qemu/fpu/softfloat-native.c

528 lines
11 KiB
C
Raw Normal View History

/* Native implementation of soft float functions. Only a single status
context is supported */
#include "softfloat.h"
#include <math.h>
void set_float_rounding_mode(int val STATUS_PARAM)
{
STATUS(float_rounding_mode) = val;
#if defined(_BSD) && !defined(__APPLE__) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
fpsetround(val);
#elif defined(__arm__)
/* nothing to do */
#else
fesetround(val);
#endif
}
#ifdef FLOATX80
void set_floatx80_rounding_precision(int val STATUS_PARAM)
{
STATUS(floatx80_rounding_precision) = val;
}
#endif
#if defined(_BSD) || (defined(HOST_SOLARIS) && HOST_SOLARIS < 10)
#define lrint(d) ((int32_t)rint(d))
#define llrint(d) ((int64_t)rint(d))
#define lrintf(f) ((int32_t)rint(f))
#define llrintf(f) ((int64_t)rint(f))
#define sqrtf(f) ((float)sqrt(f))
#define remainderf(fa, fb) ((float)remainder(fa, fb))
#define rintf(f) ((float)rint(f))
#if !defined(__sparc__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
extern long double rintl(long double);
extern long double scalbnl(long double, int);
long long
llrintl(long double x) {
return ((long long) rintl(x));
}
long
lrintl(long double x) {
return ((long) rintl(x));
}
long double
ldexpl(long double x, int n) {
return (scalbnl(x, n));
}
#endif
#endif
#if defined(__powerpc__)
/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
double qemu_rint(double x)
{
double y = 4503599627370496.0;
if (fabs(x) >= y)
return x;
if (x < 0)
y = -y;
y = (x + y) - y;
if (y == 0.0)
y = copysign(y, x);
return y;
}
#define rint qemu_rint
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32(int v STATUS_PARAM)
{
return (float32)v;
}
float32 uint32_to_float32(unsigned int v STATUS_PARAM)
{
return (float32)v;
}
float64 int32_to_float64(int v STATUS_PARAM)
{
return (float64)v;
}
float64 uint32_to_float64(unsigned int v STATUS_PARAM)
{
return (float64)v;
}
#ifdef FLOATX80
floatx80 int32_to_floatx80(int v STATUS_PARAM)
{
return (floatx80)v;
}
#endif
float32 int64_to_float32( int64_t v STATUS_PARAM)
{
return (float32)v;
}
float32 uint64_to_float32( uint64_t v STATUS_PARAM)
{
return (float32)v;
}
float64 int64_to_float64( int64_t v STATUS_PARAM)
{
return (float64)v;
}
float64 uint64_to_float64( uint64_t v STATUS_PARAM)
{
return (float64)v;
}
#ifdef FLOATX80
floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
{
return (floatx80)v;
}
#endif
/* XXX: this code implements the x86 behaviour, not the IEEE one. */
#if HOST_LONG_BITS == 32
static inline int long_to_int32(long a)
{
return a;
}
#else
static inline int long_to_int32(long a)
{
if (a != (int32_t)a)
a = 0x80000000;
return a;
}
#endif
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision conversion routines.
*----------------------------------------------------------------------------*/
int float32_to_int32( float32 a STATUS_PARAM)
{
return long_to_int32(lrintf(a));
}
int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
{
return (int)a;
}
int64_t float32_to_int64( float32 a STATUS_PARAM)
{
return llrintf(a);
}
int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
{
return (int64_t)a;
}
float64 float32_to_float64( float32 a STATUS_PARAM)
{
return a;
}
#ifdef FLOATX80
floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
{
return a;
}
#endif
unsigned int float32_to_uint32( float32 a STATUS_PARAM)
{
int64_t v;
unsigned int res;
v = llrintf(a);
if (v < 0) {
res = 0;
} else if (v > 0xffffffff) {
res = 0xffffffff;
} else {
res = v;
}
return res;
}
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
{
int64_t v;
unsigned int res;
v = (int64_t)a;
if (v < 0) {
res = 0;
} else if (v > 0xffffffff) {
res = 0xffffffff;
} else {
res = v;
}
return res;
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE single-precision operations.
*----------------------------------------------------------------------------*/
float32 float32_round_to_int( float32 a STATUS_PARAM)
{
return rintf(a);
}
float32 float32_rem( float32 a, float32 b STATUS_PARAM)
{
return remainderf(a, b);
}
float32 float32_sqrt( float32 a STATUS_PARAM)
{
return sqrtf(a);
}
int float32_compare( float32 a, float32 b STATUS_PARAM )
{
if (a < b) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (a > b) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
{
if (isless(a, b)) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (isgreater(a, b)) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int float32_is_signaling_nan( float32 a1)
{
float32u u;
uint32_t a;
u.f = a1;
a = u.i;
return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
}
int float32_is_nan( float32 a1 )
{
float32u u;
uint64_t a;
u.f = a1;
a = u.i;
return ( 0xFF800000 < ( a<<1 ) );
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision conversion routines.
*----------------------------------------------------------------------------*/
int float64_to_int32( float64 a STATUS_PARAM)
{
return long_to_int32(lrint(a));
}
int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
{
return (int)a;
}
int64_t float64_to_int64( float64 a STATUS_PARAM)
{
return llrint(a);
}
int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
{
return (int64_t)a;
}
float32 float64_to_float32( float64 a STATUS_PARAM)
{
return a;
}
#ifdef FLOATX80
floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
{
return a;
}
#endif
#ifdef FLOAT128
float128 float64_to_float128( float64 a STATUS_PARAM)
{
return a;
}
#endif
unsigned int float64_to_uint32( float64 a STATUS_PARAM)
{
int64_t v;
unsigned int res;
v = llrint(a);
if (v < 0) {
res = 0;
} else if (v > 0xffffffff) {
res = 0xffffffff;
} else {
res = v;
}
return res;
}
unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
{
int64_t v;
unsigned int res;
v = (int64_t)a;
if (v < 0) {
res = 0;
} else if (v > 0xffffffff) {
res = 0xffffffff;
} else {
res = v;
}
return res;
}
uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
{
int64_t v;
v = llrint(a + (float64)INT64_MIN);
return v - INT64_MIN;
}
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
{
int64_t v;
v = (int64_t)(a + (float64)INT64_MIN);
return v - INT64_MIN;
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE double-precision operations.
*----------------------------------------------------------------------------*/
#if defined(__sun__) && defined(HOST_SOLARIS) && HOST_SOLARIS < 10
static inline float64 trunc(float64 x)
{
return x < 0 ? -floor(-x) : floor(x);
}
#endif
float64 float64_trunc_to_int( float64 a STATUS_PARAM )
{
return trunc(a);
}
float64 float64_round_to_int( float64 a STATUS_PARAM )
{
#if defined(__arm__)
switch(STATUS(float_rounding_mode)) {
default:
case float_round_nearest_even:
asm("rndd %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_down:
asm("rnddm %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_up:
asm("rnddp %0, %1" : "=f" (a) : "f"(a));
break;
case float_round_to_zero:
asm("rnddz %0, %1" : "=f" (a) : "f"(a));
break;
}
#else
return rint(a);
#endif
}
float64 float64_rem( float64 a, float64 b STATUS_PARAM)
{
return remainder(a, b);
}
float64 float64_sqrt( float64 a STATUS_PARAM)
{
return sqrt(a);
}
int float64_compare( float64 a, float64 b STATUS_PARAM )
{
if (a < b) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (a > b) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
{
if (isless(a, b)) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (isgreater(a, b)) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int float64_is_signaling_nan( float64 a1)
{
float64u u;
uint64_t a;
u.f = a1;
a = u.i;
return
( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
&& ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
}
int float64_is_nan( float64 a1 )
{
float64u u;
uint64_t a;
u.f = a1;
a = u.i;
return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
}
#ifdef FLOATX80
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision conversion routines.
*----------------------------------------------------------------------------*/
int floatx80_to_int32( floatx80 a STATUS_PARAM)
{
return long_to_int32(lrintl(a));
}
int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
{
return (int)a;
}
int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
{
return llrintl(a);
}
int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
{
return (int64_t)a;
}
float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
{
return a;
}
float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
{
return a;
}
/*----------------------------------------------------------------------------
| Software IEC/IEEE extended double-precision operations.
*----------------------------------------------------------------------------*/
floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
{
return rintl(a);
}
floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
{
return remainderl(a, b);
}
floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
{
return sqrtl(a);
}
int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
{
if (a < b) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (a > b) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
{
if (isless(a, b)) {
return float_relation_less;
} else if (a == b) {
return float_relation_equal;
} else if (isgreater(a, b)) {
return float_relation_greater;
} else {
return float_relation_unordered;
}
}
int floatx80_is_signaling_nan( floatx80 a1)
{
floatx80u u;
uint64_t aLow;
u.f = a1;
aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
return
( ( u.i.high & 0x7FFF ) == 0x7FFF )
&& (bits64) ( aLow<<1 )
&& ( u.i.low == aLow );
}
int floatx80_is_nan( floatx80 a1 )
{
floatx80u u;
u.f = a1;
return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
}
#endif