qemu/target/arm/machine.c

962 lines
30 KiB
C
Raw Normal View History

#include "qemu/osdep.h"
#include "cpu.h"
#include "qemu/error-report.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "kvm_arm.h"
#include "internals.h"
#include "cpu-features.h"
#include "migration/cpu.h"
static bool vfp_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp_simd, cpu));
}
static int get_fpscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
vfp_set_fpscr(env, val);
return 0;
}
static int put_fpscr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
qemu_put_be32(f, vfp_get_fpscr(env));
return 0;
}
static const VMStateInfo vmstate_fpscr = {
.name = "fpscr",
.get = get_fpscr,
.put = put_fpscr,
};
static const VMStateDescription vmstate_vfp = {
.name = "cpu/vfp",
.version_id = 3,
.minimum_version_id = 3,
.needed = vfp_needed,
.fields = (VMStateField[]) {
/* For compatibility, store Qn out of Zn here. */
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[0].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[1].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[2].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[3].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[4].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[5].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[6].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[7].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[8].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[9].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[10].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[11].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[12].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[13].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[14].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[15].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[16].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[17].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[18].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[19].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[20].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[21].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[22].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[23].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[24].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[25].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[26].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[27].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[28].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[29].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[30].d, ARMCPU, 0, 2),
VMSTATE_UINT64_SUB_ARRAY(env.vfp.zregs[31].d, ARMCPU, 0, 2),
/* The xregs array is a little awkward because element 1 (FPSCR)
* requires a specific accessor, so we have to split it up in
* the vmstate:
*/
VMSTATE_UINT32(env.vfp.xregs[0], ARMCPU),
VMSTATE_UINT32_SUB_ARRAY(env.vfp.xregs, ARMCPU, 2, 14),
{
.name = "fpscr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_fpscr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
}
};
static bool iwmmxt_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_IWMMXT);
}
static const VMStateDescription vmstate_iwmmxt = {
.name = "cpu/iwmmxt",
.version_id = 1,
.minimum_version_id = 1,
.needed = iwmmxt_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(env.iwmmxt.regs, ARMCPU, 16),
VMSTATE_UINT32_ARRAY(env.iwmmxt.cregs, ARMCPU, 16),
VMSTATE_END_OF_LIST()
}
};
#ifdef TARGET_AARCH64
/* The expression ARM_MAX_VQ - 2 is 0 for pure AArch32 build,
* and ARMPredicateReg is actively empty. This triggers errors
* in the expansion of the VMSTATE macros.
*/
static bool sve_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return cpu_isar_feature(aa64_sve, cpu);
}
/* The first two words of each Zreg is stored in VFP state. */
static const VMStateDescription vmstate_zreg_hi_reg = {
.name = "cpu/sve/zreg_hi",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64_SUB_ARRAY(d, ARMVectorReg, 2, ARM_MAX_VQ - 2),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_preg_reg = {
.name = "cpu/sve/preg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(p, ARMPredicateReg, 2 * ARM_MAX_VQ / 8),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_sve = {
.name = "cpu/sve",
.version_id = 1,
.minimum_version_id = 1,
.needed = sve_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(env.vfp.zregs, ARMCPU, 32, 0,
vmstate_zreg_hi_reg, ARMVectorReg),
VMSTATE_STRUCT_ARRAY(env.vfp.pregs, ARMCPU, 17, 0,
vmstate_preg_reg, ARMPredicateReg),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_vreg = {
.name = "vreg",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64_ARRAY(d, ARMVectorReg, ARM_MAX_VQ * 2),
VMSTATE_END_OF_LIST()
}
};
static bool za_needed(void *opaque)
{
ARMCPU *cpu = opaque;
/*
* When ZA storage is disabled, its contents are discarded.
* It will be zeroed when ZA storage is re-enabled.
*/
return FIELD_EX64(cpu->env.svcr, SVCR, ZA);
}
static const VMStateDescription vmstate_za = {
.name = "cpu/sme",
.version_id = 1,
.minimum_version_id = 1,
.needed = za_needed,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(env.zarray, ARMCPU, ARM_MAX_VQ * 16, 0,
vmstate_vreg, ARMVectorReg),
VMSTATE_END_OF_LIST()
}
};
#endif /* AARCH64 */
static bool serror_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return env->serror.pending != 0;
}
static const VMStateDescription vmstate_serror = {
.name = "cpu/serror",
.version_id = 1,
.minimum_version_id = 1,
.needed = serror_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT8(env.serror.pending, ARMCPU),
VMSTATE_UINT8(env.serror.has_esr, ARMCPU),
VMSTATE_UINT64(env.serror.esr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool irq_line_state_needed(void *opaque)
{
return true;
}
static const VMStateDescription vmstate_irq_line_state = {
.name = "cpu/irq-line-state",
.version_id = 1,
.minimum_version_id = 1,
.needed = irq_line_state_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.irq_line_state, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool m_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_m_faultmask_primask = {
.name = "cpu/m/faultmask-primask",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.faultmask[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
/* CSSELR is in a subsection because we didn't implement it previously.
* Migration from an old implementation will leave it at zero, which
* is OK since the only CPUs in the old implementation make the
* register RAZ/WI.
* Since there was no version of QEMU which implemented the CSSELR for
* just non-secure, we transfer both banks here rather than putting
* the secure banked version in the m-security subsection.
*/
static bool csselr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.v7m.csselr[M_REG_NS] <= R_V7M_CSSELR_INDEX_MASK
&& cpu->env.v7m.csselr[M_REG_S] <= R_V7M_CSSELR_INDEX_MASK;
}
static bool m_csselr_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return !arm_v7m_csselr_razwi(cpu);
}
static const VMStateDescription vmstate_m_csselr = {
.name = "cpu/m/csselr",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_csselr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.csselr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_VALIDATE("CSSELR is valid", csselr_vmstate_validate),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_scr = {
.name = "cpu/m/scr",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.scr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_other_sp = {
.name = "cpu/m/other-sp",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.other_sp, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool m_v8m_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M) && arm_feature(env, ARM_FEATURE_V8);
}
static const VMStateDescription vmstate_m_v8m = {
.name = "cpu/m/v8m",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_v8m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.msplim, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.psplim, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_m_fp = {
.name = "cpu/m/fp",
.version_id = 1,
.minimum_version_id = 1,
.needed = vfp_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.v7m.fpcar, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.fpccr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.fpdscr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32_ARRAY(env.v7m.cpacr, ARMCPU, M_REG_NUM_BANKS),
VMSTATE_UINT32(env.v7m.nsacr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool mve_needed(void *opaque)
{
ARMCPU *cpu = opaque;
return cpu_isar_feature(aa32_mve, cpu);
}
static const VMStateDescription vmstate_m_mve = {
.name = "cpu/m/mve",
.version_id = 1,
.minimum_version_id = 1,
.needed = mve_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.vpr, ARMCPU),
VMSTATE_UINT32(env.v7m.ltpsize, ARMCPU),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_m = {
.name = "cpu/m",
.version_id = 4,
.minimum_version_id = 4,
.needed = m_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.vecbase[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.hfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.dfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.v7m.bfar, ARMCPU),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_NS], ARMCPU),
VMSTATE_INT32(env.v7m.exception, ARMCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_m_faultmask_primask,
&vmstate_m_csselr,
&vmstate_m_scr,
&vmstate_m_other_sp,
&vmstate_m_v8m,
&vmstate_m_fp,
&vmstate_m_mve,
NULL
}
};
static bool thumb2ee_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_THUMB2EE);
}
static const VMStateDescription vmstate_thumb2ee = {
.name = "cpu/thumb2ee",
.version_id = 1,
.minimum_version_id = 1,
.needed = thumb2ee_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.teecr, ARMCPU),
VMSTATE_UINT32(env.teehbr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_V8);
}
static bool pmsav7_rgnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_NS] < cpu->pmsav7_dregion;
}
static const VMStateDescription vmstate_pmsav7 = {
.name = "cpu/pmsav7",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav7.drbar, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.drsr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav7.dracr, ARMCPU, pmsav7_dregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VALIDATE("rgnr is valid", pmsav7_rgnr_vmstate_validate),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav7_rnr_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
/* For R profile cores pmsav7.rnr is migrated via the cpreg
* "RGNR" definition in helper.h. For M profile we have to
* migrate it separately.
*/
return arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_pmsav7_rnr = {
.name = "cpu/pmsav7-rnr",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav7_rnr_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static bool pmsav8_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8);
}
static bool pmsav8r_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8) &&
!arm_feature(env, ARM_FEATURE_M);
}
static const VMStateDescription vmstate_pmsav8r = {
.name = "cpu/pmsav8/pmsav8r",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav8r_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav8.hprbar, ARMCPU,
pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.hprlar, ARMCPU,
pmsav8r_hdregion, 0, vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_pmsav8 = {
.name = "cpu/pmsav8",
.version_id = 1,
.minimum_version_id = 1,
.needed = pmsav8_needed,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_NS], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_NS], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_NS], ARMCPU),
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_pmsav8r,
NULL
}
};
static bool s_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.pmsav7.rnr[M_REG_S] < cpu->pmsav7_dregion;
}
static bool sau_rnr_vmstate_validate(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
return cpu->env.sau.rnr < cpu->sau_sregion;
}
static bool m_security_needed(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
return arm_feature(env, ARM_FEATURE_M_SECURITY);
}
static const VMStateDescription vmstate_m_security = {
.name = "cpu/m-security",
.version_id = 1,
.minimum_version_id = 1,
.needed = m_security_needed,
.fields = (VMStateField[]) {
VMSTATE_UINT32(env.v7m.secure, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_msp, ARMCPU),
VMSTATE_UINT32(env.v7m.other_ss_psp, ARMCPU),
VMSTATE_UINT32(env.v7m.basepri[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.primask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.faultmask[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.control[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.vecbase[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair0[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.pmsav8.mair1[M_REG_S], ARMCPU),
VMSTATE_VARRAY_UINT32(env.pmsav8.rbar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.pmsav8.rlar[M_REG_S], ARMCPU, pmsav7_dregion,
0, vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.pmsav7.rnr[M_REG_S], ARMCPU),
VMSTATE_VALIDATE("secure MPU_RNR is valid", s_rnr_vmstate_validate),
VMSTATE_UINT32(env.v7m.mpu_ctrl[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.ccr[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.mmfar[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.cfsr[M_REG_S], ARMCPU),
VMSTATE_UINT32(env.v7m.sfsr, ARMCPU),
VMSTATE_UINT32(env.v7m.sfar, ARMCPU),
VMSTATE_VARRAY_UINT32(env.sau.rbar, ARMCPU, sau_sregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(env.sau.rlar, ARMCPU, sau_sregion, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_UINT32(env.sau.rnr, ARMCPU),
VMSTATE_VALIDATE("SAU_RNR is valid", sau_rnr_vmstate_validate),
VMSTATE_UINT32(env.sau.ctrl, ARMCPU),
VMSTATE_UINT32(env.v7m.scr[M_REG_S], ARMCPU),
/* AIRCR is not secure-only, but our implementation is R/O if the
* security extension is unimplemented, so we migrate it here.
*/
VMSTATE_UINT32(env.v7m.aircr, ARMCPU),
VMSTATE_END_OF_LIST()
}
};
static int get_cpsr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val = qemu_get_be32(f);
if (arm_feature(env, ARM_FEATURE_M)) {
if (val & XPSR_EXCP) {
/* This is a CPSR format value from an older QEMU. (We can tell
* because values transferred in XPSR format always have zero
* for the EXCP field, and CPSR format will always have bit 4
* set in CPSR_M.) Rearrange it into XPSR format. The significant
* differences are that the T bit is not in the same place, the
* primask/faultmask info may be in the CPSR I and F bits, and
* we do not want the mode bits.
* We know that this cleanup happened before v8M, so there
* is no complication with banked primask/faultmask.
*/
uint32_t newval = val;
assert(!arm_feature(env, ARM_FEATURE_M_SECURITY));
newval &= (CPSR_NZCV | CPSR_Q | CPSR_IT | CPSR_GE);
if (val & CPSR_T) {
newval |= XPSR_T;
}
/* If the I or F bits are set then this is a migration from
* an old QEMU which still stored the M profile FAULTMASK
* and PRIMASK in env->daif. For a new QEMU, the data is
* transferred using the vmstate_m_faultmask_primask subsection.
*/
if (val & CPSR_F) {
env->v7m.faultmask[M_REG_NS] = 1;
}
if (val & CPSR_I) {
env->v7m.primask[M_REG_NS] = 1;
}
val = newval;
}
/* Ignore the low bits, they are handled by vmstate_m. */
xpsr_write(env, val, ~XPSR_EXCP);
return 0;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
return 0;
}
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
return 0;
}
static int put_cpsr(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
uint32_t val;
if (arm_feature(env, ARM_FEATURE_M)) {
/* The low 9 bits are v7m.exception, which is handled by vmstate_m. */
val = xpsr_read(env) & ~XPSR_EXCP;
} else if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
qemu_put_be32(f, val);
return 0;
}
static const VMStateInfo vmstate_cpsr = {
.name = "cpsr",
.get = get_cpsr,
.put = put_cpsr,
};
static int get_power(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field)
{
ARMCPU *cpu = opaque;
bool powered_off = qemu_get_byte(f);
cpu->power_state = powered_off ? PSCI_OFF : PSCI_ON;
return 0;
}
static int put_power(QEMUFile *f, void *opaque, size_t size,
const VMStateField *field, JSONWriter *vmdesc)
{
ARMCPU *cpu = opaque;
/* Migration should never happen while we transition power states */
if (cpu->power_state == PSCI_ON ||
cpu->power_state == PSCI_OFF) {
bool powered_off = (cpu->power_state == PSCI_OFF) ? true : false;
qemu_put_byte(f, powered_off);
return 0;
} else {
return 1;
}
}
static const VMStateInfo vmstate_powered_off = {
.name = "powered_off",
.get = get_power,
.put = put_power,
};
static int cpu_pre_save(void *opaque)
{
ARMCPU *cpu = opaque;
if (!kvm_enabled()) {
pmu_op_start(&cpu->env);
}
if (kvm_enabled()) {
if (!write_kvmstate_to_list(cpu)) {
/* This should never fail */
g_assert_not_reached();
}
/*
* kvm_arm_cpu_pre_save() must be called after
* write_kvmstate_to_list()
*/
kvm_arm_cpu_pre_save(cpu);
} else {
arm: Allow system registers for KVM guests to be changed by QEMU code At the moment the Arm implementations of kvm_arch_{get,put}_registers() don't support having QEMU change the values of system registers (aka coprocessor registers for AArch32). This is because although kvm_arch_get_registers() calls write_list_to_cpustate() to update the CPU state struct fields (so QEMU code can read the values in the usual way), kvm_arch_put_registers() does not call write_cpustate_to_list(), meaning that any changes to the CPU state struct fields will not be passed back to KVM. The rationale for this design is documented in a comment in the AArch32 kvm_arch_put_registers() -- writing the values in the cpregs list into the CPU state struct is "lossy" because the write of a register might not succeed, and so if we blindly copy the CPU state values back again we will incorrectly change register values for the guest. The assumption was that no QEMU code would need to write to the registers. However, when we implemented debug support for KVM guests, we broke that assumption: the code to handle "set the guest up to take a breakpoint exception" does so by updating various guest registers including ESR_EL1. Support this by making kvm_arch_put_registers() synchronize CPU state back into the list. We sync only those registers where the initial write succeeds, which should be sufficient. This commit is the same as commit 823e1b3818f9b10b824ddc which we had to revert in commit 942f99c825fc94c8b1a4, except that the bug which was preventing EDK2 guest firmware running has been fixed: kvm_arm_reset_vcpu() now calls write_list_to_cpustate(). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Eric Auger <eric.auger@redhat.com>
2019-05-07 14:55:02 +03:00
if (!write_cpustate_to_list(cpu, false)) {
/* This should never fail. */
g_assert_not_reached();
}
}
cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
memcpy(cpu->cpreg_vmstate_indexes, cpu->cpreg_indexes,
cpu->cpreg_array_len * sizeof(uint64_t));
memcpy(cpu->cpreg_vmstate_values, cpu->cpreg_values,
cpu->cpreg_array_len * sizeof(uint64_t));
return 0;
}
static int cpu_post_save(void *opaque)
{
ARMCPU *cpu = opaque;
if (!kvm_enabled()) {
pmu_op_finish(&cpu->env);
}
return 0;
}
static int cpu_pre_load(void *opaque)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
/*
* Pre-initialize irq_line_state to a value that's never valid as
* real data, so cpu_post_load() can tell whether we've seen the
* irq-line-state subsection in the incoming migration state.
*/
env->irq_line_state = UINT32_MAX;
if (!kvm_enabled()) {
pmu_op_start(&cpu->env);
}
return 0;
}
static int cpu_post_load(void *opaque, int version_id)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
int i, v;
/*
* Handle migration compatibility from old QEMU which didn't
* send the irq-line-state subsection. A QEMU without it did not
* implement the HCR_EL2.{VI,VF} bits as generating interrupts,
* so for TCG the line state matches the bits set in cs->interrupt_request.
* For KVM the line state is not stored in cs->interrupt_request
* and so this will leave irq_line_state as 0, but this is OK because
* we only need to care about it for TCG.
*/
if (env->irq_line_state == UINT32_MAX) {
CPUState *cs = CPU(cpu);
env->irq_line_state = cs->interrupt_request &
(CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ |
CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VFIQ);
}
/* Update the values list from the incoming migration data.
* Anything in the incoming data which we don't know about is
* a migration failure; anything we know about but the incoming
* data doesn't specify retains its current (reset) value.
* The indexes list remains untouched -- we only inspect the
* incoming migration index list so we can match the values array
* entries with the right slots in our own values array.
*/
for (i = 0, v = 0; i < cpu->cpreg_array_len
&& v < cpu->cpreg_vmstate_array_len; i++) {
if (cpu->cpreg_vmstate_indexes[v] > cpu->cpreg_indexes[i]) {
/* register in our list but not incoming : skip it */
continue;
}
if (cpu->cpreg_vmstate_indexes[v] < cpu->cpreg_indexes[i]) {
/* register in their list but not ours: fail migration */
return -1;
}
/* matching register, copy the value over */
cpu->cpreg_values[i] = cpu->cpreg_vmstate_values[v];
v++;
}
if (kvm_enabled()) {
if (!write_list_to_kvmstate(cpu, KVM_PUT_FULL_STATE)) {
return -1;
}
/* Note that it's OK for the TCG side not to know about
* every register in the list; KVM is authoritative if
* we're using it.
*/
write_list_to_cpustate(cpu);
kvm_arm_cpu_post_load(cpu);
} else {
if (!write_list_to_cpustate(cpu)) {
return -1;
}
}
/*
* Misaligned thumb pc is architecturally impossible. Fail the
* incoming migration. For TCG it would trigger the assert in
* thumb_tr_translate_insn().
*/
if (!is_a64(env) && env->thumb && (env->regs[15] & 1)) {
return -1;
}
if (tcg_enabled()) {
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
}
/*
* TCG gen_update_fp_context() relies on the invariant that
* FPDSCR.LTPSIZE is constant 4 for M-profile with the LOB extension;
* forbid bogus incoming data with some other value.
*/
if (arm_feature(env, ARM_FEATURE_M) && cpu_isar_feature(aa32_lob, cpu)) {
if (extract32(env->v7m.fpdscr[M_REG_NS],
FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4 ||
extract32(env->v7m.fpdscr[M_REG_S],
FPCR_LTPSIZE_SHIFT, FPCR_LTPSIZE_LENGTH) != 4) {
return -1;
}
}
if (!kvm_enabled()) {
pmu_op_finish(&cpu->env);
}
if (tcg_enabled()) {
arm_rebuild_hflags(&cpu->env);
}
return 0;
}
const VMStateDescription vmstate_arm_cpu = {
.name = "cpu",
.version_id = 22,
.minimum_version_id = 22,
.pre_save = cpu_pre_save,
.post_save = cpu_post_save,
.pre_load = cpu_pre_load,
.post_load = cpu_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(env.regs, ARMCPU, 16),
VMSTATE_UINT64_ARRAY(env.xregs, ARMCPU, 32),
VMSTATE_UINT64(env.pc, ARMCPU),
{
.name = "cpsr",
.version_id = 0,
.size = sizeof(uint32_t),
.info = &vmstate_cpsr,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_UINT32(env.spsr, ARMCPU),
VMSTATE_UINT64_ARRAY(env.banked_spsr, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r13, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.banked_r14, ARMCPU, 8),
VMSTATE_UINT32_ARRAY(env.usr_regs, ARMCPU, 5),
VMSTATE_UINT32_ARRAY(env.fiq_regs, ARMCPU, 5),
VMSTATE_UINT64_ARRAY(env.elr_el, ARMCPU, 4),
VMSTATE_UINT64_ARRAY(env.sp_el, ARMCPU, 4),
/* The length-check must come before the arrays to avoid
* incoming data possibly overflowing the array.
*/
VMSTATE_INT32_POSITIVE_LE(cpreg_vmstate_array_len, ARMCPU),
VMSTATE_VARRAY_INT32(cpreg_vmstate_indexes, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
VMSTATE_VARRAY_INT32(cpreg_vmstate_values, ARMCPU,
cpreg_vmstate_array_len,
0, vmstate_info_uint64, uint64_t),
target-arm: Widen exclusive-access support struct fields to 64 bits In preparation for adding support for A64 load/store exclusive instructions, widen the fields in the CPU state struct that deal with address and data values for exclusives from 32 to 64 bits. Although in practice AArch64 and AArch32 exclusive accesses will be generally separate there are some odd theoretical corner cases (eg you should be able to do the exclusive load in AArch32, take an exception to AArch64 and successfully do the store exclusive there), and it's also easier to reason about. The changes in semantics for the variables are: exclusive_addr -> extended to 64 bits; -1ULL for "monitor lost", otherwise always < 2^32 for AArch32 exclusive_val -> extended to 64 bits. 64 bit exclusives in AArch32 now use the high half of exclusive_val instead of a separate exclusive_high exclusive_high -> is no longer used in AArch32; extended to 64 bits as it will be needed for AArch64's pair-of-64-bit-values exclusives. exclusive_test -> extended to 64 bits, as it is an address. Since this is a linux-user-only field, in arm-linux-user it will always have the top 32 bits zero. exclusive_info -> stays 32 bits, as it is neither data nor address, but simply holds register indexes etc. AArch64 will be able to fit all its information into 32 bits as well. Note that the refactoring of gen_store_exclusive() coincidentally fixes a minor bug where ldrexd would incorrectly update the first CPU register even if the load for the second register faulted. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net>
2014-01-05 02:15:47 +04:00
VMSTATE_UINT64(env.exclusive_addr, ARMCPU),
VMSTATE_UINT64(env.exclusive_val, ARMCPU),
VMSTATE_UINT64(env.exclusive_high, ARMCPU),
VMSTATE_UNUSED(sizeof(uint64_t)),
target-arm: Define exception record for AArch64 exceptions For AArch32 exceptions, the only information provided about the cause of an exception is the individual exception type (data abort, undef, etc), which we store in cs->exception_index. For AArch64, the CPU provides much more detail about the cause of the exception, which can be found in the syndrome register. Create a set of fields in CPUARMState which must be filled in whenever an exception is raised, so that exception entry can correctly fill in the syndrome register for the guest. This includes the information which in AArch32 appears in the DFAR and IFAR (fault address registers) and the DFSR and IFSR (fault status registers) for data aborts and prefetch aborts, since if we end up taking the MMU fault to AArch64 rather than AArch32 this will need to end up in different system registers. This patch does a refactoring which moves the setting of the AArch32 DFAR/DFSR/IFAR/IFSR from the point where the exception is raised to the point where it is taken. (This is no change for cores with an MMU, retains the existing clearly incorrect behaviour for ARM946 of trashing the MP access permissions registers which share the c5_data and c5_insn state fields, and has no effect for v7M because we don't implement its MPU fault status or address registers.) As a side effect of the cleanup we fix a bug in the AArch64 linux-user mode code where we were passing a 64 bit fault address through the 32 bit c6_data/c6_insn fields: it now goes via the always-64-bit exception.vaddress. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Peter Crosthwaite <peter.crosthwaite@xilinx.com>
2014-04-15 22:18:38 +04:00
VMSTATE_UINT32(env.exception.syndrome, ARMCPU),
VMSTATE_UINT32(env.exception.fsr, ARMCPU),
VMSTATE_UINT64(env.exception.vaddress, ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_PHYS], ARMCPU),
VMSTATE_TIMER_PTR(gt_timer[GTIMER_VIRT], ARMCPU),
{
.name = "power_state",
.version_id = 0,
.size = sizeof(bool),
.info = &vmstate_powered_off,
.flags = VMS_SINGLE,
.offset = 0,
},
VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription*[]) {
&vmstate_vfp,
&vmstate_iwmmxt,
&vmstate_m,
&vmstate_thumb2ee,
/* pmsav7_rnr must come before pmsav7 so that we have the
* region number before we test it in the VMSTATE_VALIDATE
* in vmstate_pmsav7.
*/
&vmstate_pmsav7_rnr,
&vmstate_pmsav7,
&vmstate_pmsav8,
&vmstate_m_security,
#ifdef TARGET_AARCH64
&vmstate_sve,
&vmstate_za,
#endif
&vmstate_serror,
&vmstate_irq_line_state,
NULL
}
};