qemu/tests/tcg/hexagon/fpstuff.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

732 lines
20 KiB
C
Raw Normal View History

/*
* Copyright(c) 2020-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* This test checks various FP operations performed on Hexagon
*/
#include <stdio.h>
#include <stdint.h>
#include <float.h>
int err;
#include "hex_test.h"
static void check_fpstatus_bit(uint32_t usr, uint32_t expect, uint32_t flag,
const char *name)
{
uint32_t bit = 1 << flag;
if ((usr & bit) != (expect & bit)) {
printf("ERROR %s: usr = %d, expect = %d\n", name,
(usr >> flag) & 1, (expect >> flag) & 1);
err++;
}
}
static void check_fpstatus(uint32_t usr, uint32_t expect)
{
check_fpstatus_bit(usr, expect, USR_FPINVF_BIT, "Invalid");
check_fpstatus_bit(usr, expect, USR_FPDBZF_BIT, "Div by zero");
check_fpstatus_bit(usr, expect, USR_FPOVFF_BIT, "Overflow");
check_fpstatus_bit(usr, expect, USR_FPUNFF_BIT, "Underflow");
check_fpstatus_bit(usr, expect, USR_FPINPF_BIT, "Inexact");
}
static void check_compare_exception(void)
{
uint32_t cmp;
uint32_t usr;
/* Check that FP compares are quiet (don't raise any exceptions) */
asm (CLEAR_FPSTATUS
"p0 = sfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = sfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.eq(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.gt(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"p0 = dfcmp.ge(%2, %3)\n\t"
"%0 = p0\n\t"
"%1 = usr\n\t"
: "=r"(cmp), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "p0", "usr");
check32(cmp, 0);
check_fpstatus(usr, 0);
}
static void check_sfminmax(void)
{
uint32_t minmax;
uint32_t usr;
/*
* Execute sfmin/sfmax instructions with one operand as NaN
* Check that
* Result is the other operand
* Invalid bit in USR is not set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(minmax, SF_any);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(minmax, SF_any);
check_fpstatus(usr, 0);
/*
* Execute sfmin/sfmax instructions with both operands NaN
* Check that
* Result is SF_HEX_NaN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = sfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_QNaN), "r"(SF_QNaN)
: "r2", "usr");
check32(minmax, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = sfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(SF_QNaN), "r"(SF_QNaN)
: "r2", "usr");
check32(minmax, SF_HEX_NaN);
check_fpstatus(usr, 0);
}
static void check_dfminmax(void)
{
uint64_t minmax;
uint32_t usr;
/*
* Execute dfmin/dfmax instructions with one operand as SNaN
* Check that
* Result is the other operand
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_any)
: "r2", "usr");
check64(minmax, DF_any);
check_fpstatus(usr, USR_FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_any)
: "r2", "usr");
check64(minmax, DF_any);
check_fpstatus(usr, USR_FPINVF);
/*
* Execute dfmin/dfmax instructions with one operand as QNaN
* Check that
* Result is the other operand
* No bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "usr");
check64(minmax, DF_any);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "usr");
check64(minmax, DF_any);
check_fpstatus(usr, 0);
/*
* Execute dfmin/dfmax instructions with both operands SNaN
* Check that
* Result is DF_HEX_NaN
* Invalid bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NaN);
check_fpstatus(usr, USR_FPINVF);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_SNaN), "r"(DF_SNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NaN);
check_fpstatus(usr, USR_FPINVF);
/*
* Execute dfmin/dfmax instructions with both operands QNaN
* Check that
* Result is DF_HEX_NaN
* No bit in USR is set
*/
asm (CLEAR_FPSTATUS
"%0 = dfmin(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NaN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0 = dfmax(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(minmax), "=r"(usr) : "r"(DF_QNaN), "r"(DF_QNaN)
: "r2", "usr");
check64(minmax, DF_HEX_NaN);
check_fpstatus(usr, 0);
}
static void check_sfrecipa(void)
{
uint32_t result;
uint32_t usr;
uint32_t pred;
/*
* Check that sfrecipa doesn't set status bits when
* a NaN with bit 22 non-zero is passed
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_any), "r"(SF_QNaN)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %2)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_QNaN)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, 0);
/*
* Check that sfrecipa doesn't set status bits when
* a NaN with bit 22 zero is passed
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_QNaN_special), "r"(SF_any)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, USR_FPINVF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_any), "r"(SF_QNaN_special)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, USR_FPINVF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %2)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(SF_QNaN_special)
: "r2", "p0", "usr");
check32(result, SF_HEX_NaN);
check_fpstatus(usr, USR_FPINVF);
/*
* Check that sfrecipa properly sets divid-by-zero
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(0x885dc960), "r"(0x80000000)
: "r2", "p0", "usr");
check32(result, 0x3f800000);
check_fpstatus(usr, USR_FPDBZF);
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(result), "=r"(usr) : "r"(0x7f800000), "r"(SF_zero)
: "r2", "p0", "usr");
check32(result, 0x3f800000);
check_fpstatus(usr, 0);
/*
* Check that sfrecipa properly handles denorm
*/
asm (CLEAR_FPSTATUS
"%0,p0 = sfrecipa(%2, %3)\n\t"
"%1 = p0\n\t"
: "=r"(result), "=r"(pred) : "r"(SF_denorm), "r"(SF_random)
: "p0", "usr");
check32(result, 0x6a920001);
check32(pred, 0x80);
}
static void check_canonical_NaN(void)
{
uint32_t sf_result;
uint64_t df_result;
uint32_t usr;
/* Check that each FP instruction properly returns SF_HEX_NaN/DF_HEX_NaN */
asm(CLEAR_FPSTATUS
"%0 = sfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
sf_result = SF_zero;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
sf_result = SF_zero;
asm(CLEAR_FPSTATUS
"p0 = !cmp.eq(r0, r0)\n\t"
"%0 += sfmpy(%2, %3, p0):scale\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr", "p0");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
sf_result = SF_zero;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3)\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
sf_result = SF_zero;
asm(CLEAR_FPSTATUS
"%0 += sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
sf_result = SF_zero;
asm(CLEAR_FPSTATUS
"%0 -= sfmpy(%2, %3):lib\n\t"
"%1 = usr\n\t"
: "+r"(sf_result), "=r"(usr) : "r"(SF_QNaN), "r"(SF_any)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_df2sf(%2)\n\t"
"%1 = usr\n\t"
: "=r"(sf_result), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(sf_result, SF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfadd(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "usr");
check64(df_result, DF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = dfsub(%2, %3)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(DF_QNaN), "r"(DF_any)
: "r2", "usr");
check64(df_result, DF_HEX_NaN);
check_fpstatus(usr, 0);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2df(%2)\n\t"
"%1 = usr\n\t"
: "=r"(df_result), "=r"(usr) : "r"(SF_QNaN)
: "r2", "usr");
check64(df_result, DF_HEX_NaN);
check_fpstatus(usr, 0);
}
static void check_invsqrta(void)
{
uint32_t result;
uint32_t predval;
asm volatile("%0,p0 = sfinvsqrta(%2)\n\t"
"%1 = p0\n\t"
: "+r"(result), "=r"(predval)
: "r"(0x7f800000)
: "p0");
check32(result, 0xff800000);
check32(predval, 0x0);
}
static void check_sffixupn(void)
{
uint32_t result;
/* Check that sffixupn properly deals with denorm */
asm volatile("%0 = sffixupn(%1, %2)\n\t"
: "=r"(result)
: "r"(SF_random), "r"(SF_denorm));
check32(result, 0x246001d6);
}
static void check_sffixupd(void)
{
uint32_t result;
/* Check that sffixupd properly deals with denorm */
asm volatile("%0 = sffixupd(%1, %2)\n\t"
: "=r"(result)
: "r"(SF_denorm), "r"(SF_random));
check32(result, 0x146001d6);
}
static void check_sffms(void)
{
uint32_t result;
/* Check that sffms properly deals with -0 */
result = SF_zero_neg;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_zero), "r"(SF_zero)
: "r12", "r8");
check32(result, SF_zero_neg);
result = SF_zero;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_zero_neg), "r"(SF_zero)
: "r12", "r8");
check32(result, SF_zero);
result = SF_zero;
asm ("%0 -= sfmpy(%1 , %2)\n\t"
: "+r"(result)
: "r"(SF_zero), "r"(SF_zero_neg)
: "r12", "r8");
check32(result, SF_zero);
}
static void check_float2int_convs()
{
uint32_t res32;
uint64_t res64;
uint32_t usr;
/*
* Check that the various forms of float-to-unsigned
* check sign before rounding
*/
asm(CLEAR_FPSTATUS
"%0 = convert_sf2uw(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2uw(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2ud(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2ud(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2uw(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2uw(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check32(res32, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2ud(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2ud(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_small_neg)
: "r2", "usr");
check64(res64, 0);
check_fpstatus(usr, USR_FPINVF);
/*
* Check that the various forms of float-to-signed return -1 for NaN
*/
asm(CLEAR_FPSTATUS
"%0 = convert_sf2w(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2w(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(SF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2d(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_sf2d(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(SF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2w(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2w(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res32), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check32(res32, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2d(%2)\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, USR_FPINVF);
asm(CLEAR_FPSTATUS
"%0 = convert_df2d(%2):chop\n\t"
"%1 = usr\n\t"
: "=r"(res64), "=r"(usr) : "r"(DF_QNaN)
: "r2", "usr");
check64(res64, -1);
check_fpstatus(usr, USR_FPINVF);
}
static void check_float_consts(void)
{
uint32_t res32;
uint64_t res64;
asm("%0 = sfmake(#%1):neg\n\t" : "=r"(res32) : "i"(0xf));
check32(res32, 0xbc9e0000);
asm("%0 = sfmake(#%1):pos\n\t" : "=r"(res32) : "i"(0xf));
check32(res32, 0x3c9e0000);
asm("%0 = dfmake(#%1):neg\n\t" : "=r"(res64) : "i"(0xf));
check64(res64, 0xbf93c00000000000ULL);
asm("%0 = dfmake(#%1):pos\n\t" : "=r"(res64) : "i"(0xf));
check64(res64, 0x3f93c00000000000ULL);
}
static inline uint64_t dfmpyll(double x, double y)
{
uint64_t res64;
asm("%0 = dfmpyll(%1, %2)" : "=r"(res64) : "r"(x), "r"(y));
return res64;
}
static inline uint64_t dfmpylh(double acc, double x, double y)
{
uint64_t res64 = *(uint64_t *)&acc;
asm("%0 += dfmpylh(%1, %2)" : "+r"(res64) : "r"(x), "r"(y));
return res64;
}
static void check_dfmpyxx(void)
{
uint64_t res64;
res64 = dfmpyll(DBL_MIN, DBL_MIN);
check64(res64, 0ULL);
res64 = dfmpyll(-1.0, DBL_MIN);
check64(res64, 0ULL);
res64 = dfmpyll(DBL_MAX, DBL_MAX);
check64(res64, 0x1fffffffdULL);
res64 = dfmpylh(DBL_MIN, DBL_MIN, DBL_MIN);
check64(res64, 0x10000000000000ULL);
res64 = dfmpylh(-1.0, DBL_MAX, DBL_MIN);
check64(res64, 0xc00fffffffe00000ULL);
res64 = dfmpylh(DBL_MAX, 0.0, -1.0);
check64(res64, 0x7fefffffffffffffULL);
}
int main()
{
check_compare_exception();
check_sfminmax();
check_dfminmax();
check_sfrecipa();
check_canonical_NaN();
check_invsqrta();
check_sffixupn();
check_sffixupd();
check_sffms();
check_float2int_convs();
check_float_consts();
check_dfmpyxx();
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}