qemu/hw/ne2000.c

779 lines
23 KiB
C
Raw Normal View History

/*
* QEMU NE2000 emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "net.h"
#include "ne2000.h"
#include "loader.h"
/* debug NE2000 card */
//#define DEBUG_NE2000
#define MAX_ETH_FRAME_SIZE 1514
#define E8390_CMD 0x00 /* The command register (for all pages) */
/* Page 0 register offsets. */
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
#define EN0_TSR 0x04 /* Transmit status reg RD */
#define EN0_TPSR 0x04 /* Transmit starting page WR */
#define EN0_NCR 0x05 /* Number of collision reg RD */
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
#define EN0_FIFO 0x06 /* FIFO RD */
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
#define EN0_RSR 0x0c /* rx status reg RD */
#define EN0_RXCR 0x0c /* RX configuration reg WR */
#define EN0_TXCR 0x0d /* TX configuration reg WR */
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
#define EN0_DCFG 0x0e /* Data configuration reg WR */
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
#define EN0_IMR 0x0f /* Interrupt mask reg WR */
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
#define EN1_PHYS 0x11
#define EN1_CURPAG 0x17
#define EN1_MULT 0x18
#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
#define EN3_CONFIG0 0x33
#define EN3_CONFIG1 0x34
#define EN3_CONFIG2 0x35
#define EN3_CONFIG3 0x36
/* Register accessed at EN_CMD, the 8390 base addr. */
#define E8390_STOP 0x01 /* Stop and reset the chip */
#define E8390_START 0x02 /* Start the chip, clear reset */
#define E8390_TRANS 0x04 /* Transmit a frame */
#define E8390_RREAD 0x08 /* Remote read */
#define E8390_RWRITE 0x10 /* Remote write */
#define E8390_NODMA 0x20 /* Remote DMA */
#define E8390_PAGE0 0x00 /* Select page chip registers */
#define E8390_PAGE1 0x40 /* using the two high-order bits */
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
/* Bits in EN0_ISR - Interrupt status register */
#define ENISR_RX 0x01 /* Receiver, no error */
#define ENISR_TX 0x02 /* Transmitter, no error */
#define ENISR_RX_ERR 0x04 /* Receiver, with error */
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
#define ENISR_COUNTERS 0x20 /* Counters need emptying */
#define ENISR_RDC 0x40 /* remote dma complete */
#define ENISR_RESET 0x80 /* Reset completed */
#define ENISR_ALL 0x3f /* Interrupts we will enable */
/* Bits in received packet status byte and EN0_RSR*/
#define ENRSR_RXOK 0x01 /* Received a good packet */
#define ENRSR_CRC 0x02 /* CRC error */
#define ENRSR_FAE 0x04 /* frame alignment error */
#define ENRSR_FO 0x08 /* FIFO overrun */
#define ENRSR_MPA 0x10 /* missed pkt */
#define ENRSR_PHY 0x20 /* physical/multicast address */
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
#define ENRSR_DEF 0x80 /* deferring */
/* Transmitted packet status, EN0_TSR. */
#define ENTSR_PTX 0x01 /* Packet transmitted without error */
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
#define ENTSR_COL 0x04 /* The transmit collided at least once. */
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
typedef struct PCINE2000State {
PCIDevice dev;
NE2000State ne2000;
} PCINE2000State;
void ne2000_reset(NE2000State *s)
{
int i;
s->isr = ENISR_RESET;
memcpy(s->mem, &s->c.macaddr, 6);
s->mem[14] = 0x57;
s->mem[15] = 0x57;
/* duplicate prom data */
for(i = 15;i >= 0; i--) {
s->mem[2 * i] = s->mem[i];
s->mem[2 * i + 1] = s->mem[i];
}
}
static void ne2000_update_irq(NE2000State *s)
{
int isr;
isr = (s->isr & s->imr) & 0x7f;
#if defined(DEBUG_NE2000)
printf("NE2000: Set IRQ to %d (%02x %02x)\n",
isr ? 1 : 0, s->isr, s->imr);
#endif
qemu_set_irq(s->irq, (isr != 0));
}
#define POLYNOMIAL 0x04c11db6
/* From FreeBSD */
/* XXX: optimize */
static int compute_mcast_idx(const uint8_t *ep)
{
uint32_t crc;
int carry, i, j;
uint8_t b;
crc = 0xffffffff;
for (i = 0; i < 6; i++) {
b = *ep++;
for (j = 0; j < 8; j++) {
carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
crc <<= 1;
b >>= 1;
if (carry)
crc = ((crc ^ POLYNOMIAL) | carry);
}
}
return (crc >> 26);
}
static int ne2000_buffer_full(NE2000State *s)
{
int avail, index, boundary;
index = s->curpag << 8;
boundary = s->boundary << 8;
if (index < boundary)
avail = boundary - index;
else
avail = (s->stop - s->start) - (index - boundary);
if (avail < (MAX_ETH_FRAME_SIZE + 4))
return 1;
return 0;
}
int ne2000_can_receive(VLANClientState *nc)
{
NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
if (s->cmd & E8390_STOP)
return 1;
return !ne2000_buffer_full(s);
}
#define MIN_BUF_SIZE 60
ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
{
NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
int size = size_;
uint8_t *p;
unsigned int total_len, next, avail, len, index, mcast_idx;
uint8_t buf1[60];
static const uint8_t broadcast_macaddr[6] =
{ 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
#if defined(DEBUG_NE2000)
printf("NE2000: received len=%d\n", size);
#endif
if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
return -1;
/* XXX: check this */
if (s->rxcr & 0x10) {
/* promiscuous: receive all */
} else {
if (!memcmp(buf, broadcast_macaddr, 6)) {
/* broadcast address */
if (!(s->rxcr & 0x04))
return size;
} else if (buf[0] & 0x01) {
/* multicast */
if (!(s->rxcr & 0x08))
return size;
mcast_idx = compute_mcast_idx(buf);
if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
return size;
} else if (s->mem[0] == buf[0] &&
s->mem[2] == buf[1] &&
s->mem[4] == buf[2] &&
s->mem[6] == buf[3] &&
s->mem[8] == buf[4] &&
s->mem[10] == buf[5]) {
/* match */
} else {
return size;
}
}
/* if too small buffer, then expand it */
if (size < MIN_BUF_SIZE) {
memcpy(buf1, buf, size);
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
buf = buf1;
size = MIN_BUF_SIZE;
}
index = s->curpag << 8;
/* 4 bytes for header */
total_len = size + 4;
/* address for next packet (4 bytes for CRC) */
next = index + ((total_len + 4 + 255) & ~0xff);
if (next >= s->stop)
next -= (s->stop - s->start);
/* prepare packet header */
p = s->mem + index;
s->rsr = ENRSR_RXOK; /* receive status */
/* XXX: check this */
if (buf[0] & 0x01)
s->rsr |= ENRSR_PHY;
p[0] = s->rsr;
p[1] = next >> 8;
p[2] = total_len;
p[3] = total_len >> 8;
index += 4;
/* write packet data */
while (size > 0) {
if (index <= s->stop)
avail = s->stop - index;
else
avail = 0;
len = size;
if (len > avail)
len = avail;
memcpy(s->mem + index, buf, len);
buf += len;
index += len;
if (index == s->stop)
index = s->start;
size -= len;
}
s->curpag = next >> 8;
/* now we can signal we have received something */
s->isr |= ENISR_RX;
ne2000_update_irq(s);
return size_;
}
void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
int offset, page, index;
addr &= 0xf;
#ifdef DEBUG_NE2000
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
#endif
if (addr == E8390_CMD) {
/* control register */
s->cmd = val;
if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
s->isr &= ~ENISR_RESET;
/* test specific case: zero length transfer */
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
s->rcnt == 0) {
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
}
if (val & E8390_TRANS) {
index = (s->tpsr << 8);
/* XXX: next 2 lines are a hack to make netware 3.11 work */
if (index >= NE2000_PMEM_END)
index -= NE2000_PMEM_SIZE;
/* fail safe: check range on the transmitted length */
if (index + s->tcnt <= NE2000_PMEM_END) {
qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
}
/* signal end of transfer */
s->tsr = ENTSR_PTX;
s->isr |= ENISR_TX;
s->cmd &= ~E8390_TRANS;
ne2000_update_irq(s);
}
}
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_STARTPG:
s->start = val << 8;
break;
case EN0_STOPPG:
s->stop = val << 8;
break;
case EN0_BOUNDARY:
s->boundary = val;
break;
case EN0_IMR:
s->imr = val;
ne2000_update_irq(s);
break;
case EN0_TPSR:
s->tpsr = val;
break;
case EN0_TCNTLO:
s->tcnt = (s->tcnt & 0xff00) | val;
break;
case EN0_TCNTHI:
s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
break;
case EN0_RSARLO:
s->rsar = (s->rsar & 0xff00) | val;
break;
case EN0_RSARHI:
s->rsar = (s->rsar & 0x00ff) | (val << 8);
break;
case EN0_RCNTLO:
s->rcnt = (s->rcnt & 0xff00) | val;
break;
case EN0_RCNTHI:
s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
break;
case EN0_RXCR:
s->rxcr = val;
break;
case EN0_DCFG:
s->dcfg = val;
break;
case EN0_ISR:
s->isr &= ~(val & 0x7f);
ne2000_update_irq(s);
break;
case EN1_PHYS ... EN1_PHYS + 5:
s->phys[offset - EN1_PHYS] = val;
break;
case EN1_CURPAG:
s->curpag = val;
break;
case EN1_MULT ... EN1_MULT + 7:
s->mult[offset - EN1_MULT] = val;
break;
}
}
}
uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int offset, page, ret;
addr &= 0xf;
if (addr == E8390_CMD) {
ret = s->cmd;
} else {
page = s->cmd >> 6;
offset = addr | (page << 4);
switch(offset) {
case EN0_TSR:
ret = s->tsr;
break;
case EN0_BOUNDARY:
ret = s->boundary;
break;
case EN0_ISR:
ret = s->isr;
break;
case EN0_RSARLO:
ret = s->rsar & 0x00ff;
break;
case EN0_RSARHI:
ret = s->rsar >> 8;
break;
case EN1_PHYS ... EN1_PHYS + 5:
ret = s->phys[offset - EN1_PHYS];
break;
case EN1_CURPAG:
ret = s->curpag;
break;
case EN1_MULT ... EN1_MULT + 7:
ret = s->mult[offset - EN1_MULT];
break;
case EN0_RSR:
ret = s->rsr;
break;
case EN2_STARTPG:
ret = s->start >> 8;
break;
case EN2_STOPPG:
ret = s->stop >> 8;
break;
case EN0_RTL8029ID0:
ret = 0x50;
break;
case EN0_RTL8029ID1:
ret = 0x43;
break;
case EN3_CONFIG0:
ret = 0; /* 10baseT media */
break;
case EN3_CONFIG2:
ret = 0x40; /* 10baseT active */
break;
case EN3_CONFIG3:
ret = 0x40; /* Full duplex */
break;
default:
ret = 0x00;
break;
}
}
#ifdef DEBUG_NE2000
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
#endif
return ret;
}
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
uint32_t val)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
s->mem[addr] = val;
}
}
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
*(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
}
}
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
uint32_t val)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
}
}
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
{
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return s->mem[addr];
} else {
return 0xff;
}
}
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le16_to_cpu(*(uint16_t *)(s->mem + addr));
} else {
return 0xffff;
}
}
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
{
addr &= ~1; /* XXX: check exact behaviour if not even */
if (addr < 32 ||
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
return le32_to_cpupu((uint32_t *)(s->mem + addr));
} else {
return 0xffffffff;
}
}
static inline void ne2000_dma_update(NE2000State *s, int len)
{
s->rsar += len;
/* wrap */
/* XXX: check what to do if rsar > stop */
if (s->rsar == s->stop)
s->rsar = s->start;
if (s->rcnt <= len) {
s->rcnt = 0;
/* signal end of transfer */
s->isr |= ENISR_RDC;
ne2000_update_irq(s);
} else {
s->rcnt -= len;
}
}
void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic write val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
if (s->dcfg & 0x01) {
/* 16 bit access */
ne2000_mem_writew(s, s->rsar, val);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ne2000_mem_writeb(s, s->rsar, val);
ne2000_dma_update(s, 1);
}
}
uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
if (s->dcfg & 0x01) {
/* 16 bit access */
ret = ne2000_mem_readw(s, s->rsar);
ne2000_dma_update(s, 2);
} else {
/* 8 bit access */
ret = ne2000_mem_readb(s, s->rsar);
ne2000_dma_update(s, 1);
}
#ifdef DEBUG_NE2000
printf("NE2000: asic read val=0x%04x\n", ret);
#endif
return ret;
}
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
{
NE2000State *s = opaque;
#ifdef DEBUG_NE2000
printf("NE2000: asic writel val=0x%04x\n", val);
#endif
if (s->rcnt == 0)
return;
/* 32 bit access */
ne2000_mem_writel(s, s->rsar, val);
ne2000_dma_update(s, 4);
}
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
int ret;
/* 32 bit access */
ret = ne2000_mem_readl(s, s->rsar);
ne2000_dma_update(s, 4);
#ifdef DEBUG_NE2000
printf("NE2000: asic readl val=0x%04x\n", ret);
#endif
return ret;
}
void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
{
/* nothing to do (end of reset pulse) */
}
uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
{
NE2000State *s = opaque;
ne2000_reset(s);
return 0;
}
static int ne2000_post_load(void* opaque, int version_id)
{
NE2000State* s = opaque;
if (version_id < 2) {
s->rxcr = 0x0c;
}
return 0;
}
const VMStateDescription vmstate_ne2000 = {
.name = "ne2000",
.version_id = 2,
.minimum_version_id = 0,
.minimum_version_id_old = 0,
.post_load = ne2000_post_load,
.fields = (VMStateField []) {
VMSTATE_UINT8_V(rxcr, NE2000State, 2),
VMSTATE_UINT8(cmd, NE2000State),
VMSTATE_UINT32(start, NE2000State),
VMSTATE_UINT32(stop, NE2000State),
VMSTATE_UINT8(boundary, NE2000State),
VMSTATE_UINT8(tsr, NE2000State),
VMSTATE_UINT8(tpsr, NE2000State),
VMSTATE_UINT16(tcnt, NE2000State),
VMSTATE_UINT16(rcnt, NE2000State),
VMSTATE_UINT32(rsar, NE2000State),
VMSTATE_UINT8(rsr, NE2000State),
VMSTATE_UINT8(isr, NE2000State),
VMSTATE_UINT8(dcfg, NE2000State),
VMSTATE_UINT8(imr, NE2000State),
VMSTATE_BUFFER(phys, NE2000State),
VMSTATE_UINT8(curpag, NE2000State),
VMSTATE_BUFFER(mult, NE2000State),
VMSTATE_UNUSED(4), /* was irq */
VMSTATE_BUFFER(mem, NE2000State),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_pci_ne2000 = {
.name = "ne2000",
.version_id = 3,
.minimum_version_id = 3,
.minimum_version_id_old = 3,
.fields = (VMStateField []) {
VMSTATE_PCI_DEVICE(dev, PCINE2000State),
VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
VMSTATE_END_OF_LIST()
}
};
/***********************************************************/
/* PCI NE2000 definitions */
static void ne2000_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
NE2000State *s = &d->ne2000;
register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
}
static void ne2000_cleanup(VLANClientState *nc)
{
NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
s->nic = NULL;
}
static NetClientInfo net_ne2000_info = {
.type = NET_CLIENT_TYPE_NIC,
.size = sizeof(NICState),
.can_receive = ne2000_can_receive,
.receive = ne2000_receive,
.cleanup = ne2000_cleanup,
};
static int pci_ne2000_init(PCIDevice *pci_dev)
{
PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
NE2000State *s;
uint8_t *pci_conf;
pci_conf = d->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
pci_conf[0x3d] = 1; // interrupt pin 0
pci_register_bar(&d->dev, 0, 0x100,
PCI_BASE_ADDRESS_SPACE_IO, ne2000_map);
s = &d->ne2000;
s->irq = d->dev.irq[0];
qemu_macaddr_default_if_unset(&s->c.macaddr);
ne2000_reset(s);
s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
pci_dev->qdev.info->name, pci_dev->qdev.id, s);
qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
if (!pci_dev->qdev.hotplugged) {
static int loaded = 0;
if (!loaded) {
rom_add_option("pxe-ne2k_pci.bin");
loaded = 1;
}
}
return 0;
}
static int pci_ne2000_exit(PCIDevice *pci_dev)
{
PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
NE2000State *s = &d->ne2000;
qemu_del_vlan_client(&s->nic->nc);
return 0;
}
static PCIDeviceInfo ne2000_info = {
.qdev.name = "ne2k_pci",
.qdev.size = sizeof(PCINE2000State),
.qdev.vmsd = &vmstate_pci_ne2000,
.init = pci_ne2000_init,
.exit = pci_ne2000_exit,
.qdev.props = (Property[]) {
DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
DEFINE_PROP_END_OF_LIST(),
}
};
static void ne2000_register_devices(void)
{
pci_qdev_register(&ne2000_info);
}
device_init(ne2000_register_devices)