qemu/hw/ipmi/isa_ipmi_bt.c

531 lines
17 KiB
C
Raw Normal View History

/*
* QEMU ISA IPMI BT emulation
*
* Copyright (c) 2015 Corey Minyard, MontaVista Software, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "hw/hw.h"
#include "hw/ipmi/ipmi.h"
#include "hw/isa/isa.h"
#include "hw/i386/pc.h"
/* Control register */
#define IPMI_BT_CLR_WR_BIT 0
#define IPMI_BT_CLR_RD_BIT 1
#define IPMI_BT_H2B_ATN_BIT 2
#define IPMI_BT_B2H_ATN_BIT 3
#define IPMI_BT_SMS_ATN_BIT 4
#define IPMI_BT_HBUSY_BIT 6
#define IPMI_BT_BBUSY_BIT 7
#define IPMI_BT_CLR_WR_MASK (1 << IPMI_BT_CLR_WR_BIT)
#define IPMI_BT_GET_CLR_WR(d) (((d) >> IPMI_BT_CLR_WR_BIT) & 0x1)
#define IPMI_BT_SET_CLR_WR(d, v) (d) = (((d) & ~IPMI_BT_CLR_WR_MASK) | \
(((v & 1) << IPMI_BT_CLR_WR_BIT)))
#define IPMI_BT_CLR_RD_MASK (1 << IPMI_BT_CLR_RD_BIT)
#define IPMI_BT_GET_CLR_RD(d) (((d) >> IPMI_BT_CLR_RD_BIT) & 0x1)
#define IPMI_BT_SET_CLR_RD(d, v) (d) = (((d) & ~IPMI_BT_CLR_RD_MASK) | \
(((v & 1) << IPMI_BT_CLR_RD_BIT)))
#define IPMI_BT_H2B_ATN_MASK (1 << IPMI_BT_H2B_ATN_BIT)
#define IPMI_BT_GET_H2B_ATN(d) (((d) >> IPMI_BT_H2B_ATN_BIT) & 0x1)
#define IPMI_BT_SET_H2B_ATN(d, v) (d) = (((d) & ~IPMI_BT_H2B_ATN_MASK) | \
(((v & 1) << IPMI_BT_H2B_ATN_BIT)))
#define IPMI_BT_B2H_ATN_MASK (1 << IPMI_BT_B2H_ATN_BIT)
#define IPMI_BT_GET_B2H_ATN(d) (((d) >> IPMI_BT_B2H_ATN_BIT) & 0x1)
#define IPMI_BT_SET_B2H_ATN(d, v) (d) = (((d) & ~IPMI_BT_B2H_ATN_MASK) | \
(((v & 1) << IPMI_BT_B2H_ATN_BIT)))
#define IPMI_BT_SMS_ATN_MASK (1 << IPMI_BT_SMS_ATN_BIT)
#define IPMI_BT_GET_SMS_ATN(d) (((d) >> IPMI_BT_SMS_ATN_BIT) & 0x1)
#define IPMI_BT_SET_SMS_ATN(d, v) (d) = (((d) & ~IPMI_BT_SMS_ATN_MASK) | \
(((v & 1) << IPMI_BT_SMS_ATN_BIT)))
#define IPMI_BT_HBUSY_MASK (1 << IPMI_BT_HBUSY_BIT)
#define IPMI_BT_GET_HBUSY(d) (((d) >> IPMI_BT_HBUSY_BIT) & 0x1)
#define IPMI_BT_SET_HBUSY(d, v) (d) = (((d) & ~IPMI_BT_HBUSY_MASK) | \
(((v & 1) << IPMI_BT_HBUSY_BIT)))
#define IPMI_BT_BBUSY_MASK (1 << IPMI_BT_BBUSY_BIT)
#define IPMI_BT_GET_BBUSY(d) (((d) >> IPMI_BT_BBUSY_BIT) & 0x1)
#define IPMI_BT_SET_BBUSY(d, v) (d) = (((d) & ~IPMI_BT_BBUSY_MASK) | \
(((v & 1) << IPMI_BT_BBUSY_BIT)))
/* Mask register */
#define IPMI_BT_B2H_IRQ_EN_BIT 0
#define IPMI_BT_B2H_IRQ_BIT 1
#define IPMI_BT_B2H_IRQ_EN_MASK (1 << IPMI_BT_B2H_IRQ_EN_BIT)
#define IPMI_BT_GET_B2H_IRQ_EN(d) (((d) >> IPMI_BT_B2H_IRQ_EN_BIT) & 0x1)
#define IPMI_BT_SET_B2H_IRQ_EN(d, v) (d) = (((d) & ~IPMI_BT_B2H_IRQ_EN_MASK) | \
(((v & 1) << IPMI_BT_B2H_IRQ_EN_BIT)))
#define IPMI_BT_B2H_IRQ_MASK (1 << IPMI_BT_B2H_IRQ_BIT)
#define IPMI_BT_GET_B2H_IRQ(d) (((d) >> IPMI_BT_B2H_IRQ_BIT) & 0x1)
#define IPMI_BT_SET_B2H_IRQ(d, v) (d) = (((d) & ~IPMI_BT_B2H_IRQ_MASK) | \
(((v & 1) << IPMI_BT_B2H_IRQ_BIT)))
typedef struct IPMIBT {
IPMIBmc *bmc;
bool do_wake;
qemu_irq irq;
uint32_t io_base;
unsigned long io_length;
MemoryRegion io;
bool obf_irq_set;
bool atn_irq_set;
bool use_irq;
bool irqs_enabled;
uint8_t outmsg[MAX_IPMI_MSG_SIZE];
uint32_t outpos;
uint32_t outlen;
uint8_t inmsg[MAX_IPMI_MSG_SIZE];
uint32_t inlen;
uint8_t control_reg;
uint8_t mask_reg;
/*
* This is a response number that we send with the command to make
* sure that the response matches the command.
*/
uint8_t waiting_rsp;
uint8_t waiting_seq;
} IPMIBT;
#define IPMI_CMD_GET_BT_INTF_CAP 0x36
static void ipmi_bt_handle_event(IPMIInterface *ii)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
if (ib->inlen < 4) {
goto out;
}
/* Note that overruns are handled by handle_command */
if (ib->inmsg[0] != (ib->inlen - 1)) {
/* Length mismatch, just ignore. */
IPMI_BT_SET_BBUSY(ib->control_reg, 1);
ib->inlen = 0;
goto out;
}
if ((ib->inmsg[1] == (IPMI_NETFN_APP << 2)) &&
(ib->inmsg[3] == IPMI_CMD_GET_BT_INTF_CAP)) {
/* We handle this one ourselves. */
ib->outmsg[0] = 9;
ib->outmsg[1] = ib->inmsg[1] | 0x04;
ib->outmsg[2] = ib->inmsg[2];
ib->outmsg[3] = ib->inmsg[3];
ib->outmsg[4] = 0;
ib->outmsg[5] = 1; /* Only support 1 outstanding request. */
if (sizeof(ib->inmsg) > 0xff) { /* Input buffer size */
ib->outmsg[6] = 0xff;
} else {
ib->outmsg[6] = (unsigned char) sizeof(ib->inmsg);
}
if (sizeof(ib->outmsg) > 0xff) { /* Output buffer size */
ib->outmsg[7] = 0xff;
} else {
ib->outmsg[7] = (unsigned char) sizeof(ib->outmsg);
}
ib->outmsg[8] = 10; /* Max request to response time */
ib->outmsg[9] = 0; /* Don't recommend retries */
ib->outlen = 10;
IPMI_BT_SET_BBUSY(ib->control_reg, 0);
IPMI_BT_SET_B2H_ATN(ib->control_reg, 1);
if (ib->use_irq && ib->irqs_enabled &&
!IPMI_BT_GET_B2H_IRQ(ib->mask_reg) &&
IPMI_BT_GET_B2H_IRQ_EN(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 1);
qemu_irq_raise(ib->irq);
}
goto out;
}
ib->waiting_seq = ib->inmsg[2];
ib->inmsg[2] = ib->inmsg[1];
{
IPMIBmcClass *bk = IPMI_BMC_GET_CLASS(ib->bmc);
bk->handle_command(ib->bmc, ib->inmsg + 2, ib->inlen - 2,
sizeof(ib->inmsg), ib->waiting_rsp);
}
out:
return;
}
static void ipmi_bt_handle_rsp(IPMIInterface *ii, uint8_t msg_id,
unsigned char *rsp, unsigned int rsp_len)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
if (ib->waiting_rsp == msg_id) {
ib->waiting_rsp++;
if (rsp_len > (sizeof(ib->outmsg) - 2)) {
ib->outmsg[0] = 4;
ib->outmsg[1] = rsp[0];
ib->outmsg[2] = ib->waiting_seq;
ib->outmsg[3] = rsp[1];
ib->outmsg[4] = IPMI_CC_CANNOT_RETURN_REQ_NUM_BYTES;
ib->outlen = 5;
} else {
ib->outmsg[0] = rsp_len + 1;
ib->outmsg[1] = rsp[0];
ib->outmsg[2] = ib->waiting_seq;
memcpy(ib->outmsg + 3, rsp + 1, rsp_len - 1);
ib->outlen = rsp_len + 2;
}
IPMI_BT_SET_BBUSY(ib->control_reg, 0);
IPMI_BT_SET_B2H_ATN(ib->control_reg, 1);
if (ib->use_irq && ib->irqs_enabled &&
!IPMI_BT_GET_B2H_IRQ(ib->mask_reg) &&
IPMI_BT_GET_B2H_IRQ_EN(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 1);
qemu_irq_raise(ib->irq);
}
}
}
static uint64_t ipmi_bt_ioport_read(void *opaque, hwaddr addr, unsigned size)
{
IPMIInterface *ii = opaque;
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
uint32_t ret = 0xff;
switch (addr & 3) {
case 0:
ret = ib->control_reg;
break;
case 1:
if (ib->outpos < ib->outlen) {
ret = ib->outmsg[ib->outpos];
ib->outpos++;
if (ib->outpos == ib->outlen) {
ib->outpos = 0;
ib->outlen = 0;
}
} else {
ret = 0xff;
}
break;
case 2:
ret = ib->mask_reg;
break;
}
return ret;
}
static void ipmi_bt_signal(IPMIBT *ib, IPMIInterface *ii)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
ib->do_wake = 1;
while (ib->do_wake) {
ib->do_wake = 0;
iic->handle_if_event(ii);
}
}
static void ipmi_bt_ioport_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
IPMIInterface *ii = opaque;
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
switch (addr & 3) {
case 0:
if (IPMI_BT_GET_CLR_WR(val)) {
ib->inlen = 0;
}
if (IPMI_BT_GET_CLR_RD(val)) {
ib->outpos = 0;
}
if (IPMI_BT_GET_B2H_ATN(val)) {
IPMI_BT_SET_B2H_ATN(ib->control_reg, 0);
}
if (IPMI_BT_GET_SMS_ATN(val)) {
IPMI_BT_SET_SMS_ATN(ib->control_reg, 0);
}
if (IPMI_BT_GET_HBUSY(val)) {
/* Toggle */
IPMI_BT_SET_HBUSY(ib->control_reg,
!IPMI_BT_GET_HBUSY(ib->control_reg));
}
if (IPMI_BT_GET_H2B_ATN(val)) {
IPMI_BT_SET_BBUSY(ib->control_reg, 1);
ipmi_bt_signal(ib, ii);
}
break;
case 1:
if (ib->inlen < sizeof(ib->inmsg)) {
ib->inmsg[ib->inlen] = val;
}
ib->inlen++;
break;
case 2:
if (IPMI_BT_GET_B2H_IRQ_EN(val) !=
IPMI_BT_GET_B2H_IRQ_EN(ib->mask_reg)) {
if (IPMI_BT_GET_B2H_IRQ_EN(val)) {
if (IPMI_BT_GET_B2H_ATN(ib->control_reg) ||
IPMI_BT_GET_SMS_ATN(ib->control_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 1);
qemu_irq_raise(ib->irq);
}
IPMI_BT_SET_B2H_IRQ_EN(ib->mask_reg, 1);
} else {
if (IPMI_BT_GET_B2H_IRQ(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 0);
qemu_irq_lower(ib->irq);
}
IPMI_BT_SET_B2H_IRQ_EN(ib->mask_reg, 0);
}
}
if (IPMI_BT_GET_B2H_IRQ(val) && IPMI_BT_GET_B2H_IRQ(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 0);
qemu_irq_lower(ib->irq);
}
break;
}
}
static const MemoryRegionOps ipmi_bt_io_ops = {
.read = ipmi_bt_ioport_read,
.write = ipmi_bt_ioport_write,
.impl = {
.min_access_size = 1,
.max_access_size = 1,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void ipmi_bt_set_atn(IPMIInterface *ii, int val, int irq)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
if (!!val == IPMI_BT_GET_SMS_ATN(ib->control_reg)) {
return;
}
IPMI_BT_SET_SMS_ATN(ib->control_reg, val);
if (val) {
if (irq && ib->use_irq && ib->irqs_enabled &&
!IPMI_BT_GET_B2H_ATN(ib->control_reg) &&
IPMI_BT_GET_B2H_IRQ_EN(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 1);
qemu_irq_raise(ib->irq);
}
} else {
if (!IPMI_BT_GET_B2H_ATN(ib->control_reg) &&
IPMI_BT_GET_B2H_IRQ(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 0);
qemu_irq_lower(ib->irq);
}
}
}
static void ipmi_bt_handle_reset(IPMIInterface *ii, bool is_cold)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
if (is_cold) {
/* Disable the BT interrupt on reset */
if (IPMI_BT_GET_B2H_IRQ(ib->mask_reg)) {
IPMI_BT_SET_B2H_IRQ(ib->mask_reg, 0);
qemu_irq_lower(ib->irq);
}
IPMI_BT_SET_B2H_IRQ_EN(ib->mask_reg, 0);
}
}
static void ipmi_bt_set_irq_enable(IPMIInterface *ii, int val)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
ib->irqs_enabled = val;
}
static void ipmi_bt_init(IPMIInterface *ii, Error **errp)
{
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
IPMIBT *ib = iic->get_backend_data(ii);
ib->io_length = 3;
memory_region_init_io(&ib->io, NULL, &ipmi_bt_io_ops, ii, "ipmi-bt", 3);
}
static void ipmi_bt_class_init(IPMIInterfaceClass *iic)
{
iic->init = ipmi_bt_init;
iic->set_atn = ipmi_bt_set_atn;
iic->handle_rsp = ipmi_bt_handle_rsp;
iic->handle_if_event = ipmi_bt_handle_event;
iic->set_irq_enable = ipmi_bt_set_irq_enable;
iic->reset = ipmi_bt_handle_reset;
}
#define TYPE_ISA_IPMI_BT "isa-ipmi-bt"
#define ISA_IPMI_BT(obj) OBJECT_CHECK(ISAIPMIBTDevice, (obj), \
TYPE_ISA_IPMI_BT)
typedef struct ISAIPMIBTDevice {
ISADevice dev;
int32_t isairq;
IPMIBT bt;
IPMIFwInfo fwinfo;
} ISAIPMIBTDevice;
static void isa_ipmi_bt_realize(DeviceState *dev, Error **errp)
{
ISADevice *isadev = ISA_DEVICE(dev);
ISAIPMIBTDevice *iib = ISA_IPMI_BT(dev);
IPMIInterface *ii = IPMI_INTERFACE(dev);
IPMIInterfaceClass *iic = IPMI_INTERFACE_GET_CLASS(ii);
if (!iib->bt.bmc) {
error_setg(errp, "IPMI device requires a bmc attribute to be set");
return;
}
iib->bt.bmc->intf = ii;
iic->init(ii, errp);
if (*errp)
return;
if (iib->isairq > 0) {
isa_init_irq(isadev, &iib->bt.irq, iib->isairq);
iib->bt.use_irq = 1;
}
qdev_set_legacy_instance_id(dev, iib->bt.io_base, iib->bt.io_length);
isa_register_ioport(isadev, &iib->bt.io, iib->bt.io_base);
iib->fwinfo.interface_name = "bt";
iib->fwinfo.interface_type = IPMI_SMBIOS_BT;
iib->fwinfo.ipmi_spec_major_revision = 2;
iib->fwinfo.ipmi_spec_minor_revision = 0;
iib->fwinfo.base_address = iib->bt.io_base;
iib->fwinfo.register_length = iib->bt.io_length;
iib->fwinfo.register_spacing = 1;
iib->fwinfo.memspace = IPMI_MEMSPACE_IO;
iib->fwinfo.irq_type = IPMI_LEVEL_IRQ;
iib->fwinfo.interrupt_number = iib->isairq;
iib->fwinfo.acpi_parent = "\\_SB.PCI0.ISA";
iib->fwinfo.i2c_slave_address = iib->bt.bmc->slave_addr;
ipmi_add_fwinfo(&iib->fwinfo, errp);
}
static const VMStateDescription vmstate_ISAIPMIBTDevice = {
.name = TYPE_IPMI_INTERFACE,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_BOOL(bt.obf_irq_set, ISAIPMIBTDevice),
VMSTATE_BOOL(bt.atn_irq_set, ISAIPMIBTDevice),
VMSTATE_BOOL(bt.use_irq, ISAIPMIBTDevice),
VMSTATE_BOOL(bt.irqs_enabled, ISAIPMIBTDevice),
VMSTATE_UINT32(bt.outpos, ISAIPMIBTDevice),
VMSTATE_VBUFFER_UINT32(bt.outmsg, ISAIPMIBTDevice, 1, NULL, 0,
bt.outlen),
VMSTATE_VBUFFER_UINT32(bt.inmsg, ISAIPMIBTDevice, 1, NULL, 0,
bt.inlen),
VMSTATE_UINT8(bt.control_reg, ISAIPMIBTDevice),
VMSTATE_UINT8(bt.mask_reg, ISAIPMIBTDevice),
VMSTATE_UINT8(bt.waiting_rsp, ISAIPMIBTDevice),
VMSTATE_UINT8(bt.waiting_seq, ISAIPMIBTDevice),
VMSTATE_END_OF_LIST()
}
};
static void isa_ipmi_bt_init(Object *obj)
{
ISAIPMIBTDevice *iib = ISA_IPMI_BT(obj);
ipmi_bmc_find_and_link(obj, (Object **) &iib->bt.bmc);
vmstate_register(NULL, 0, &vmstate_ISAIPMIBTDevice, iib);
}
static void *isa_ipmi_bt_get_backend_data(IPMIInterface *ii)
{
ISAIPMIBTDevice *iib = ISA_IPMI_BT(ii);
return &iib->bt;
}
static Property ipmi_isa_properties[] = {
DEFINE_PROP_UINT32("ioport", ISAIPMIBTDevice, bt.io_base, 0xe4),
DEFINE_PROP_INT32("irq", ISAIPMIBTDevice, isairq, 5),
DEFINE_PROP_END_OF_LIST(),
};
static void isa_ipmi_bt_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
IPMIInterfaceClass *iic = IPMI_INTERFACE_CLASS(oc);
dc->realize = isa_ipmi_bt_realize;
dc->props = ipmi_isa_properties;
iic->get_backend_data = isa_ipmi_bt_get_backend_data;
ipmi_bt_class_init(iic);
}
static const TypeInfo isa_ipmi_bt_info = {
.name = TYPE_ISA_IPMI_BT,
.parent = TYPE_ISA_DEVICE,
.instance_size = sizeof(ISAIPMIBTDevice),
.instance_init = isa_ipmi_bt_init,
.class_init = isa_ipmi_bt_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_IPMI_INTERFACE },
{ }
}
};
static void ipmi_register_types(void)
{
type_register_static(&isa_ipmi_bt_info);
}
type_init(ipmi_register_types)