaining length selects the padding byte. */
for (i = 0; i < len; (*destlen)--, i++) {
if (*destlen & 1) {
access_set_byte(env, &desta, i, pad, ra);
} else {
access_set_byte(env, &desta, i, pad >> 8, ra);
}
}
*dest = wrap_address(env, *dest + len);
}
return *destlen ? 3 : cc;
}
/* move long */
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
const int mmu_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
uint64_t dest = get_address(env, r1);
uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
uint64_t src = get_address(env, r2);
uint8_t pad = env->regs[r2 + 1] >> 24;
s390x/tcg: MVCL: Exit to main loop if requested MVCL is interruptible and we should check for interrupts and process them after writing back the variables to the registers. Let's check for any exit requests and exit to the main loop. Introduce a new helper function for that: cpu_loop_exit_requested(). When booting Fedora 30, I can see a handful of these exits and it seems to work reliable. Also, Richard explained why this works correctly even when MVCL is called via EXECUTE: (1) TB with EXECUTE runs, at address Ae - env->psw_addr stored with Ae. - helper_ex() runs, memory address Am computed from D2a(X2a,B2a) or from psw.addr+RI2. - env->ex_value stored with memory value modified by R1a (2) TB of executee runs, - env->ex_value stored with 0. - helper_mvcl() runs, using and updating R1b, R1b+1, R2b, R2b+1. (3a) helper_mvcl() completes, - TB of executee continues, psw.addr += ilen. - Next instruction is the one following EXECUTE. (3b) helper_mvcl() exits to main loop, - cpu_loop_exit_restore() unwinds psw.addr = Ae. - Next instruction is the EXECUTE itself... - goto 1. As the PoP mentiones that an interruptible instruction called via EXECUTE should avoid modifying storage/registers that are used by EXECUTE itself, it is fine to retrigger EXECUTE. Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: David Hildenbrand <david@redhat.com>
2019-10-01 21:03:54 +03:00
CPUState *cs = env_cpu(env);
S390Access srca, desta;
uint32_t cc, cur_len;
if (is_destructive_overlap(env, dest, src, MIN(srclen, destlen))) {
cc = 3;
} else if (srclen == destlen) {
cc = 0;
} else if (destlen < srclen) {
cc = 1;
} else {
cc = 2;
}
/* We might have to zero-out some bits even if there was no action. */
if (unlikely(!destlen || cc == 3)) {
set_address_zero(env, r2, src);
set_address_zero(env, r1, dest);
return cc;
} else if (!srclen) {
set_address_zero(env, r2, src);
}
/*
* Only perform one type of type of operation (move/pad) in one step.
* Stay within single pages.
*/
while (destlen) {
cur_len = MIN(destlen, -(dest | TARGET_PAGE_MASK));
if (!srclen) {
access_prepare(&desta, env, dest, cur_len,
MMU_DATA_STORE, mmu_idx, ra);
access_memset(env, &desta, pad, ra);
} else {
cur_len = MIN(MIN(srclen, -(src | TARGET_PAGE_MASK)), cur_len);
access_prepare(&srca, env, src, cur_len,
MMU_DATA_LOAD, mmu_idx, ra);
access_prepare(&desta, env, dest, cur_len,
MMU_DATA_STORE, mmu_idx, ra);
access_memmove(env, &desta, &srca, ra);
src = wrap_address(env, src + cur_len);
srclen -= cur_len;
env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, srclen);
set_address_zero(env, r2, src);
}
dest = wrap_address(env, dest + cur_len);
destlen -= cur_len;
env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, destlen);
set_address_zero(env, r1, dest);
s390x/tcg: MVCL: Exit to main loop if requested MVCL is interruptible and we should check for interrupts and process them after writing back the variables to the registers. Let's check for any exit requests and exit to the main loop. Introduce a new helper function for that: cpu_loop_exit_requested(). When booting Fedora 30, I can see a handful of these exits and it seems to work reliable. Also, Richard explained why this works correctly even when MVCL is called via EXECUTE: (1) TB with EXECUTE runs, at address Ae - env->psw_addr stored with Ae. - helper_ex() runs, memory address Am computed from D2a(X2a,B2a) or from psw.addr+RI2. - env->ex_value stored with memory value modified by R1a (2) TB of executee runs, - env->ex_value stored with 0. - helper_mvcl() runs, using and updating R1b, R1b+1, R2b, R2b+1. (3a) helper_mvcl() completes, - TB of executee continues, psw.addr += ilen. - Next instruction is the one following EXECUTE. (3b) helper_mvcl() exits to main loop, - cpu_loop_exit_restore() unwinds psw.addr = Ae. - Next instruction is the EXECUTE itself... - goto 1. As the PoP mentiones that an interruptible instruction called via EXECUTE should avoid modifying storage/registers that are used by EXECUTE itself, it is fine to retrigger EXECUTE. Cc: Alex Bennée <alex.bennee@linaro.org> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: David Hildenbrand <david@redhat.com>
2019-10-01 21:03:54 +03:00
/*
* MVCL is interruptible. Return to the main loop if requested after
* writing back all state to registers. If no interrupt will get
* injected, we'll end up back in this handler and continue processing
* the remaining parts.
*/
if (destlen && unlikely(cpu_loop_exit_requested(cs))) {
cpu_loop_exit_restore(cs, ra);
}
}
return cc;
}
/* move long extended */
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t destlen = get_length(env, r1 + 1);
uint64_t dest = get_address(env, r1);
uint64_t srclen = get_length(env, r3 + 1);
uint64_t src = get_address(env, r3);
uint8_t pad = a2;
uint32_t cc;
cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 1, ra);
set_length(env, r1 + 1, destlen);
set_length(env, r3 + 1, srclen);
set_address(env, r1, dest);
set_address(env, r3, src);
return cc;
}
/* move long unicode */
uint32_t HELPER(mvclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t destlen = get_length(env, r1 + 1);
uint64_t dest = get_address(env, r1);
uint64_t srclen = get_length(env, r3 + 1);
uint64_t src = get_address(env, r3);
uint16_t pad = a2;
uint32_t cc;
cc = do_mvcl(env, &dest, &destlen, &src, &srclen, pad, 2, ra);
set_length(env, r1 + 1, destlen);
set_length(env, r3 + 1, srclen);
set_address(env, r1, dest);
set_address(env, r3, src);
return cc;
}
/* compare logical long helper */
static inline uint32_t do_clcl(CPUS390XState *env,
uint64_t *src1, uint64_t *src1len,
uint64_t *src3, uint64_t *src3len,
uint16_t pad, uint64_t limit,
int wordsize, uintptr_t ra)
{
uint64_t len = MAX(*src1len, *src3len);
uint32_t cc = 0;
check_alignment(env, *src1len | *src3len, wordsize, ra);
if (!len) {
return cc;
}
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. */
if (len > limit) {
len = limit;
cc = 3;
}
for (; len; len -= wordsize) {
uint16_t v1 = pad;
uint16_t v3 = pad;
if (*src1len) {
v1 = cpu_ldusize_data_ra(env, *src1, wordsize, ra);
}
if (*src3len) {
v3 = cpu_ldusize_data_ra(env, *src3, wordsize, ra);
}
if (v1 != v3) {
cc = (v1 < v3) ? 1 : 2;
break;
}
if (*src1len) {
*src1 += wordsize;
*src1len -= wordsize;
}
if (*src3len) {
*src3 += wordsize;
*src3len -= wordsize;
}
}
return cc;
}
/* compare logical long */
uint32_t HELPER(clcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
uintptr_t ra = GETPC();
uint64_t src1len = extract64(env->regs[r1 + 1], 0, 24);
uint64_t src1 = get_address(env, r1);
uint64_t src3len = extract64(env->regs[r2 + 1], 0, 24);
uint64_t src3 = get_address(env, r2);
uint8_t pad = env->regs[r2 + 1] >> 24;
uint32_t cc;
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, -1, 1, ra);
env->regs[r1 + 1] = deposit64(env->regs[r1 + 1], 0, 24, src1len);
env->regs[r2 + 1] = deposit64(env->regs[r2 + 1], 0, 24, src3len);
set_address(env, r1, src1);
set_address(env, r2, src3);
return cc;
}
/* compare logical long extended memcompare insn with padding */
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t src1len = get_length(env, r1 + 1);
uint64_t src1 = get_address(env, r1);
uint64_t src3len = get_length(env, r3 + 1);
uint64_t src3 = get_address(env, r3);
uint8_t pad = a2;
uint32_t cc;
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x2000, 1, ra);
set_length(env, r1 + 1, src1len);
set_length(env, r3 + 1, src3len);
set_address(env, r1, src1);
set_address(env, r3, src3);
return cc;
}
/* compare logical long unicode memcompare insn with padding */
uint32_t HELPER(clclu)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t src1len = get_length(env, r1 + 1);
uint64_t src1 = get_address(env, r1);
uint64_t src3len = get_length(env, r3 + 1);
uint64_t src3 = get_address(env, r3);
uint16_t pad = a2;
uint32_t cc = 0;
cc = do_clcl(env, &src1, &src1len, &src3, &src3len, pad, 0x1000, 2, ra);
set_length(env, r1 + 1, src1len);
set_length(env, r3 + 1, src3len);
set_address(env, r1, src1);
set_address(env, r3, src3);
return cc;
}
/* checksum */
Int128 HELPER(cksm)(CPUS390XState *env, uint64_t r1,
uint64_t src, uint64_t src_len)
{
uintptr_t ra = GETPC();
uint64_t max_len, len;
uint64_t cksm = (uint32_t)r1;
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
max_len = (src_len > 0x2000 ? 0x2000 : src_len);
/* Process full words as available. */
for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
}
switch (max_len - len) {
case 1:
cksm += cpu_ldub_data_ra(env, src, ra) << 24;
len += 1;
break;
case 2:
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
len += 2;
break;
case 3:
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
len += 3;
break;
}
/* Fold the carry from the checksum. Note that we can see carry-out
during folding more than once (but probably not more than twice). */
while (cksm > 0xffffffffull) {
cksm = (uint32_t)cksm + (cksm >> 32);
}
/* Indicate whether or not we've processed everything. */
env->cc_op = (len == src_len ? 0 : 3);
/* Return both cksm and processed length. */
return int128_make128(cksm, len);
}
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
{
uintptr_t ra = GETPC();
int len_dest = len >> 4;
int len_src = len & 0xf;
uint8_t b;
dest += len_dest;
src += len_src;
/* last byte is special, it only flips the nibbles */
b = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
src--;
len_src--;
/* now pack every value */
while (len_dest > 0) {
b = 0;
if (len_src >= 0) {
b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
src--;
len_src--;
}
if (len_src >= 0) {
b |= cpu_ldub_data_ra(env, src, ra) << 4;
src--;
len_src--;
}
len_dest--;
dest--;
cpu_stb_data_ra(env, dest, b, ra);
}
}
static inline void do_pkau(CPUS390XState *env, uint64_t dest, uint64_t src,
uint32_t srclen, int ssize, uintptr_t ra)
{
int i;
/* The destination operand is always 16 bytes long. */
const int destlen = 16;
/* The operands are processed from right to left. */
src += srclen - 1;
dest += destlen - 1;
for (i = 0; i < destlen; i++) {
uint8_t b = 0;
/* Start with a positive sign */
if (i == 0) {
b = 0xc;
} else if (srclen > ssize) {
b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
src -= ssize;
srclen -= ssize;
}
if (srclen > ssize) {
b |= cpu_ldub_data_ra(env, src, ra) << 4;
src -= ssize;
srclen -= ssize;
}
cpu_stb_data_ra(env, dest, b, ra);
dest--;
}
}
void HELPER(pka)(CPUS390XState *env, uint64_t dest, uint64_t src,
uint32_t srclen)
{
do_pkau(env, dest, src, srclen, 1, GETPC());
}
void HELPER(pku)(CPUS390XState *env, uint64_t dest, uint64_t src,
uint32_t srclen)
{
do_pkau(env, dest, src, srclen, 2, GETPC());
}
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
uint64_t src)
{
uintptr_t ra = GETPC();
int len_dest = len >> 4;
int len_src = len & 0xf;
uint8_t b;
int second_nibble = 0;
dest += len_dest;
src += len_src;
/* last byte is special, it only flips the nibbles */
b = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
src--;
len_src--;
/* now pad every nibble with 0xf0 */
while (len_dest > 0) {
uint8_t cur_byte = 0;
if (len_src > 0) {
cur_byte = cpu_ldub_data_ra(env, src, ra);
}
len_dest--;
dest--;
/* only advance one nibble at a time */
if (second_nibble) {
cur_byte >>= 4;
len_src--;
src--;
}
second_nibble = !second_nibble;
/* digit */
cur_byte = (cur_byte & 0xf);
/* zone bits */
cur_byte |= 0xf0;
cpu_stb_data_ra(env, dest, cur_byte, ra);
}
}
static inline uint32_t do_unpkau(CPUS390XState *env, uint64_t dest,
uint32_t destlen, int dsize, uint64_t src,
uintptr_t ra)
{
int i;
uint32_t cc;
uint8_t b;
/* The source operand is always 16 bytes long. */
const int srclen = 16;
/* The operands are processed from right to left. */
src += srclen - 1;
dest += destlen - dsize;
/* Check for the sign. */
b = cpu_ldub_data_ra(env, src, ra);
src--;
switch (b & 0xf) {
case 0xa:
case 0xc:
case 0xe ... 0xf:
cc = 0; /* plus */
break;
case 0xb:
case 0xd:
cc = 1; /* minus */
break;
default:
case 0x0 ... 0x9:
cc = 3; /* invalid */
break;
}
/* Now pad every nibble with 0x30, advancing one nibble at a time. */
for (i = 0; i < destlen; i += dsize) {
if (i == (31 * dsize)) {
/* If length is 32/64 bytes, the leftmost byte is 0. */
b = 0;
} else if (i % (2 * dsize)) {
b = cpu_ldub_data_ra(env, src, ra);
src--;
} else {
b >>= 4;
}
cpu_stsize_data_ra(env, dest, 0x30 + (b & 0xf), dsize, ra);
dest -= dsize;
}
return cc;
}
uint32_t HELPER(unpka)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
uint64_t src)
{
return do_unpkau(env, dest, destlen, 1, src, GETPC());
}
uint32_t HELPER(unpku)(CPUS390XState *env, uint64_t dest, uint32_t destlen,
uint64_t src)
{
return do_unpkau(env, dest, destlen, 2, src, GETPC());
}
uint32_t HELPER(tp)(CPUS390XState *env, uint64_t dest, uint32_t destlen)
{
uintptr_t ra = GETPC();
uint32_t cc = 0;
int i;
for (i = 0; i < destlen; i++) {
uint8_t b = cpu_ldub_data_ra(env, dest + i, ra);
/* digit */
cc |= (b & 0xf0) > 0x90 ? 2 : 0;
if (i == (destlen - 1)) {
/* sign */
cc |= (b & 0xf) < 0xa ? 1 : 0;
} else {
/* digit */
cc |= (b & 0xf) > 0x9 ? 2 : 0;
}
}
return cc;
}
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans, uintptr_t ra)
{
uint32_t i;
for (i = 0; i <= len; i++) {
uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
cpu_stb_data_ra(env, array + i, new_byte, ra);
}
return env->cc_op;
}
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans)
{
do_helper_tr(env, len, array, trans, GETPC());
}
Int128 HELPER(tre)(CPUS390XState *env, uint64_t array,
uint64_t len, uint64_t trans)
{
uintptr_t ra = GETPC();
uint8_t end = env->regs[0] & 0xff;
uint64_t l = len;
uint64_t i;
uint32_t cc = 0;
if (!(env->psw.mask & PSW_MASK_64)) {
array &= 0x7fffffff;
l = (uint32_t)l;
}
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
if (l > 0x2000) {
l = 0x2000;
cc = 3;
}
for (i = 0; i < l; i++) {
uint8_t byte, new_byte;
byte = cpu_ldub_data_ra(env, array + i, ra);
if (byte == end) {
cc = 1;
break;
}
new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
cpu_stb_data_ra(env, array + i, new_byte, ra);
}
env->cc_op = cc;
return int128_make128(len - i, array + i);
}
static inline uint32_t do_helper_trt(CPUS390XState *env, int len,
uint64_t array, uint64_t trans,
int inc, uintptr_t ra)
{
int i;
for (i = 0; i <= len; i++) {
uint8_t byte = cpu_ldub_data_ra(env, array + i * inc, ra);
uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
if (sbyte != 0) {
set_address(env, 1, array + i * inc);
env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
return (i == len) ? 2 : 1;
}
}
return 0;
}
static uint32_t do_helper_trt_fwd(CPUS390XState *env, uint32_t len,
uint64_t array, uint64_t trans,
uintptr_t ra)
{
return do_helper_trt(env, len, array, trans, 1, ra);
}
uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans)
{
return do_helper_trt(env, len, array, trans, 1, GETPC());
}
static uint32_t do_helper_trt_bkwd(CPUS390XState *env, uint32_t len,
uint64_t array, uint64_t trans,
uintptr_t ra)
{
return do_helper_trt(env, len, array, trans, -1, ra);
}
uint32_t HELPER(trtr)(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans)
{
return do_helper_trt(env, len, array, trans, -1, GETPC());
}
/* Translate one/two to one/two */
uint32_t HELPER(trXX)(CPUS390XState *env, uint32_t r1, uint32_t r2,
uint32_t tst, uint32_t sizes)
{
uintptr_t ra = GETPC();
int dsize = (sizes & 1) ? 1 : 2;
int ssize = (sizes & 2) ? 1 : 2;
uint64_t tbl = get_address(env, 1);
uint64_t dst = get_address(env, r1);
uint64_t len = get_length(env, r1 + 1);
uint64_t src = get_address(env, r2);
uint32_t cc = 3;
int i;
/* The lower address bits of TBL are ignored. For TROO, TROT, it's
the low 3 bits (double-word aligned). For TRTO, TRTT, it's either
the low 12 bits (4K, without ETF2-ENH) or 3 bits (with ETF2-ENH). */
if (ssize == 2 && !s390_has_feat(S390_FEAT_ETF2_ENH)) {
tbl &= -4096;
} else {
tbl &= -8;
}
check_alignment(env, len, ssize, ra);
/* Lest we fail to service interrupts in a timely manner, */
/* limit the amount of work we're willing to do. */
for (i = 0; i < 0x2000; i++) {
uint16_t sval = cpu_ldusize_data_ra(env, src, ssize, ra);
uint64_t tble = tbl + (sval * dsize);
uint16_t dval = cpu_ldusize_data_ra(env, tble, dsize, ra);
if (dval == tst) {
cc = 1;
break;
}
cpu_stsize_data_ra(env, dst, dval, dsize, ra);
len -= ssize;
src += ssize;
dst += dsize;
if (len == 0) {
cc = 0;
break;
}
}
set_address(env, r1, dst);
set_length(env, r1 + 1, len);
set_address(env, r2, src);
return cc;
}
static uint32_t do_csst(CPUS390XState *env, uint32_t r3, uint64_t a1,
uint64_t a2, bool parallel)
{
uint32_t mem_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
uint32_t fc = extract32(env->regs[0], 0, 8);
uint32_t sc = extract32(env->regs[0], 8, 8);
uint64_t pl = get_address(env, 1) & -16;
uint64_t svh, svl;
uint32_t cc;
/* Sanity check the function code and storage characteristic. */
if (fc > 1 || sc > 3) {
if (!s390_has_feat(S390_FEAT_COMPARE_AND_SWAP_AND_STORE_2)) {
goto spec_exception;
}
if (fc > 2 || sc > 4 || (fc == 2 && (r3 & 1))) {
goto spec_exception;
}
}
/* Sanity check the alignments. */
if (extract32(a1, 0, fc + 2) || extract32(a2, 0, sc)) {
goto spec_exception;
}
/* Sanity check writability of the store address. */
probe_write(env, a2, 1 << sc, mem_idx, ra);
/*
* Note that the compare-and-swap is atomic, and the store is atomic,
* but the complete operation is not. Therefore we do not need to
* assert serial context in order to implement this. That said,
* restart early if we can't support either operation that is supposed
* to be atomic.
*/
if (parallel) {
uint32_t max = 2;
#ifdef CONFIG_ATOMIC64
max = 3;
#endif
if ((HAVE_CMPXCHG128 ? 0 : fc + 2 > max) ||
(HAVE_ATOMIC128 ? 0 : sc > max)) {
cpu_loop_exit_atomic(env_cpu(env), ra);
}
}
/* All loads happen before all stores. For simplicity, load the entire
store value area from the parameter list. */
svh = cpu_ldq_data_ra(env, pl + 16, ra);
svl = cpu_ldq_data_ra(env, pl + 24, ra);
switch (fc) {
case 0:
{
uint32_t nv = cpu_ldl_data_ra(env, pl, ra);
uint32_t cv = env->regs[r3];
uint32_t ov;
if (parallel) {
#ifdef CONFIG_USER_ONLY
uint32_t *haddr = g2h(env_cpu(env), a1);
ov = qatomic_cmpxchg__nocheck(haddr, cv, nv);
#else
MemOpIdx oi = make_memop_idx(MO_TEUL | MO_ALIGN, mem_idx);
ov = cpu_atomic_cmpxchgl_be_mmu(env, a1, cv, nv, oi, ra);
#endif
} else {
ov = cpu_ldl_data_ra(env, a1, ra);
cpu_stl_data_ra(env, a1, (ov == cv ? nv : ov), ra);
}
cc = (ov != cv);
env->regs[r3] = deposit64(env->regs[r3], 32, 32, ov);
}
break;
case 1:
{
uint64_t nv = cpu_ldq_data_ra(env, pl, ra);
uint64_t cv = env->regs[r3];
uint64_t ov;
if (parallel) {
#ifdef CONFIG_ATOMIC64
MemOpIdx oi = make_memop_idx(MO_TEUQ | MO_ALIGN, mem_idx);
ov = cpu_atomic_cmpxchgq_be_mmu(env, a1, cv, nv, oi, ra);
#else
/* Note that we asserted !parallel above. */
g_assert_not_reached();
#endif
} else {
ov = cpu_ldq_data_ra(env, a1, ra);
cpu_stq_data_ra(env, a1, (ov == cv ? nv : ov), ra);
}
cc = (ov != cv);
env->regs[r3] = ov;
}
break;
case 2:
{
uint64_t nvh = cpu_ldq_data_ra(env, pl, ra);
uint64_t nvl = cpu_ldq_data_ra(env, pl + 8, ra);
Int128 nv = int128_make128(nvl, nvh);
Int128 cv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
Int128 ov;
if (!parallel) {
uint64_t oh = cpu_ldq_data_ra(env, a1 + 0, ra);
uint64_t ol = cpu_ldq_data_ra(env, a1 + 8, ra);
ov = int128_make128(ol, oh);
cc = !int128_eq(ov, cv);
if (cc) {
nv = ov;
}
cpu_stq_data_ra(env, a1 + 0, int128_gethi(nv), ra);
cpu_stq_data_ra(env, a1 + 8, int128_getlo(nv), ra);
} else if (HAVE_CMPXCHG128) {
MemOpIdx oi = make_memop_idx(MO_TE | MO_128 | MO_ALIGN, mem_idx);
ov = cpu_atomic_cmpxchgo_be_mmu(env, a1, cv, nv, oi, ra);
cc = !int128_eq(ov, cv);
} else {
/* Note that we asserted !parallel above. */
g_assert_not_reached();
}
env->regs[r3 + 0] = int128_gethi(ov);
env->regs[r3 + 1] = int128_getlo(ov);
}
break;
default:
g_assert_not_reached();
}
/* Store only if the comparison succeeded. Note that above we use a pair
of 64-bit big-endian loads, so for sc < 3 we must extract the value
from the most-significant bits of svh. */
if (cc == 0) {
switch (sc) {
case 0:
cpu_stb_data_ra(env, a2, svh >> 56, ra);
break;
case 1:
cpu_stw_data_ra(env, a2, svh >> 48, ra);
break;
case 2:
cpu_stl_data_ra(env, a2, svh >> 32, ra);
break;
case 3:
cpu_stq_data_ra(env, a2, svh, ra);
break;
case 4:
if (!parallel) {
cpu_stq_data_ra(env, a2 + 0, svh, ra);
cpu_stq_data_ra(env, a2 + 8, svl, ra);
} else if (HAVE_ATOMIC128) {
MemOpIdx oi = make_memop_idx(MO_TEUQ | MO_ALIGN_16, mem_idx);
Int128 sv = int128_make128(svl, svh);
cpu_atomic_sto_be_mmu(env, a2, sv, oi, ra);
} else {
/* Note that we asserted !parallel above. */
g_assert_not_reached();
}
break;
default:
g_assert_not_reached();
}
}
return cc;
spec_exception:
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
uint32_t HELPER(csst)(CPUS390XState *env, uint32_t r3, uint64_t a1, uint64_t a2)
{
return do_csst(env, r3, a1, a2, false);
}
uint32_t HELPER(csst_parallel)(CPUS390XState *env, uint32_t r3, uint64_t a1,
uint64_t a2)
{
return do_csst(env, r3, a1, a2, true);
}
#if !defined(CONFIG_USER_ONLY)
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
bool PERchanged = false;
uint64_t src = a2;
uint32_t i;
if (src & 0x7) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
uint64_t val = cpu_ldq_data_ra(env, src, ra);
if (env->cregs[i] != val && i >= 9 && i <= 11) {
PERchanged = true;
}
env->cregs[i] = val;
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
i, src, val);
src += sizeof(uint64_t);
if (i == r3) {
break;
}
}
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
s390_cpu_recompute_watchpoints(env_cpu(env));
}
tlb_flush(env_cpu(env));
}
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
bool PERchanged = false;
uint64_t src = a2;
uint32_t i;
if (src & 0x3) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
uint32_t val = cpu_ldl_data_ra(env, src, ra);
if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
PERchanged = true;
}
env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
src += sizeof(uint32_t);
if (i == r3) {
break;
}
}
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
s390_cpu_recompute_watchpoints(env_cpu(env));
}
tlb_flush(env_cpu(env));
}
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t dest = a2;
uint32_t i;
if (dest & 0x7) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
cpu_stq_data_ra(env, dest, env->cregs[i], ra);
dest += sizeof(uint64_t);
if (i == r3) {
break;
}
}
}
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t dest = a2;
uint32_t i;
if (dest & 0x3) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
for (i = r1;; i = (i + 1) % 16) {
cpu_stl_data_ra(env, dest, env->cregs[i], ra);
dest += sizeof(uint32_t);
if (i == r3) {
break;
}
}
}
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
{
uintptr_t ra = GETPC();
int i;
real_addr = wrap_address(env, real_addr) & TARGET_PAGE_MASK;
for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
cpu_stq_mmuidx_ra(env, real_addr + i, 0, MMU_REAL_IDX, ra);
}
return 0;
}
uint32_t HELPER(tprot)(CPUS390XState *env, uint64_t a1, uint64_t a2)
{
S390CPU *cpu = env_archcpu(env);
CPUState *cs = env_cpu(env);
/*
* TODO: we currently don't handle all access protection types
* (including access-list and key-controlled) as well as AR mode.
*/
if (!s390_cpu_virt_mem_check_write(cpu, a1, 0, 1)) {
/* Fetching permitted; storing permitted */
return 0;
}
if (env->int_pgm_code == PGM_PROTECTION) {
/* retry if reading is possible */
cs->exception_index = -1;
if (!s390_cpu_virt_mem_check_read(cpu, a1, 0, 1)) {
/* Fetching permitted; storing not permitted */
return 1;
}
}
switch (env->int_pgm_code) {
case PGM_PROTECTION:
/* Fetching not permitted; storing not permitted */
cs->exception_index = -1;
return 2;
case PGM_ADDRESSING:
case PGM_TRANS_SPEC:
/* exceptions forwarded to the guest */
s390_cpu_virt_mem_handle_exc(cpu, GETPC());
return 0;
}
/* Translation not available */
cs->exception_index = -1;
return 3;
}
/* insert storage key extended */
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
{
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint64_t addr = wrap_address(env, r2);
uint8_t key;
int rc;
addr = mmu_real2abs(env, addr);
if (!mmu_absolute_addr_valid(addr, false)) {
tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
tlb_flush_all_cpus_synced(env_cpu(env));
}
}
rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_get_skeys_nonzero(rc);
return 0;
}
return key;
}
/* set storage key extended */
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint64_t addr = wrap_address(env, r2);
uint8_t key;
int rc;
addr = mmu_real2abs(env, addr);
if (!mmu_absolute_addr_valid(addr, false)) {
tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
tlb_flush_all_cpus_synced(env_cpu(env));
}
}
key = r1 & 0xfe;
rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_set_skeys_nonzero(rc);
}
/*
* As we can only flush by virtual address and not all the entries
* that point to a physical address we have to flush the whole TLB.
*/
tlb_flush_all_cpus_synced(env_cpu(env));
}
/* reset reference bit extended */
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
{
uint64_t addr = wrap_address(env, r2);
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint8_t re, key;
int rc;
addr = mmu_real2abs(env, addr);
if (!mmu_absolute_addr_valid(addr, false)) {
tcg_s390_program_interrupt(env, PGM_ADDRESSING, GETPC());
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
if (skeyclass->enable_skeys && !skeyclass->enable_skeys(ss)) {
tlb_flush_all_cpus_synced(env_cpu(env));
}
}
rc = skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_get_skeys_nonzero(rc);
return 0;
}
re = key & (SK_R | SK_C);
key &= ~SK_R;
rc = skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
if (rc) {
trace_set_skeys_nonzero(rc);
return 0;
}
/*
* As we can only flush by virtual address and not all the entries
* that point to a physical address we have to flush the whole TLB.
*/
tlb_flush_all_cpus_synced(env_cpu(env));
/*
* cc
*
* 0 Reference bit zero; change bit zero
* 1 Reference bit zero; change bit one
* 2 Reference bit one; change bit zero
* 3 Reference bit one; change bit one
*/
return re >> 1;
}
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2,
uint64_t key)
{
const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
S390Access srca, desta;
uintptr_t ra = GETPC();
int cc = 0;
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
__func__, l, a1, a2);
if (!(env->psw.mask & PSW_MASK_DAT) || !(env->cregs[0] & CR0_SECONDARY) ||
psw_as == AS_HOME || psw_as == AS_ACCREG) {
s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
}
if (!psw_key_valid(env, (key >> 4) & 0xf)) {
s390_program_interrupt(env, PGM_PRIVILEGED, ra);
}
l = wrap_length32(env, l);
if (l > 256) {
/* max 256 */
l = 256;
cc = 3;
} else if (!l) {
return cc;
}
access_prepare(&srca, env, a2, l, MMU_DATA_LOAD, MMU_PRIMARY_IDX, ra);
access_prepare(&desta, env, a1, l, MMU_DATA_STORE, MMU_SECONDARY_IDX, ra);
access_memmove(env, &desta, &srca, ra);
return cc;
}
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2,
uint64_t key)
{
const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
S390Access srca, desta;
uintptr_t ra = GETPC();
int cc = 0;
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
__func__, l, a1, a2);
if (!(env->psw.mask & PSW_MASK_DAT) || !(env->cregs[0] & CR0_SECONDARY) ||
psw_as == AS_HOME || psw_as == AS_ACCREG) {
s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
}
if (!psw_key_valid(env, (key >> 4) & 0xf)) {
s390_program_interrupt(env, PGM_PRIVILEGED, ra);
}
l = wrap_length32(env, l);
if (l > 256) {
/* max 256 */
l = 256;
cc = 3;
} else if (!l) {
return cc;
}
access_prepare(&srca, env, a2, l, MMU_DATA_LOAD, MMU_SECONDARY_IDX, ra);
access_prepare(&desta, env, a1, l, MMU_DATA_STORE, MMU_PRIMARY_IDX, ra);
access_memmove(env, &desta, &srca, ra);
return cc;
}
void HELPER(idte)(CPUS390XState *env, uint64_t r1, uint64_t r2, uint32_t m4)
{
CPUState *cs = env_cpu(env);
const uintptr_t ra = GETPC();
uint64_t table, entry, raddr;
uint16_t entries, i, index = 0;
if (r2 & 0xff000) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, ra);
}
if (!(r2 & 0x800)) {
/* invalidation-and-clearing operation */
table = r1 & ASCE_ORIGIN;
entries = (r2 & 0x7ff) + 1;
switch (r1 & ASCE_TYPE_MASK) {
case ASCE_TYPE_REGION1:
index = (r2 >> 53) & 0x7ff;
break;
case ASCE_TYPE_REGION2:
index = (r2 >> 42) & 0x7ff;
break;
case ASCE_TYPE_REGION3:
index = (r2 >> 31) & 0x7ff;
break;
case ASCE_TYPE_SEGMENT:
index = (r2 >> 20) & 0x7ff;
break;
}
for (i = 0; i < entries; i++) {
/* addresses are not wrapped in 24/31bit mode but table index is */
raddr = table + ((index + i) & 0x7ff) * sizeof(entry);
entry = cpu_ldq_mmuidx_ra(env, raddr, MMU_REAL_IDX, ra);
if (!(entry & REGION_ENTRY_I)) {
/* we are allowed to not store if already invalid */
entry |= REGION_ENTRY_I;
cpu_stq_mmuidx_ra(env, raddr, entry, MMU_REAL_IDX, ra);
}
}
}
/* We simply flush the complete tlb, therefore we can ignore r3. */
if (m4 & 1) {
tlb_flush(cs);
} else {
tlb_flush_all_cpus_synced(cs);
}
}
/* invalidate pte */
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
uint32_t m4)
{
CPUState *cs = env_cpu(env);
const uintptr_t ra = GETPC();
uint64_t page = vaddr & TARGET_PAGE_MASK;
uint64_t pte_addr, pte;
/* Compute the page table entry address */
pte_addr = (pto & SEGMENT_ENTRY_ORIGIN);
pte_addr += VADDR_PAGE_TX(vaddr) * 8;
/* Mark the page table entry as invalid */
pte = cpu_ldq_mmuidx_ra(env, pte_addr, MMU_REAL_IDX, ra);
pte |= PAGE_ENTRY_I;
cpu_stq_mmuidx_ra(env, pte_addr, pte, MMU_REAL_IDX, ra);
/* XXX we exploit the fact that Linux passes the exact virtual
address here - it's not obliged to! */
if (m4 & 1) {
if (vaddr & ~VADDR_PAGE_TX_MASK) {
tlb_flush_page(cs, page);
/* XXX 31-bit hack */
tlb_flush_page(cs, page ^ 0x80000000);
} else {
/* looks like we don't have a valid virtual address */
tlb_flush(cs);
}
} else {
if (vaddr & ~VADDR_PAGE_TX_MASK) {
tlb_flush_page_all_cpus_synced(cs, page);
/* XXX 31-bit hack */
tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
} else {
/* looks like we don't have a valid virtual address */
tlb_flush_all_cpus_synced(cs);
}
}
}
/* flush local tlb */
void HELPER(ptlb)(CPUS390XState *env)
{
tlb_flush(env_cpu(env));
}
/* flush global tlb */
void HELPER(purge)(CPUS390XState *env)
{
tlb_flush_all_cpus_synced(env_cpu(env));
}
/* load real address */
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
{
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
uint64_t ret, tec;
int flags, exc, cc;
/* XXX incomplete - has more corner cases */
if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, GETPC());
}
exc = mmu_translate(env, addr, MMU_S390_LRA, asc, &ret, &flags, &tec);
if (exc) {
cc = 3;
ret = exc | 0x80000000;
} else {
cc = 0;
ret |= addr & ~TARGET_PAGE_MASK;
}
env->cc_op = cc;
return ret;
}
#endif
/* Execute instruction. This instruction executes an insn modified with
the contents of r1. It does not change the executed instruction in memory;
it does not change the program counter.
Perform this by recording the modified instruction in env->ex_value.
This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
*/
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
{
uint64_t insn;
uint8_t opc;
/* EXECUTE targets must be at even addresses. */
if (addr & 1) {
tcg_s390_program_interrupt(env, PGM_SPECIFICATION, GETPC());
}
insn = cpu_lduw_code(env, addr);
opc = insn >> 8;
/* Or in the contents of R1[56:63]. */
insn |= r1 & 0xff;
/* Load the rest of the instruction. */
insn <<= 48;
switch (get_ilen(opc)) {
case 2:
break;
case 4:
insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
break;
case 6:
insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
break;
default:
g_assert_not_reached();
}
/* The very most common cases can be sped up by avoiding a new TB. */
if ((opc & 0xf0) == 0xd0) {
typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
uint64_t, uintptr_t);
static const dx_helper dx[16] = {
[0x0] = do_helper_trt_bkwd,
[0x2] = do_helper_mvc,
[0x4] = do_helper_nc,
[0x5] = do_helper_clc,
[0x6] = do_helper_oc,
[0x7] = do_helper_xc,
[0xc] = do_helper_tr,
[0xd] = do_helper_trt_fwd,
};
dx_helper helper = dx[opc & 0xf];
if (helper) {
uint32_t l = extract64(insn, 48, 8);
uint32_t b1 = extract64(insn, 44, 4);
uint32_t d1 = extract64(insn, 32, 12);
uint32_t b2 = extract64(insn, 28, 4);
uint32_t d2 = extract64(insn, 16, 12);
uint64_t a1 = wrap_address(env, (b1 ? env->regs[b1] : 0) + d1);
uint64_t a2 = wrap_address(env, (b2 ? env->regs[b2] : 0) + d2);
env->cc_op = helper(env, l, a1, a2, 0);
env->psw.addr += ilen;
return;
}
} else if (opc == 0x0a) {
env->int_svc_code = extract64(insn, 48, 8);
env->int_svc_ilen = ilen;
helper_exception(env, EXCP_SVC);
g_assert_not_reached();
}
/* Record the insn we want to execute as well as the ilen to use
during the execution of the target insn. This will also ensure
that ex_value is non-zero, which flags that we are in a state
that requires such execution. */
env->ex_value = insn | ilen;
env->ex_target = addr;
}
uint32_t HELPER(mvcos)(CPUS390XState *env, uint64_t dest, uint64_t src,
uint64_t len)
{
const uint8_t psw_key = (env->psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY;
const uint8_t psw_as = (env->psw.mask & PSW_MASK_ASC) >> PSW_SHIFT_ASC;
const uint64_t r0 = env->regs[0];
const uintptr_t ra = GETPC();
uint8_t dest_key, dest_as, dest_k, dest_a;
uint8_t src_key, src_as, src_k, src_a;
uint64_t val;
int cc = 0;
HELPER_LOG("%s dest %" PRIx64 ", src %" PRIx64 ", len %" PRIx64 "\n",
__func__, dest, src, len);
if (!(env->psw.mask & PSW_MASK_DAT)) {
tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
}
/* OAC (operand access control) for the first operand -> dest */
val = (r0 & 0xffff0000ULL) >> 16;
dest_key = (val >> 12) & 0xf;
dest_as = (val >> 6) & 0x3;
dest_k = (val >> 1) & 0x1;
dest_a = val & 0x1;
/* OAC (operand access control) for the second operand -> src */
val = (r0 & 0x0000ffffULL);
src_key = (val >> 12) & 0xf;
src_as = (val >> 6) & 0x3;
src_k = (val >> 1) & 0x1;
src_a = val & 0x1;
if (!dest_k) {
dest_key = psw_key;
}
if (!src_k) {
src_key = psw_key;
}
if (!dest_a) {
dest_as = psw_as;
}
if (!src_a) {
src_as = psw_as;
}
if (dest_a && dest_as == AS_HOME && (env->psw.mask & PSW_MASK_PSTATE)) {
tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
}
if (!(env->cregs[0] & CR0_SECONDARY) &&
(dest_as == AS_SECONDARY || src_as == AS_SECONDARY)) {
tcg_s390_program_interrupt(env, PGM_SPECIAL_OP, ra);
}
if (!psw_key_valid(env, dest_key) || !psw_key_valid(env, src_key)) {
tcg_s390_program_interrupt(env, PGM_PRIVILEGED, ra);
}
len = wrap_length32(env, len);
if (len > 4096) {
cc = 3;
len = 4096;
}
/* FIXME: AR-mode and proper problem state mode (using PSW keys) missing */
if (src_as == AS_ACCREG || dest_as == AS_ACCREG ||
(env->psw.mask & PSW_MASK_PSTATE)) {
qemu_log_mask(LOG_UNIMP, "%s: AR-mode and PSTATE support missing\n",
__func__);
tcg_s390_program_interrupt(env, PGM_ADDRESSING, ra);
}
/* FIXME: Access using correct keys and AR-mode */
if (len) {
S390Access srca, desta;
access_prepare(&srca, env, src, len, MMU_DATA_LOAD,
mmu_idx_from_as(src_as), ra);
access_prepare(&desta, env, dest, len, MMU_DATA_STORE,
mmu_idx_from_as(dest_as), ra);
access_memmove(env, &desta, &srca, ra);
}
return cc;
}
/* Decode a Unicode character. A return value < 0 indicates success, storing
the UTF-32 result into OCHAR and the input length into OLEN. A return
value >= 0 indicates failure, and the CC value to be returned. */
typedef int (*decode_unicode_fn)(CPUS390XState *env, uint64_t addr,
uint64_t ilen, bool enh_check, uintptr_t ra,
uint32_t *ochar, uint32_t *olen);
/* Encode a Unicode character. A return value < 0 indicates success, storing
the bytes into ADDR and the output length into OLEN. A return value >= 0
indicates failure, and the CC value to be returned. */
typedef int (*encode_unicode_fn)(CPUS390XState *env, uint64_t addr,
uint64_t ilen, uintptr_t ra, uint32_t c,
uint32_t *olen);
static int decode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
bool enh_check, uintptr_t ra,
uint32_t *ochar, uint32_t *olen)
{
uint8_t s0, s1, s2, s3;
uint32_t c, l;
if (ilen < 1) {
return 0;
}
s0 = cpu_ldub_data_ra(env, addr, ra);
if (s0 <= 0x7f) {
/* one byte character */
l = 1;
c = s0;
} else if (s0 <= (enh_check ? 0xc1 : 0xbf)) {
/* invalid character */
return 2;
} else if (s0 <= 0xdf) {
/* two byte character */
l = 2;
if (ilen < 2) {
return 0;
}
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
c = s0 & 0x1f;
c = (c << 6) | (s1 & 0x3f);
if (enh_check && (s1 & 0xc0) != 0x80) {
return 2;
}
} else if (s0 <= 0xef) {
/* three byte character */
l = 3;
if (ilen < 3) {
return 0;
}
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
s2 = cpu_ldub_data_ra(env, addr + 2, ra);
c = s0 & 0x0f;
c = (c << 6) | (s1 & 0x3f);
c = (c << 6) | (s2 & 0x3f);
/* Fold the byte-by-byte range descriptions in the PoO into
tests against the complete value. It disallows encodings
that could be smaller, and the UTF-16 surrogates. */
if (enh_check
&& ((s1 & 0xc0) != 0x80
|| (s2 & 0xc0) != 0x80
|| c < 0x1000
|| (c >= 0xd800 && c <= 0xdfff))) {
return 2;
}
} else if (s0 <= (enh_check ? 0xf4 : 0xf7)) {
/* four byte character */
l = 4;
if (ilen < 4) {
return 0;
}
s1 = cpu_ldub_data_ra(env, addr + 1, ra);
s2 = cpu_ldub_data_ra(env, addr + 2, ra);
s3 = cpu_ldub_data_ra(env, addr + 3, ra);
c = s0 & 0x07;
c = (c << 6) | (s1 & 0x3f);
c = (c << 6) | (s2 & 0x3f);
c = (c << 6) | (s3 & 0x3f);
/* See above. */
if (enh_check
&& ((s1 & 0xc0) != 0x80
|| (s2 & 0xc0) != 0x80
|| (s3 & 0xc0) != 0x80
|| c < 0x010000
|| c > 0x10ffff)) {
return 2;
}
} else {
/* invalid character */
return 2;
}
*ochar = c;
*olen = l;
return -1;
}
static int decode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
bool enh_check, uintptr_t ra,
uint32_t *ochar, uint32_t *olen)
{
uint16_t s0, s1;
uint32_t c, l;
if (ilen < 2) {
return 0;
}
s0 = cpu_lduw_data_ra(env, addr, ra);
if ((s0 & 0xfc00) != 0xd800) {
/* one word character */
l = 2;
c = s0;
} else {
/* two word character */
l = 4;
if (ilen < 4) {
return 0;
}
s1 = cpu_lduw_data_ra(env, addr + 2, ra);
c = extract32(s0, 6, 4) + 1;
c = (c << 6) | (s0 & 0x3f);
c = (c << 10) | (s1 & 0x3ff);
if (enh_check && (s1 & 0xfc00) != 0xdc00) {
/* invalid surrogate character */
return 2;
}
}
*ochar = c;
*olen = l;
return -1;
}
static int decode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
bool enh_check, uintptr_t ra,
uint32_t *ochar, uint32_t *olen)
{
uint32_t c;
if (ilen < 4) {
return 0;
}
c = cpu_ldl_data_ra(env, addr, ra);
if ((c >= 0xd800 && c <= 0xdbff) || c > 0x10ffff) {
/* invalid unicode character */
return 2;
}
*ochar = c;
*olen = 4;
return -1;
}
static int encode_utf8(CPUS390XState *env, uint64_t addr, uint64_t ilen,
uintptr_t ra, uint32_t c, uint32_t *olen)
{
uint8_t d[4];
uint32_t l, i;
if (c <= 0x7f) {
/* one byte character */
l = 1;
d[0] = c;
} else if (c <= 0x7ff) {
/* two byte character */
l = 2;
d[1] = 0x80 | extract32(c, 0, 6);
d[0] = 0xc0 | extract32(c, 6, 5);
} else if (c <= 0xffff) {
/* three byte character */
l = 3;
d[2] = 0x80 | extract32(c, 0, 6);
d[1] = 0x80 | extract32(c, 6, 6);
d[0] = 0xe0 | extract32(c, 12, 4);
} else {
/* four byte character */
l = 4;
d[3] = 0x80 | extract32(c, 0, 6);
d[2] = 0x80 | extract32(c, 6, 6);
d[1] = 0x80 | extract32(c, 12, 6);
d[0] = 0xf0 | extract32(c, 18, 3);
}
if (ilen < l) {
return 1;
}
for (i = 0; i < l; ++i) {
cpu_stb_data_ra(env, addr + i, d[i], ra);
}
*olen = l;
return -1;
}
static int encode_utf16(CPUS390XState *env, uint64_t addr, uint64_t ilen,
uintptr_t ra, uint32_t c, uint32_t *olen)
{
uint16_t d0, d1;
if (c <= 0xffff) {
/* one word character */
if (ilen < 2) {
return 1;
}
cpu_stw_data_ra(env, addr, c, ra);
*olen = 2;
} else {
/* two word character */
if (ilen < 4) {
return 1;
}
d1 = 0xdc00 | extract32(c, 0, 10);
d0 = 0xd800 | extract32(c, 10, 6);
d0 = deposit32(d0, 6, 4, extract32(c, 16, 5) - 1);
cpu_stw_data_ra(env, addr + 0, d0, ra);
cpu_stw_data_ra(env, addr + 2, d1, ra);
*olen = 4;
}
return -1;
}
static int encode_utf32(CPUS390XState *env, uint64_t addr, uint64_t ilen,
uintptr_t ra, uint32_t c, uint32_t *olen)
{
if (ilen < 4) {
return 1;
}
cpu_stl_data_ra(env, addr, c, ra);
*olen = 4;
return -1;
}
static inline uint32_t convert_unicode(CPUS390XState *env, uint32_t r1,
uint32_t r2, uint32_t m3, uintptr_t ra,
decode_unicode_fn decode,
encode_unicode_fn encode)
{
uint64_t dst = get_address(env, r1);
uint64_t dlen = get_length(env, r1 + 1);
uint64_t src = get_address(env, r2);
uint64_t slen = get_length(env, r2 + 1);
bool enh_check = m3 & 1;
int cc, i;
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 256. */
for (i = 0; i < 256; ++i) {
uint32_t c, ilen, olen;
cc = decode(env, src, slen, enh_check, ra, &c, &ilen);
if (unlikely(cc >= 0)) {
break;
}
cc = encode(env, dst, dlen, ra, c, &olen);
if (unlikely(cc >= 0)) {
break;
}
src += ilen;
slen -= ilen;
dst += olen;
dlen -= olen;
cc = 3;
}
set_address(env, r1, dst);
set_length(env, r1 + 1, dlen);
set_address(env, r2, src);
set_length(env, r2 + 1, slen);
return cc;
}
uint32_t HELPER(cu12)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf8, encode_utf16);
}
uint32_t HELPER(cu14)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf8, encode_utf32);
}
uint32_t HELPER(cu21)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf16, encode_utf8);
}
uint32_t HELPER(cu24)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf16, encode_utf32);
}
uint32_t HELPER(cu41)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf32, encode_utf8);
}
uint32_t HELPER(cu42)(CPUS390XState *env, uint32_t r1, uint32_t r2, uint32_t m3)
{
return convert_unicode(env, r1, r2, m3, GETPC(),
decode_utf32, encode_utf16);
}
void probe_write_access(CPUS390XState *env, uint64_t addr, uint64_t len,
uintptr_t ra)
{
/* test the actual access, not just any access to the page due to LAP */
while (len) {
const uint64_t pagelen = -(addr | TARGET_PAGE_MASK);
const uint64_t curlen = MIN(pagelen, len);
probe_write(env, addr, curlen, cpu_mmu_index(env, false), ra);
addr = wrap_address(env, addr + curlen);
len -= curlen;
}
}
void HELPER(probe_write_access)(CPUS390XState *env, uint64_t addr, uint64_t len)
{
probe_write_access(env, addr, len, GETPC());
}