qemu/dyngen.c

2776 lines
91 KiB
C
Raw Normal View History

/*
* Generic Dynamic compiler generator
*
* Copyright (c) 2003 Fabrice Bellard
*
* The COFF object format support was extracted from Kazu's QEMU port
* to Win32.
*
* Mach-O Support by Matt Reda and Pierre d'Herbemont
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <stdarg.h>
#include <inttypes.h>
#include <unistd.h>
#include <fcntl.h>
#include "config-host.h"
/* NOTE: we test CONFIG_WIN32 instead of _WIN32 to enabled cross
compilation */
#if defined(CONFIG_WIN32)
#define CONFIG_FORMAT_COFF
#elif defined(CONFIG_DARWIN)
#define CONFIG_FORMAT_MACH
#else
#define CONFIG_FORMAT_ELF
#endif
#ifdef CONFIG_FORMAT_ELF
/* elf format definitions. We use these macros to test the CPU to
allow cross compilation (this tool must be ran on the build
platform) */
#if defined(HOST_I386)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_386
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
#undef ELF_USES_RELOCA
#elif defined(HOST_X86_64)
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_X86_64
#define elf_check_arch(x) ((x) == EM_X86_64)
#define ELF_USES_RELOCA
#elif defined(HOST_PPC)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_PPC
#define elf_check_arch(x) ((x) == EM_PPC)
#define ELF_USES_RELOCA
#elif defined(HOST_S390)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_S390
#define elf_check_arch(x) ((x) == EM_S390)
#define ELF_USES_RELOCA
#elif defined(HOST_ALPHA)
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_ALPHA
#define elf_check_arch(x) ((x) == EM_ALPHA)
#define ELF_USES_RELOCA
#elif defined(HOST_IA64)
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_IA_64
#define elf_check_arch(x) ((x) == EM_IA_64)
#define ELF_USES_RELOCA
#elif defined(HOST_SPARC)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_SPARC
#define elf_check_arch(x) ((x) == EM_SPARC || (x) == EM_SPARC32PLUS)
#define ELF_USES_RELOCA
#elif defined(HOST_SPARC64)
#define ELF_CLASS ELFCLASS64
#define ELF_ARCH EM_SPARCV9
#define elf_check_arch(x) ((x) == EM_SPARCV9)
#define ELF_USES_RELOCA
#elif defined(HOST_ARM)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_ARM
#define elf_check_arch(x) ((x) == EM_ARM)
#define ELF_USES_RELOC
#elif defined(HOST_M68K)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_68K
#define elf_check_arch(x) ((x) == EM_68K)
#define ELF_USES_RELOCA
#elif defined(HOST_HPPA)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_PARISC
#define elf_check_arch(x) ((x) == EM_PARISC)
#define ELF_USES_RELOCA
#elif defined(HOST_MIPS)
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_MIPS
#define elf_check_arch(x) ((x) == EM_MIPS)
#define ELF_USES_RELOC
#elif defined(HOST_MIPS64)
/* Assume n32 ABI here, which is ELF32. */
#define ELF_CLASS ELFCLASS32
#define ELF_ARCH EM_MIPS
#define elf_check_arch(x) ((x) == EM_MIPS)
#define ELF_USES_RELOCA
#else
#error unsupported CPU - please update the code
#endif
#include "elf.h"
#if ELF_CLASS == ELFCLASS32
typedef int32_t host_long;
typedef uint32_t host_ulong;
#define swabls(x) swab32s(x)
#define swablss(x) swab32ss(x)
#else
typedef int64_t host_long;
typedef uint64_t host_ulong;
#define swabls(x) swab64s(x)
#define swablss(x) swab64ss(x)
#endif
#ifdef ELF_USES_RELOCA
#define SHT_RELOC SHT_RELA
#else
#define SHT_RELOC SHT_REL
#endif
#define EXE_RELOC ELF_RELOC
#define EXE_SYM ElfW(Sym)
#endif /* CONFIG_FORMAT_ELF */
#ifdef CONFIG_FORMAT_COFF
typedef int32_t host_long;
typedef uint32_t host_ulong;
#include "a.out.h"
#define FILENAMELEN 256
typedef struct coff_sym {
struct external_syment *st_syment;
char st_name[FILENAMELEN];
uint32_t st_value;
int st_size;
uint8_t st_type;
uint8_t st_shndx;
} coff_Sym;
typedef struct coff_rel {
struct external_reloc *r_reloc;
int r_offset;
uint8_t r_type;
} coff_Rel;
#define EXE_RELOC struct coff_rel
#define EXE_SYM struct coff_sym
#endif /* CONFIG_FORMAT_COFF */
#ifdef CONFIG_FORMAT_MACH
#include <mach-o/loader.h>
#include <mach-o/nlist.h>
#include <mach-o/reloc.h>
#include <mach-o/ppc/reloc.h>
# define check_mach_header(x) (x.magic == MH_MAGIC)
typedef int32_t host_long;
typedef uint32_t host_ulong;
struct nlist_extended
{
union {
char *n_name;
long n_strx;
} n_un;
unsigned char n_type;
unsigned char n_sect;
short st_desc;
unsigned long st_value;
unsigned long st_size;
};
#define EXE_RELOC struct relocation_info
#define EXE_SYM struct nlist_extended
#endif /* CONFIG_FORMAT_MACH */
#include "bswap.h"
enum {
OUT_GEN_OP,
OUT_CODE,
OUT_INDEX_OP,
};
/* all dynamically generated functions begin with this code */
#define OP_PREFIX "op_"
int do_swap;
static void __attribute__((noreturn)) __attribute__((format (printf, 1, 2))) error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "dyngen: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
va_end(ap);
exit(1);
}
static void *load_data(int fd, long offset, unsigned int size)
{
char *data;
data = malloc(size);
if (!data)
return NULL;
lseek(fd, offset, SEEK_SET);
if (read(fd, data, size) != size) {
free(data);
return NULL;
}
return data;
}
int strstart(const char *str, const char *val, const char **ptr)
{
const char *p, *q;
p = str;
q = val;
while (*q != '\0') {
if (*p != *q)
return 0;
p++;
q++;
}
if (ptr)
*ptr = p;
return 1;
}
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
void swab16s(uint16_t *p)
{
*p = bswap16(*p);
}
void swab32s(uint32_t *p)
{
*p = bswap32(*p);
}
void swab32ss(int32_t *p)
{
*p = bswap32(*p);
}
void swab64s(uint64_t *p)
{
*p = bswap64(*p);
}
void swab64ss(int64_t *p)
{
*p = bswap64(*p);
}
uint16_t get16(uint16_t *p)
{
uint16_t val;
val = *p;
if (do_swap)
val = bswap16(val);
return val;
}
uint32_t get32(uint32_t *p)
{
uint32_t val;
val = *p;
if (do_swap)
val = bswap32(val);
return val;
}
void put16(uint16_t *p, uint16_t val)
{
if (do_swap)
val = bswap16(val);
*p = val;
}
void put32(uint32_t *p, uint32_t val)
{
if (do_swap)
val = bswap32(val);
*p = val;
}
/* executable information */
EXE_SYM *symtab;
int nb_syms;
int text_shndx;
uint8_t *text;
EXE_RELOC *relocs;
int nb_relocs;
#ifdef CONFIG_FORMAT_ELF
/* ELF file info */
struct elf_shdr *shdr;
uint8_t **sdata;
struct elfhdr ehdr;
char *strtab;
int elf_must_swap(struct elfhdr *h)
{
union {
uint32_t i;
uint8_t b[4];
} swaptest;
swaptest.i = 1;
return (h->e_ident[EI_DATA] == ELFDATA2MSB) !=
(swaptest.b[0] == 0);
}
void elf_swap_ehdr(struct elfhdr *h)
{
swab16s(&h->e_type); /* Object file type */
swab16s(&h-> e_machine); /* Architecture */
swab32s(&h-> e_version); /* Object file version */
swabls(&h-> e_entry); /* Entry point virtual address */
swabls(&h-> e_phoff); /* Program header table file offset */
swabls(&h-> e_shoff); /* Section header table file offset */
swab32s(&h-> e_flags); /* Processor-specific flags */
swab16s(&h-> e_ehsize); /* ELF header size in bytes */
swab16s(&h-> e_phentsize); /* Program header table entry size */
swab16s(&h-> e_phnum); /* Program header table entry count */
swab16s(&h-> e_shentsize); /* Section header table entry size */
swab16s(&h-> e_shnum); /* Section header table entry count */
swab16s(&h-> e_shstrndx); /* Section header string table index */
}
void elf_swap_shdr(struct elf_shdr *h)
{
swab32s(&h-> sh_name); /* Section name (string tbl index) */
swab32s(&h-> sh_type); /* Section type */
swabls(&h-> sh_flags); /* Section flags */
swabls(&h-> sh_addr); /* Section virtual addr at execution */
swabls(&h-> sh_offset); /* Section file offset */
swabls(&h-> sh_size); /* Section size in bytes */
swab32s(&h-> sh_link); /* Link to another section */
swab32s(&h-> sh_info); /* Additional section information */
swabls(&h-> sh_addralign); /* Section alignment */
swabls(&h-> sh_entsize); /* Entry size if section holds table */
}
void elf_swap_phdr(struct elf_phdr *h)
{
swab32s(&h->p_type); /* Segment type */
swabls(&h->p_offset); /* Segment file offset */
swabls(&h->p_vaddr); /* Segment virtual address */
swabls(&h->p_paddr); /* Segment physical address */
swabls(&h->p_filesz); /* Segment size in file */
swabls(&h->p_memsz); /* Segment size in memory */
swab32s(&h->p_flags); /* Segment flags */
swabls(&h->p_align); /* Segment alignment */
}
void elf_swap_rel(ELF_RELOC *rel)
{
swabls(&rel->r_offset);
swabls(&rel->r_info);
#ifdef ELF_USES_RELOCA
swablss(&rel->r_addend);
#endif
}
struct elf_shdr *find_elf_section(struct elf_shdr *shdr, int shnum, const char *shstr,
const char *name)
{
int i;
const char *shname;
struct elf_shdr *sec;
for(i = 0; i < shnum; i++) {
sec = &shdr[i];
if (!sec->sh_name)
continue;
shname = shstr + sec->sh_name;
if (!strcmp(shname, name))
return sec;
}
return NULL;
}
int find_reloc(int sh_index)
{
struct elf_shdr *sec;
int i;
for(i = 0; i < ehdr.e_shnum; i++) {
sec = &shdr[i];
if (sec->sh_type == SHT_RELOC && sec->sh_info == sh_index)
return i;
}
return 0;
}
static host_ulong get_rel_offset(EXE_RELOC *rel)
{
return rel->r_offset;
}
static char *get_rel_sym_name(EXE_RELOC *rel)
{
return strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
}
static char *get_sym_name(EXE_SYM *sym)
{
return strtab + sym->st_name;
}
/* load an elf object file */
int load_object(const char *filename)
{
int fd;
struct elf_shdr *sec, *symtab_sec, *strtab_sec, *text_sec;
int i, j;
ElfW(Sym) *sym;
char *shstr;
ELF_RELOC *rel;
fd = open(filename, O_RDONLY);
if (fd < 0)
error("can't open file '%s'", filename);
/* Read ELF header. */
if (read(fd, &ehdr, sizeof (ehdr)) != sizeof (ehdr))
error("unable to read file header");
/* Check ELF identification. */
if (ehdr.e_ident[EI_MAG0] != ELFMAG0
|| ehdr.e_ident[EI_MAG1] != ELFMAG1
|| ehdr.e_ident[EI_MAG2] != ELFMAG2
|| ehdr.e_ident[EI_MAG3] != ELFMAG3
|| ehdr.e_ident[EI_VERSION] != EV_CURRENT) {
error("bad ELF header");
}
do_swap = elf_must_swap(&ehdr);
if (do_swap)
elf_swap_ehdr(&ehdr);
if (ehdr.e_ident[EI_CLASS] != ELF_CLASS)
error("Unsupported ELF class");
if (ehdr.e_type != ET_REL)
error("ELF object file expected");
if (ehdr.e_version != EV_CURRENT)
error("Invalid ELF version");
if (!elf_check_arch(ehdr.e_machine))
error("Unsupported CPU (e_machine=%d)", ehdr.e_machine);
/* read section headers */
shdr = load_data(fd, ehdr.e_shoff, ehdr.e_shnum * sizeof(struct elf_shdr));
if (do_swap) {
for(i = 0; i < ehdr.e_shnum; i++) {
elf_swap_shdr(&shdr[i]);
}
}
/* read all section data */
sdata = malloc(sizeof(void *) * ehdr.e_shnum);
memset(sdata, 0, sizeof(void *) * ehdr.e_shnum);
for(i = 0;i < ehdr.e_shnum; i++) {
sec = &shdr[i];
if (sec->sh_type != SHT_NOBITS)
sdata[i] = load_data(fd, sec->sh_offset, sec->sh_size);
}
sec = &shdr[ehdr.e_shstrndx];
shstr = (char *)sdata[ehdr.e_shstrndx];
/* swap relocations */
for(i = 0; i < ehdr.e_shnum; i++) {
sec = &shdr[i];
if (sec->sh_type == SHT_RELOC) {
nb_relocs = sec->sh_size / sec->sh_entsize;
if (do_swap) {
for(j = 0, rel = (ELF_RELOC *)sdata[i]; j < nb_relocs; j++, rel++)
elf_swap_rel(rel);
}
}
}
/* text section */
text_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".text");
if (!text_sec)
error("could not find .text section");
text_shndx = text_sec - shdr;
text = sdata[text_shndx];
/* find text relocations, if any */
relocs = NULL;
nb_relocs = 0;
i = find_reloc(text_shndx);
if (i != 0) {
relocs = (ELF_RELOC *)sdata[i];
nb_relocs = shdr[i].sh_size / shdr[i].sh_entsize;
}
symtab_sec = find_elf_section(shdr, ehdr.e_shnum, shstr, ".symtab");
if (!symtab_sec)
error("could not find .symtab section");
strtab_sec = &shdr[symtab_sec->sh_link];
symtab = (ElfW(Sym) *)sdata[symtab_sec - shdr];
strtab = (char *)sdata[symtab_sec->sh_link];
nb_syms = symtab_sec->sh_size / sizeof(ElfW(Sym));
if (do_swap) {
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
swab32s(&sym->st_name);
swabls(&sym->st_value);
swabls(&sym->st_size);
swab16s(&sym->st_shndx);
}
}
close(fd);
return 0;
}
#endif /* CONFIG_FORMAT_ELF */
#ifdef CONFIG_FORMAT_COFF
/* COFF file info */
struct external_scnhdr *shdr;
uint8_t **sdata;
struct external_filehdr fhdr;
struct external_syment *coff_symtab;
char *strtab;
int coff_text_shndx, coff_data_shndx;
int data_shndx;
#define STRTAB_SIZE 4
#define DIR32 0x06
#define DISP32 0x14
#define T_FUNCTION 0x20
#define C_EXTERNAL 2
void sym_ent_name(struct external_syment *ext_sym, EXE_SYM *sym)
{
char *q;
int c, i, len;
if (ext_sym->e.e.e_zeroes != 0) {
q = sym->st_name;
for(i = 0; i < 8; i++) {
c = ext_sym->e.e_name[i];
if (c == '\0')
break;
*q++ = c;
}
*q = '\0';
} else {
pstrcpy(sym->st_name, sizeof(sym->st_name), strtab + ext_sym->e.e.e_offset);
}
/* now convert the name to a C name (suppress the leading '_') */
if (sym->st_name[0] == '_') {
len = strlen(sym->st_name);
memmove(sym->st_name, sym->st_name + 1, len - 1);
sym->st_name[len - 1] = '\0';
}
}
char *name_for_dotdata(struct coff_rel *rel)
{
int i;
struct coff_sym *sym;
uint32_t text_data;
text_data = *(uint32_t *)(text + rel->r_offset);
for (i = 0, sym = symtab; i < nb_syms; i++, sym++) {
if (sym->st_syment->e_scnum == data_shndx &&
text_data >= sym->st_value &&
text_data < sym->st_value + sym->st_size) {
return sym->st_name;
}
}
return NULL;
}
static char *get_sym_name(EXE_SYM *sym)
{
return sym->st_name;
}
static char *get_rel_sym_name(EXE_RELOC *rel)
{
char *name;
name = get_sym_name(symtab + *(uint32_t *)(rel->r_reloc->r_symndx));
if (!strcmp(name, ".data"))
name = name_for_dotdata(rel);
if (name[0] == '.')
return NULL;
return name;
}
static host_ulong get_rel_offset(EXE_RELOC *rel)
{
return rel->r_offset;
}
struct external_scnhdr *find_coff_section(struct external_scnhdr *shdr, int shnum, const char *name)
{
int i;
const char *shname;
struct external_scnhdr *sec;
for(i = 0; i < shnum; i++) {
sec = &shdr[i];
if (!sec->s_name)
continue;
shname = sec->s_name;
if (!strcmp(shname, name))
return sec;
}
return NULL;
}
/* load a coff object file */
int load_object(const char *filename)
{
int fd;
struct external_scnhdr *sec, *text_sec, *data_sec;
int i;
struct external_syment *ext_sym;
struct external_reloc *coff_relocs;
struct external_reloc *ext_rel;
uint32_t *n_strtab;
EXE_SYM *sym;
EXE_RELOC *rel;
const char *p;
int aux_size, j;
fd = open(filename, O_RDONLY
#ifdef _WIN32
| O_BINARY
#endif
);
if (fd < 0)
error("can't open file '%s'", filename);
/* Read COFF header. */
if (read(fd, &fhdr, sizeof (fhdr)) != sizeof (fhdr))
error("unable to read file header");
/* Check COFF identification. */
if (fhdr.f_magic != I386MAGIC) {
error("bad COFF header");
}
do_swap = 0;
/* read section headers */
shdr = load_data(fd, sizeof(struct external_filehdr) + fhdr.f_opthdr, fhdr.f_nscns * sizeof(struct external_scnhdr));
/* read all section data */
sdata = malloc(sizeof(void *) * fhdr.f_nscns);
memset(sdata, 0, sizeof(void *) * fhdr.f_nscns);
for(i = 0;i < fhdr.f_nscns; i++) {
sec = &shdr[i];
if (!strstart(sec->s_name, ".bss", &p))
sdata[i] = load_data(fd, sec->s_scnptr, sec->s_size);
}
/* text section */
text_sec = find_coff_section(shdr, fhdr.f_nscns, ".text");
if (!text_sec)
error("could not find .text section");
coff_text_shndx = text_sec - shdr;
text = sdata[coff_text_shndx];
/* data section */
data_sec = find_coff_section(shdr, fhdr.f_nscns, ".data");
if (!data_sec)
error("could not find .data section");
coff_data_shndx = data_sec - shdr;
coff_symtab = load_data(fd, fhdr.f_symptr, fhdr.f_nsyms*SYMESZ);
for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) {
for(i=0;i<8;i++)
printf(" %02x", ((uint8_t *)ext_sym->e.e_name)[i]);
printf("\n");
}
n_strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), STRTAB_SIZE);
strtab = load_data(fd, (fhdr.f_symptr + fhdr.f_nsyms*SYMESZ), *n_strtab);
nb_syms = fhdr.f_nsyms;
for (i = 0, ext_sym = coff_symtab; i < nb_syms; i++, ext_sym++) {
if (strstart(ext_sym->e.e_name, ".text", NULL))
text_shndx = ext_sym->e_scnum;
if (strstart(ext_sym->e.e_name, ".data", NULL))
data_shndx = ext_sym->e_scnum;
}
/* set coff symbol */
symtab = malloc(sizeof(struct coff_sym) * nb_syms);
for (i = 0, ext_sym = coff_symtab, sym = symtab; i < nb_syms; i++, ext_sym++, sym++) {
memset(sym, 0, sizeof(*sym));
sym->st_syment = ext_sym;
sym_ent_name(ext_sym, sym);
sym->st_value = ext_sym->e_value;
aux_size = *(int8_t *)ext_sym->e_numaux;
if (ext_sym->e_scnum == text_shndx && ext_sym->e_type == T_FUNCTION) {
for (j = aux_size + 1; j < nb_syms - i; j++) {
if ((ext_sym + j)->e_scnum == text_shndx &&
(ext_sym + j)->e_type == T_FUNCTION ){
sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value;
break;
} else if (j == nb_syms - i - 1) {
sec = &shdr[coff_text_shndx];
sym->st_size = sec->s_size - ext_sym->e_value;
break;
}
}
} else if (ext_sym->e_scnum == data_shndx && *(uint8_t *)ext_sym->e_sclass == C_EXTERNAL) {
for (j = aux_size + 1; j < nb_syms - i; j++) {
if ((ext_sym + j)->e_scnum == data_shndx) {
sym->st_size = (ext_sym + j)->e_value - ext_sym->e_value;
break;
} else if (j == nb_syms - i - 1) {
sec = &shdr[coff_data_shndx];
sym->st_size = sec->s_size - ext_sym->e_value;
break;
}
}
} else {
sym->st_size = 0;
}
sym->st_type = ext_sym->e_type;
sym->st_shndx = ext_sym->e_scnum;
}
/* find text relocations, if any */
sec = &shdr[coff_text_shndx];
coff_relocs = load_data(fd, sec->s_relptr, sec->s_nreloc*RELSZ);
nb_relocs = sec->s_nreloc;
/* set coff relocation */
relocs = malloc(sizeof(struct coff_rel) * nb_relocs);
for (i = 0, ext_rel = coff_relocs, rel = relocs; i < nb_relocs;
i++, ext_rel++, rel++) {
memset(rel, 0, sizeof(*rel));
rel->r_reloc = ext_rel;
rel->r_offset = *(uint32_t *)ext_rel->r_vaddr;
rel->r_type = *(uint16_t *)ext_rel->r_type;
}
return 0;
}
#endif /* CONFIG_FORMAT_COFF */
#ifdef CONFIG_FORMAT_MACH
/* File Header */
struct mach_header mach_hdr;
/* commands */
struct segment_command *segment = 0;
struct dysymtab_command *dysymtabcmd = 0;
struct symtab_command *symtabcmd = 0;
/* section */
struct section *section_hdr;
struct section *text_sec_hdr;
uint8_t **sdata;
/* relocs */
struct relocation_info *relocs;
/* symbols */
EXE_SYM *symtab;
struct nlist *symtab_std;
char *strtab;
/* indirect symbols */
uint32_t *tocdylib;
/* Utility functions */
static inline char *find_str_by_index(int index)
{
return strtab+index;
}
/* Used by dyngen common code */
static char *get_sym_name(EXE_SYM *sym)
{
char *name = find_str_by_index(sym->n_un.n_strx);
if ( sym->n_type & N_STAB ) /* Debug symbols are ignored */
return "debug";
if(!name)
return name;
if(name[0]=='_')
return name + 1;
else
return name;
}
/* find a section index given its segname, sectname */
static int find_mach_sec_index(struct section *section_hdr, int shnum, const char *segname,
const char *sectname)
{
int i;
struct section *sec = section_hdr;
for(i = 0; i < shnum; i++, sec++) {
if (!sec->segname || !sec->sectname)
continue;
if (!strcmp(sec->sectname, sectname) && !strcmp(sec->segname, segname))
return i;
}
return -1;
}
/* find a section header given its segname, sectname */
struct section *find_mach_sec_hdr(struct section *section_hdr, int shnum, const char *segname,
const char *sectname)
{
int index = find_mach_sec_index(section_hdr, shnum, segname, sectname);
if(index == -1)
return NULL;
return section_hdr+index;
}
static inline void fetch_next_pair_value(struct relocation_info * rel, unsigned int *value)
{
struct scattered_relocation_info * scarel;
if(R_SCATTERED & rel->r_address) {
scarel = (struct scattered_relocation_info*)rel;
if(scarel->r_type != PPC_RELOC_PAIR)
error("fetch_next_pair_value: looking for a pair which was not found (1)");
*value = scarel->r_value;
} else {
if(rel->r_type != PPC_RELOC_PAIR)
error("fetch_next_pair_value: looking for a pair which was not found (2)");
*value = rel->r_address;
}
}
/* find a sym name given its value, in a section number */
static const char * find_sym_with_value_and_sec_number( int value, int sectnum, int * offset )
{
int i, ret = -1;
for( i = 0 ; i < nb_syms; i++ )
{
if( !(symtab[i].n_type & N_STAB) && (symtab[i].n_type & N_SECT) &&
(symtab[i].n_sect == sectnum) && (symtab[i].st_value <= value) )
{
if( (ret<0) || (symtab[i].st_value >= symtab[ret].st_value) )
ret = i;
}
}
if( ret < 0 ) {
*offset = 0;
return 0;
} else {
*offset = value - symtab[ret].st_value;
return get_sym_name(&symtab[ret]);
}
}
/*
* Find symbol name given a (virtual) address, and a section which is of type
* S_NON_LAZY_SYMBOL_POINTERS or S_LAZY_SYMBOL_POINTERS or S_SYMBOL_STUBS
*/
static const char * find_reloc_name_in_sec_ptr(int address, struct section * sec_hdr)
{
unsigned int tocindex, symindex, size;
const char *name = 0;
/* Sanity check */
if(!( address >= sec_hdr->addr && address < (sec_hdr->addr + sec_hdr->size) ) )
return (char*)0;
if( sec_hdr->flags & S_SYMBOL_STUBS ){
size = sec_hdr->reserved2;
if(size == 0)
error("size = 0");
}
else if( sec_hdr->flags & S_LAZY_SYMBOL_POINTERS ||
sec_hdr->flags & S_NON_LAZY_SYMBOL_POINTERS)
size = sizeof(unsigned long);
else
return 0;
/* Compute our index in toc */
tocindex = (address - sec_hdr->addr)/size;
symindex = tocdylib[sec_hdr->reserved1 + tocindex];
name = get_sym_name(&symtab[symindex]);
return name;
}
static const char * find_reloc_name_given_its_address(int address)
{
unsigned int i;
for(i = 0; i < segment->nsects ; i++)
{
const char * name = find_reloc_name_in_sec_ptr(address, &section_hdr[i]);
if((long)name != -1)
return name;
}
return 0;
}
static const char * get_reloc_name(EXE_RELOC * rel, int * sslide)
{
char * name = 0;
struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel;
int sectnum = rel->r_symbolnum;
int sectoffset;
int other_half=0;
/* init the slide value */
*sslide = 0;
if(R_SCATTERED & rel->r_address)
return (char *)find_reloc_name_given_its_address(sca_rel->r_value);
if(rel->r_extern)
{
/* ignore debug sym */
if ( symtab[rel->r_symbolnum].n_type & N_STAB )
return 0;
return get_sym_name(&symtab[rel->r_symbolnum]);
}
/* Intruction contains an offset to the symbols pointed to, in the rel->r_symbolnum section */
sectoffset = *(uint32_t *)(text + rel->r_address) & 0xffff;
if(sectnum==0xffffff)
return 0;
/* Sanity Check */
if(sectnum > segment->nsects)
error("sectnum > segment->nsects");
switch(rel->r_type)
{
case PPC_RELOC_LO16: fetch_next_pair_value(rel+1, &other_half); sectoffset |= (other_half << 16);
break;
case PPC_RELOC_HI16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) | (uint16_t)(other_half & 0xffff);
break;
case PPC_RELOC_HA16: fetch_next_pair_value(rel+1, &other_half); sectoffset = (sectoffset << 16) + (int16_t)(other_half & 0xffff);
break;
case PPC_RELOC_BR24:
sectoffset = ( *(uint32_t *)(text + rel->r_address) & 0x03fffffc );
if (sectoffset & 0x02000000) sectoffset |= 0xfc000000;
break;
default:
error("switch(rel->type) not found");
}
if(rel->r_pcrel)
sectoffset += rel->r_address;
if (rel->r_type == PPC_RELOC_BR24)
name = (char *)find_reloc_name_in_sec_ptr((int)sectoffset, &section_hdr[sectnum-1]);
/* search it in the full symbol list, if not found */
if(!name)
name = (char *)find_sym_with_value_and_sec_number(sectoffset, sectnum, sslide);
return name;
}
/* Used by dyngen common code */
static const char * get_rel_sym_name(EXE_RELOC * rel)
{
int sslide;
return get_reloc_name( rel, &sslide);
}
/* Used by dyngen common code */
static host_ulong get_rel_offset(EXE_RELOC *rel)
{
struct scattered_relocation_info * sca_rel = (struct scattered_relocation_info*)rel;
if(R_SCATTERED & rel->r_address)
return sca_rel->r_address;
else
return rel->r_address;
}
/* load a mach-o object file */
int load_object(const char *filename)
{
int fd;
unsigned int offset_to_segment = 0;
unsigned int offset_to_dysymtab = 0;
unsigned int offset_to_symtab = 0;
struct load_command lc;
unsigned int i, j;
EXE_SYM *sym;
struct nlist *syment;
fd = open(filename, O_RDONLY);
if (fd < 0)
error("can't open file '%s'", filename);
/* Read Mach header. */
if (read(fd, &mach_hdr, sizeof (mach_hdr)) != sizeof (mach_hdr))
error("unable to read file header");
/* Check Mach identification. */
if (!check_mach_header(mach_hdr)) {
error("bad Mach header");
}
if (mach_hdr.cputype != CPU_TYPE_POWERPC)
error("Unsupported CPU");
if (mach_hdr.filetype != MH_OBJECT)
error("Unsupported Mach Object");
/* read segment headers */
for(i=0, j=sizeof(mach_hdr); i<mach_hdr.ncmds ; i++)
{
if(read(fd, &lc, sizeof(struct load_command)) != sizeof(struct load_command))
error("unable to read load_command");
if(lc.cmd == LC_SEGMENT)
{
offset_to_segment = j;
lseek(fd, offset_to_segment, SEEK_SET);
segment = malloc(sizeof(struct segment_command));
if(read(fd, segment, sizeof(struct segment_command)) != sizeof(struct segment_command))
error("unable to read LC_SEGMENT");
}
if(lc.cmd == LC_DYSYMTAB)
{
offset_to_dysymtab = j;
lseek(fd, offset_to_dysymtab, SEEK_SET);
dysymtabcmd = malloc(sizeof(struct dysymtab_command));
if(read(fd, dysymtabcmd, sizeof(struct dysymtab_command)) != sizeof(struct dysymtab_command))
error("unable to read LC_DYSYMTAB");
}
if(lc.cmd == LC_SYMTAB)
{
offset_to_symtab = j;
lseek(fd, offset_to_symtab, SEEK_SET);
symtabcmd = malloc(sizeof(struct symtab_command));
if(read(fd, symtabcmd, sizeof(struct symtab_command)) != sizeof(struct symtab_command))
error("unable to read LC_SYMTAB");
}
j+=lc.cmdsize;
lseek(fd, j, SEEK_SET);
}
if(!segment)
error("unable to find LC_SEGMENT");
/* read section headers */
section_hdr = load_data(fd, offset_to_segment + sizeof(struct segment_command), segment->nsects * sizeof(struct section));
/* read all section data */
sdata = (uint8_t **)malloc(sizeof(void *) * segment->nsects);
memset(sdata, 0, sizeof(void *) * segment->nsects);
/* Load the data in section data */
for(i = 0; i < segment->nsects; i++) {
sdata[i] = load_data(fd, section_hdr[i].offset, section_hdr[i].size);
}
/* text section */
text_sec_hdr = find_mach_sec_hdr(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT);
i = find_mach_sec_index(section_hdr, segment->nsects, SEG_TEXT, SECT_TEXT);
if (i == -1 || !text_sec_hdr)
error("could not find __TEXT,__text section");
text = sdata[i];
/* Make sure dysym was loaded */
if(!(int)dysymtabcmd)
error("could not find __DYSYMTAB segment");
/* read the table of content of the indirect sym */
tocdylib = load_data( fd, dysymtabcmd->indirectsymoff, dysymtabcmd->nindirectsyms * sizeof(uint32_t) );
/* Make sure symtab was loaded */
if(!(int)symtabcmd)
error("could not find __SYMTAB segment");
nb_syms = symtabcmd->nsyms;
symtab_std = load_data(fd, symtabcmd->symoff, symtabcmd->nsyms * sizeof(struct nlist));
strtab = load_data(fd, symtabcmd->stroff, symtabcmd->strsize);
symtab = malloc(sizeof(EXE_SYM) * nb_syms);
/* Now transform the symtab, to an extended version, with the sym size, and the C name */
for(i = 0, sym = symtab, syment = symtab_std; i < nb_syms; i++, sym++, syment++) {
struct nlist *sym_follow, *sym_next = 0;
unsigned int j;
memset(sym, 0, sizeof(*sym));
if ( syment->n_type & N_STAB ) /* Debug symbols are skipped */
continue;
memcpy(sym, syment, sizeof(*syment));
/* Find the following symbol in order to get the current symbol size */
for(j = 0, sym_follow = symtab_std; j < nb_syms; j++, sym_follow++) {
if ( sym_follow->n_sect != 1 || sym_follow->n_type & N_STAB || !(sym_follow->n_value > sym->st_value))
continue;
if(!sym_next) {
sym_next = sym_follow;
continue;
}
if(!(sym_next->n_value > sym_follow->n_value))
continue;
sym_next = sym_follow;
}
if(sym_next)
sym->st_size = sym_next->n_value - sym->st_value;
else
sym->st_size = text_sec_hdr->size - sym->st_value;
}
/* Find Reloc */
relocs = load_data(fd, text_sec_hdr->reloff, text_sec_hdr->nreloc * sizeof(struct relocation_info));
nb_relocs = text_sec_hdr->nreloc;
close(fd);
return 0;
}
#endif /* CONFIG_FORMAT_MACH */
/* return true if the expression is a label reference */
int get_reloc_expr(char *name, int name_size, const char *sym_name)
{
const char *p;
if (strstart(sym_name, "__op_param", &p)) {
snprintf(name, name_size, "param%s", p);
} else if (strstart(sym_name, "__op_gen_label", &p)) {
snprintf(name, name_size, "param%s", p);
return 1;
} else {
#if defined(HOST_SPARC) || defined(HOST_HPPA)
if (sym_name[0] == '.')
snprintf(name, name_size,
"(long)(&__dot_%s)",
sym_name + 1);
else
#endif
snprintf(name, name_size, "(long)(&%s)", sym_name);
}
return 0;
}
#ifdef HOST_IA64
#define PLT_ENTRY_SIZE 16 /* 1 bundle containing "brl" */
struct plt_entry {
struct plt_entry *next;
const char *name;
unsigned long addend;
} *plt_list;
static int
get_plt_index (const char *name, unsigned long addend)
{
struct plt_entry *plt, *prev= NULL;
int index = 0;
/* see if we already have an entry for this target: */
for (plt = plt_list; plt; ++index, prev = plt, plt = plt->next)
if (strcmp(plt->name, name) == 0 && plt->addend == addend)
return index;
/* nope; create a new PLT entry: */
plt = malloc(sizeof(*plt));
if (!plt) {
perror("malloc");
exit(1);
}
memset(plt, 0, sizeof(*plt));
plt->name = strdup(name);
plt->addend = addend;
/* append to plt-list: */
if (prev)
prev->next = plt;
else
plt_list = plt;
return index;
}
#endif
#define MAX_ARGS 3
/* generate op code */
void gen_code(const char *name, host_ulong offset, host_ulong size,
FILE *outfile, int gen_switch)
{
int copy_size = 0;
uint8_t *p_start, *p_end;
host_ulong start_offset;
int nb_args, i, n;
uint8_t args_present[MAX_ARGS];
const char *sym_name, *p;
EXE_RELOC *rel;
/* Compute exact size excluding prologue and epilogue instructions.
* Increment start_offset to skip epilogue instructions, then compute
* copy_size the indicate the size of the remaining instructions (in
* bytes).
*/
p_start = text + offset;
p_end = p_start + size;
start_offset = offset;
#if defined(HOST_I386) || defined(HOST_X86_64)
#ifdef CONFIG_FORMAT_COFF
{
uint8_t *p;
p = p_end - 1;
if (p == p_start)
error("empty code for %s", name);
while (*p != 0xc3) {
p--;
if (p <= p_start)
error("ret or jmp expected at the end of %s", name);
}
copy_size = p - p_start;
}
#else
{
int len;
len = p_end - p_start;
if (len == 0)
error("empty code for %s", name);
if (p_end[-1] == 0xc3) {
len--;
} else {
error("ret or jmp expected at the end of %s", name);
}
copy_size = len;
}
#endif
#elif defined(HOST_PPC)
{
uint8_t *p;
p = (void *)(p_end - 4);
if (p == p_start)
error("empty code for %s", name);
if (get32((uint32_t *)p) != 0x4e800020)
error("blr expected at the end of %s", name);
copy_size = p - p_start;
}
#elif defined(HOST_S390)
{
uint8_t *p;
p = (void *)(p_end - 2);
if (p == p_start)
error("empty code for %s", name);
if ((get16((uint16_t *)p) & 0xfff0) != 0x07f0)
error("br expected at the end of %s", name);
copy_size = p - p_start;
}
#elif defined(HOST_ALPHA)
{
uint8_t *p;
p = p_end - 4;
#if 0
/* XXX: check why it occurs */
if (p == p_start)
error("empty code for %s", name);
#endif
if (get32((uint32_t *)p) != 0x6bfa8001)
error("ret expected at the end of %s", name);
copy_size = p - p_start;
}
#elif defined(HOST_IA64)
{
uint8_t *p;
p = (void *)(p_end - 4);
if (p == p_start)
error("empty code for %s", name);
/* br.ret.sptk.many b0;; */
/* 08 00 84 00 */
if (get32((uint32_t *)p) != 0x00840008)
error("br.ret.sptk.many b0;; expected at the end of %s", name);
copy_size = p_end - p_start;
}
#elif defined(HOST_SPARC)
{
#define INSN_SAVE 0x9de3a000
#define INSN_RET 0x81c7e008
#define INSN_RETL 0x81c3e008
#define INSN_RESTORE 0x81e80000
#define INSN_RETURN 0x81cfe008
#define INSN_NOP 0x01000000
#define INSN_ADD_SP 0x9c03a000 // add %sp, nn, %sp
#define INSN_SUB_SP 0x9c23a000 // sub %sp, nn, %sp
uint32_t start_insn, end_insn1, end_insn2;
uint8_t *p;
p = (void *)(p_end - 8);
if (p <= p_start)
error("empty code for %s", name);
start_insn = get32((uint32_t *)(p_start + 0x0));
end_insn1 = get32((uint32_t *)(p + 0x0));
end_insn2 = get32((uint32_t *)(p + 0x4));
if (((start_insn & ~0x1fff) == INSN_SAVE) ||
(start_insn & ~0x1fff) == INSN_ADD_SP) {
p_start += 0x4;
start_offset += 0x4;
if (end_insn1 == INSN_RET && end_insn2 == INSN_RESTORE)
/* SPARC v7: ret; restore; */ ;
else if (end_insn1 == INSN_RETURN && end_insn2 == INSN_NOP)
/* SPARC v9: return; nop; */ ;
else if (end_insn1 == INSN_RETL && (end_insn2 & ~0x1fff) == INSN_SUB_SP)
/* SPARC v7: retl; sub %sp, nn, %sp; */ ;
else
error("ret; restore; not found at end of %s", name);
} else if (end_insn1 == INSN_RETL && end_insn2 == INSN_NOP) {
;
} else {
error("No save at the beginning of %s", name);
}
#if 0
/* Skip a preceeding nop, if present. */
if (p > p_start) {
skip_insn = get32((uint32_t *)(p - 0x4));
if (skip_insn == INSN_NOP)
p -= 4;
}
#endif
copy_size = p - p_start;
}
#elif defined(HOST_SPARC64)
{
#define INSN_SAVE 0x9de3a000
#define INSN_RET 0x81c7e008
#define INSN_RETL 0x81c3e008
#define INSN_RESTORE 0x81e80000
#define INSN_RETURN 0x81cfe008
#define INSN_NOP 0x01000000
#define INSN_ADD_SP 0x9c03a000 // add %sp, nn, %sp
#define INSN_SUB_SP 0x9c23a000 // sub %sp, nn, %sp
uint32_t start_insn, end_insn1, end_insn2, skip_insn;
uint8_t *p;
p = (void *)(p_end - 8);
#if 0
/* XXX: check why it occurs */
if (p <= p_start)
error("empty code for %s", name);
#endif
start_insn = get32((uint32_t *)(p_start + 0x0));
end_insn1 = get32((uint32_t *)(p + 0x0));
end_insn2 = get32((uint32_t *)(p + 0x4));
if (((start_insn & ~0x1fff) == INSN_SAVE) ||
(start_insn & ~0x1fff) == INSN_ADD_SP) {
p_start += 0x4;
start_offset += 0x4;
if (end_insn1 == INSN_RET && end_insn2 == INSN_RESTORE)
/* SPARC v7: ret; restore; */ ;
else if (end_insn1 == INSN_RETURN && end_insn2 == INSN_NOP)
/* SPARC v9: return; nop; */ ;
else if (end_insn1 == INSN_RETL && (end_insn2 & ~0x1fff) == INSN_SUB_SP)
/* SPARC v7: retl; sub %sp, nn, %sp; */ ;
else
error("ret; restore; not found at end of %s", name);
} else if (end_insn1 == INSN_RETL && end_insn2 == INSN_NOP) {
;
} else {
error("No save at the beginning of %s", name);
}
#if 0
/* Skip a preceeding nop, if present. */
if (p > p_start) {
skip_insn = get32((uint32_t *)(p - 0x4));
if (skip_insn == 0x01000000)
p -= 4;
}
#endif
copy_size = p - p_start;
}
#elif defined(HOST_M68K)
{
uint8_t *p;
p = (void *)(p_end - 2);
if (p == p_start)
error("empty code for %s", name);
// remove NOP's, probably added for alignment
while ((get16((uint16_t *)p) == 0x4e71) &&
(p>p_start))
p -= 2;
if (get16((uint16_t *)p) != 0x4e75)
error("rts expected at the end of %s", name);
copy_size = p - p_start;
}
#elif defined(HOST_HPPA)
{
uint8_t *p;
p = p_start;
while (p < p_end) {
uint32_t insn = get32((uint32_t *)p);
if (insn == 0x6bc23fd9 || /* stw rp,-14(sp) */
insn == 0x08030241 || /* copy r3,r1 */
insn == 0x081e0243 || /* copy sp,r3 */
(insn & 0xffffc000) == 0x37de0000 || /* ldo x(sp),sp */
(insn & 0xffffc000) == 0x6fc10000) /* stwm r1,x(sp) */
p += 4;
else
break;
}
start_offset += p - p_start;
p_start = p;
p = p_end - 4;
while (p > p_start) {
uint32_t insn = get32((uint32_t *)p);
if ((insn & 0xffffc000) == 0x347e0000 || /* ldo x(r3),sp */
(insn & 0xffe0c000) == 0x4fc00000 || /* ldwm x(sp),rx */
(insn & 0xffffc000) == 0x37de0000 || /* ldo x(sp),sp */
insn == 0x48623fd9 || /* ldw -14(r3),rp */
insn == 0xe840c000 || /* bv r0(rp) */
insn == 0xe840c002) /* bv,n r0(rp) */
p -= 4;
else
break;
}
p += 4;
if (p <= p_start)
error("empty code for %s", name);
copy_size = p - p_start;
}
#elif defined(HOST_MIPS) || defined(HOST_MIPS64)
{
#define INSN_RETURN 0x03e00008
#define INSN_NOP 0x00000000
uint8_t *p = p_end;
if (p < (p_start + 0x8)) {
error("empty code for %s", name);
} else {
uint32_t end_insn1, end_insn2;
p -= 0x8;
end_insn1 = get32((uint32_t *)(p + 0x0));
end_insn2 = get32((uint32_t *)(p + 0x4));
if (end_insn1 != INSN_RETURN && end_insn2 != INSN_NOP)
error("jr ra not found at end of %s", name);
}
copy_size = p - p_start;
}
#elif defined(HOST_ARM)
error("dyngen targets not supported on ARM");
#else
#error unsupported CPU
#endif
/* compute the number of arguments by looking at the relocations */
for(i = 0;i < MAX_ARGS; i++)
args_present[i] = 0;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
host_ulong offset = get_rel_offset(rel);
if (offset >= start_offset &&
offset < start_offset + (p_end - p_start)) {
sym_name = get_rel_sym_name(rel);
if(!sym_name)
continue;
if (strstart(sym_name, "__op_param", &p) ||
strstart(sym_name, "__op_gen_label", &p)) {
n = strtoul(p, NULL, 10);
if (n > MAX_ARGS)
error("too many arguments in %s", name);
args_present[n - 1] = 1;
}
}
}
nb_args = 0;
while (nb_args < MAX_ARGS && args_present[nb_args])
nb_args++;
for(i = nb_args; i < MAX_ARGS; i++) {
if (args_present[i])
error("inconsistent argument numbering in %s", name);
}
if (gen_switch == 2) {
#if defined(HOST_HPPA)
int op_size = copy_size;
int has_stubs = 0;
char relname[256];
int type, is_label;
for (i = 0, rel = relocs; i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = get_rel_sym_name(rel);
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
is_label = get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
if (!is_label && type == R_PARISC_PCREL17F) {
has_stubs = 1;
op_size += 8; /* ldil and be,n instructions */
}
}
}
if (has_stubs)
op_size += 4; /* b,l,n instruction, to skip past the stubs */
fprintf(outfile, "DEF(%s, %d, %d)\n", name + 3, nb_args, op_size);
#else
fprintf(outfile, "DEF(%s, %d, %d)\n", name + 3, nb_args, copy_size);
#endif
} else if (gen_switch == 1) {
/* output C code */
fprintf(outfile, "case INDEX_%s: {\n", name);
if (nb_args > 0) {
fprintf(outfile, " long ");
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "param%d", i + 1);
}
fprintf(outfile, ";\n");
}
#if defined(HOST_IA64)
fprintf(outfile, " extern char %s;\n", name);
#else
fprintf(outfile, " extern void %s();\n", name);
#endif
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
host_ulong offset = get_rel_offset(rel);
if (offset >= start_offset &&
offset < start_offset + (p_end - p_start)) {
sym_name = get_rel_sym_name(rel);
if(!sym_name)
continue;
if (*sym_name &&
!strstart(sym_name, "__op_param", NULL) &&
!strstart(sym_name, "__op_jmp", NULL) &&
!strstart(sym_name, "__op_gen_label", NULL)) {
#if defined(HOST_SPARC) || defined(HOST_HPPA)
if (sym_name[0] == '.') {
fprintf(outfile,
"extern char __dot_%s __asm__(\"%s\");\n",
sym_name+1, sym_name);
continue;
}
#endif
#if defined(__APPLE__)
/* Set __attribute((unused)) on darwin because we
want to avoid warning when we don't use the symbol. */
fprintf(outfile, " extern char %s __attribute__((unused));\n", sym_name);
#elif defined(HOST_IA64)
if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B)
/*
* PCREL21 br.call targets generally
* are out of range and need to go
* through an "import stub".
*/
fprintf(outfile, " extern char %s;\n",
sym_name);
#else
fprintf(outfile, "extern char %s;\n", sym_name);
#endif
}
}
}
#ifdef __hppa__
fprintf(outfile, " memcpy(gen_code_ptr, (void *)((char *)__canonicalize_funcptr_for_compare(%s)+%d), %d);\n",
name, (int)(start_offset - offset), copy_size);
#else
fprintf(outfile, " memcpy(gen_code_ptr, (void *)((char *)&%s+%d), %d);\n",
name, (int)(start_offset - offset), copy_size);
#endif
/* emit code offset information */
{
EXE_SYM *sym;
const char *sym_name, *p;
host_ulong val;
int n;
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
sym_name = get_sym_name(sym);
if (strstart(sym_name, "__op_label", &p)) {
uint8_t *ptr;
unsigned long offset;
/* test if the variable refers to a label inside
the code we are generating */
#ifdef CONFIG_FORMAT_COFF
if (sym->st_shndx == text_shndx) {
ptr = sdata[coff_text_shndx];
} else if (sym->st_shndx == data_shndx) {
ptr = sdata[coff_data_shndx];
} else {
ptr = NULL;
}
#elif defined(CONFIG_FORMAT_MACH)
if(!sym->n_sect)
continue;
ptr = sdata[sym->n_sect-1];
#else
ptr = sdata[sym->st_shndx];
#endif
if (!ptr)
error("__op_labelN in invalid section");
offset = sym->st_value;
#ifdef CONFIG_FORMAT_MACH
offset -= section_hdr[sym->n_sect-1].addr;
#endif
val = *(host_ulong *)(ptr + offset);
#ifdef ELF_USES_RELOCA
{
int reloc_shndx, nb_relocs1, j;
/* try to find a matching relocation */
reloc_shndx = find_reloc(sym->st_shndx);
if (reloc_shndx) {
nb_relocs1 = shdr[reloc_shndx].sh_size /
shdr[reloc_shndx].sh_entsize;
rel = (ELF_RELOC *)sdata[reloc_shndx];
for(j = 0; j < nb_relocs1; j++) {
if (rel->r_offset == offset) {
val = rel->r_addend;
break;
}
rel++;
}
}
}
#endif
if (val >= start_offset && val <= start_offset + copy_size) {
n = strtol(p, NULL, 10);
fprintf(outfile, " label_offsets[%d] = %ld + (gen_code_ptr - gen_code_buf);\n", n, (long)(val - start_offset));
}
}
}
}
/* load parameters in variables */
for(i = 0; i < nb_args; i++) {
fprintf(outfile, " param%d = *opparam_ptr++;\n", i + 1);
}
/* patch relocations */
#if defined(HOST_I386)
{
char relname[256];
int type, is_label;
int addend;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = get_rel_sym_name(rel);
if (!sym_name)
continue;
reloc_offset = rel->r_offset - start_offset;
if (strstart(sym_name, "__op_jmp", &p)) {
int n;
n = strtol(p, NULL, 10);
/* __op_jmp relocations are done at
runtime to do translated block
chaining: the offset of the instruction
needs to be stored */
fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n",
n, reloc_offset);
continue;
}
is_label = get_reloc_expr(relname, sizeof(relname), sym_name);
addend = get32((uint32_t *)(text + rel->r_offset));
#ifdef CONFIG_FORMAT_ELF
type = ELF32_R_TYPE(rel->r_info);
if (is_label) {
switch(type) {
case R_386_32:
case R_386_PC32:
fprintf(outfile, " tcg_out_reloc(s, gen_code_ptr + %d, %d, %s, %d);\n",
reloc_offset, type, relname, addend);
break;
default:
error("unsupported i386 relocation (%d)", type);
}
} else {
switch(type) {
case R_386_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_386_PC32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d;\n",
reloc_offset, relname, reloc_offset, addend);
break;
default:
error("unsupported i386 relocation (%d)", type);
}
}
#elif defined(CONFIG_FORMAT_COFF)
{
char *temp_name;
int j;
EXE_SYM *sym;
temp_name = get_sym_name(symtab + *(uint32_t *)(rel->r_reloc->r_symndx));
if (!strcmp(temp_name, ".data")) {
for (j = 0, sym = symtab; j < nb_syms; j++, sym++) {
if (strstart(sym->st_name, sym_name, NULL)) {
addend -= sym->st_value;
}
}
}
}
type = rel->r_type;
if (is_label) {
/* TCG uses elf relocation constants */
#define R_386_32 1
#define R_386_PC32 2
switch(type) {
case DIR32:
type = R_386_32;
goto do_reloc;
case DISP32:
type = R_386_PC32;
addend -= 4;
do_reloc:
fprintf(outfile, " tcg_out_reloc(s, gen_code_ptr + %d, %d, %s, %d);\n",
reloc_offset, type, relname, addend);
break;
default:
error("unsupported i386 relocation (%d)", type);
}
} else {
switch(type) {
case DIR32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case DISP32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d -4;\n",
reloc_offset, relname, reloc_offset, addend);
break;
default:
error("unsupported i386 relocation (%d)", type);
}
}
#else
#error unsupport object format
#endif
}
}
}
#elif defined(HOST_X86_64)
{
char relname[256];
int type, is_label;
int addend;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
is_label = get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
if (is_label) {
switch(type) {
case R_X86_64_32:
case R_X86_64_32S:
case R_X86_64_PC32:
fprintf(outfile, " tcg_out_reloc(s, gen_code_ptr + %d, %d, %s, %d);\n",
reloc_offset, type, relname, addend);
break;
default:
error("unsupported X86_64 relocation (%d)", type);
}
} else {
switch(type) {
case R_X86_64_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (uint32_t)%s + %d;\n",
reloc_offset, relname, addend);
break;
case R_X86_64_32S:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (int32_t)%s + %d;\n",
reloc_offset, relname, addend);
break;
case R_X86_64_PC32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %d) + %d;\n",
reloc_offset, relname, reloc_offset, addend);
break;
default:
error("unsupported X86_64 relocation (%d)", type);
}
}
}
}
}
#elif defined(HOST_PPC)
{
#ifdef CONFIG_FORMAT_ELF
char relname[256];
int type;
int addend;
int is_label;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
reloc_offset = rel->r_offset - start_offset;
if (strstart(sym_name, "__op_jmp", &p)) {
int n;
n = strtol(p, NULL, 10);
/* __op_jmp relocations are done at
runtime to do translated block
chaining: the offset of the instruction
needs to be stored */
fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n",
n, reloc_offset);
continue;
}
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
is_label = get_reloc_expr(relname, sizeof(relname), sym_name);
addend = rel->r_addend;
if (is_label) {
switch (type) {
case R_PPC_REL24:
fprintf (outfile, " tcg_out_reloc(s, gen_code_ptr + %d, %d, %s, %d);\n",
reloc_offset, type, relname, addend);
break;
default:
error ("unsupported ppc relocation (%d)", type);
}
}
else {
switch(type) {
case R_PPC_ADDR32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_PPC_ADDR16_LO:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d);\n",
reloc_offset, relname, addend);
break;
case R_PPC_ADDR16_HI:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d) >> 16;\n",
reloc_offset, relname, addend);
break;
case R_PPC_ADDR16_HA:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = (%s + %d + 0x8000) >> 16;\n",
reloc_offset, relname, addend);
break;
case R_PPC_REL24:
/* warning: must be at 32 MB distancy */
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | ((%s - (long)(gen_code_ptr + %d) + %d) & 0x03fffffc);\n",
reloc_offset, reloc_offset, relname, reloc_offset, addend);
break;
default:
error("unsupported powerpc relocation (%d)", type);
}
}
}
}
#elif defined(CONFIG_FORMAT_MACH)
struct scattered_relocation_info *scarel;
struct relocation_info * rel;
char final_sym_name[256];
const char *sym_name;
const char *p;
int slide, sslide;
int i;
for(i = 0, rel = relocs; i < nb_relocs; i++, rel++) {
unsigned int offset, length, value = 0;
unsigned int type, pcrel, isym = 0;
unsigned int usesym = 0;
if(R_SCATTERED & rel->r_address) {
scarel = (struct scattered_relocation_info*)rel;
offset = (unsigned int)scarel->r_address;
length = scarel->r_length;
pcrel = scarel->r_pcrel;
type = scarel->r_type;
value = scarel->r_value;
} else {
value = isym = rel->r_symbolnum;
usesym = (rel->r_extern);
offset = rel->r_address;
length = rel->r_length;
pcrel = rel->r_pcrel;
type = rel->r_type;
}
slide = offset - start_offset;
if (!(offset >= start_offset && offset < start_offset + size))
continue; /* not in our range */
sym_name = get_reloc_name(rel, &sslide);
if(usesym && symtab[isym].n_type & N_STAB)
continue; /* don't handle STAB (debug sym) */
if (sym_name && strstart(sym_name, "__op_jmp", &p)) {
int n;
n = strtol(p, NULL, 10);
fprintf(outfile, " jmp_offsets[%d] = %d + (gen_code_ptr - gen_code_buf);\n",
n, slide);
continue; /* Nothing more to do */
}
if(!sym_name) {
fprintf(outfile, "/* #warning relocation not handled in %s (value 0x%x, %s, offset 0x%x, length 0x%x, %s, type 0x%x) */\n",
name, value, usesym ? "use sym" : "don't use sym", offset, length, pcrel ? "pcrel":"", type);
continue; /* dunno how to handle without final_sym_name */
}
get_reloc_expr(final_sym_name, sizeof(final_sym_name),
sym_name);
switch(type) {
case PPC_RELOC_BR24:
if (!strstart(sym_name,"__op_gen_label",&p)) {
fprintf(outfile, "{\n");
fprintf(outfile, " uint32_t imm = *(uint32_t *)(gen_code_ptr + %d) & 0x3fffffc;\n", slide);
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | ((imm + ((long)%s - (long)gen_code_ptr) + %d) & 0x03fffffc);\n",
slide, slide, name, sslide);
fprintf(outfile, "}\n");
} else {
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = (*(uint32_t *)(gen_code_ptr + %d) & ~0x03fffffc) | (((long)%s - (long)gen_code_ptr - %d) & 0x03fffffc);\n",
slide, slide, final_sym_name, slide);
}
break;
case PPC_RELOC_HI16:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d) >> 16;\n",
slide, final_sym_name, sslide);
break;
case PPC_RELOC_LO16:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d);\n",
slide, final_sym_name, sslide);
break;
case PPC_RELOC_HA16:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d + 2) = (%s + %d + 0x8000) >> 16;\n",
slide, final_sym_name, sslide);
break;
default:
error("unsupported powerpc relocation (%d)", type);
}
}
#else
#error unsupport object format
#endif
}
#elif defined(HOST_S390)
{
char relname[256];
int type;
int addend;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
switch(type) {
case R_390_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_390_16:
fprintf(outfile, " *(uint16_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_390_8:
fprintf(outfile, " *(uint8_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_390_PC32DBL:
if (ELF32_ST_TYPE(symtab[ELFW(R_SYM)(rel->r_info)].st_info) == STT_SECTION) {
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) += "
"((long)&%s - (long)gen_code_ptr) >> 1;\n",
reloc_offset, name);
}
else
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"(%s + %d - ((uint32_t)gen_code_ptr + %d)) >> 1;\n",
reloc_offset, relname, addend, reloc_offset);
break;
default:
error("unsupported s390 relocation (%d)", type);
}
}
}
}
#elif defined(HOST_ALPHA)
{
for (i = 0, rel = relocs; i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) {
int type;
long reloc_offset;
type = ELF64_R_TYPE(rel->r_info);
sym_name = strtab + symtab[ELF64_R_SYM(rel->r_info)].st_name;
reloc_offset = rel->r_offset - start_offset;
switch (type) {
case R_ALPHA_GPDISP:
/* The gp is just 32 bit, and never changes, so it's easiest to emit it
as an immediate instead of constructing it from the pv or ra. */
fprintf(outfile, " immediate_ldah(gen_code_ptr + %ld, gp);\n",
reloc_offset);
fprintf(outfile, " immediate_lda(gen_code_ptr + %ld, gp);\n",
reloc_offset + (int)rel->r_addend);
break;
case R_ALPHA_LITUSE:
/* jsr to literal hint. Could be used to optimize to bsr. Ignore for
now, since some called functions (libc) need pv to be set up. */
break;
case R_ALPHA_HINT:
/* Branch target prediction hint. Ignore for now. Should be already
correct for in-function jumps. */
break;
case R_ALPHA_LITERAL:
/* Load a literal from the GOT relative to the gp. Since there's only a
single gp, nothing is to be done. */
break;
case R_ALPHA_GPRELHIGH:
/* Handle fake relocations against __op_param symbol. Need to emit the
high part of the immediate value instead. Other symbols need no
special treatment. */
if (strstart(sym_name, "__op_param", &p))
fprintf(outfile, " immediate_ldah(gen_code_ptr + %ld, param%s);\n",
reloc_offset, p);
break;
case R_ALPHA_GPRELLOW:
if (strstart(sym_name, "__op_param", &p))
fprintf(outfile, " immediate_lda(gen_code_ptr + %ld, param%s);\n",
reloc_offset, p);
break;
case R_ALPHA_BRSGP:
/* PC-relative jump. Tweak offset to skip the two instructions that try to
set up the gp from the pv. */
fprintf(outfile, " fix_bsr(gen_code_ptr + %ld, (uint8_t *) &%s - (gen_code_ptr + %ld + 4) + 8);\n",
reloc_offset, sym_name, reloc_offset);
break;
default:
error("unsupported Alpha relocation (%d)", type);
}
}
}
}
#elif defined(HOST_IA64)
{
unsigned long sym_idx;
long code_offset;
char relname[256];
int type;
long addend;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
sym_idx = ELF64_R_SYM(rel->r_info);
if (rel->r_offset < start_offset
|| rel->r_offset >= start_offset + copy_size)
continue;
sym_name = (strtab + symtab[sym_idx].st_name);
code_offset = rel->r_offset - start_offset;
if (strstart(sym_name, "__op_jmp", &p)) {
int n;
n = strtol(p, NULL, 10);
/* __op_jmp relocations are done at
runtime to do translated block
chaining: the offset of the instruction
needs to be stored */
fprintf(outfile, " jmp_offsets[%d] ="
"%ld + (gen_code_ptr - gen_code_buf);\n",
n, code_offset);
continue;
}
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF64_R_TYPE(rel->r_info);
addend = rel->r_addend;
switch(type) {
case R_IA64_IMM64:
fprintf(outfile,
" ia64_imm64(gen_code_ptr + %ld, "
"%s + %ld);\n",
code_offset, relname, addend);
break;
case R_IA64_LTOFF22X:
case R_IA64_LTOFF22:
fprintf(outfile, " IA64_LTOFF(gen_code_ptr + %ld,"
" %s + %ld, %d);\n",
code_offset, relname, addend,
(type == R_IA64_LTOFF22X));
break;
case R_IA64_LDXMOV:
fprintf(outfile,
" ia64_ldxmov(gen_code_ptr + %ld,"
" %s + %ld);\n", code_offset, relname, addend);
break;
case R_IA64_PCREL21B:
if (strstart(sym_name, "__op_gen_label", NULL)) {
fprintf(outfile,
" ia64_imm21b(gen_code_ptr + %ld,"
" (long) (%s + %ld -\n\t\t"
"((long) gen_code_ptr + %ld)) >> 4);\n",
code_offset, relname, addend,
code_offset & ~0xfUL);
} else {
fprintf(outfile,
" IA64_PLT(gen_code_ptr + %ld, "
"%d);\t/* %s + %ld */\n",
code_offset,
get_plt_index(sym_name, addend),
sym_name, addend);
}
break;
default:
error("unsupported ia64 relocation (0x%x)",
type);
}
}
fprintf(outfile, " ia64_nop_b(gen_code_ptr + %d);\n",
copy_size - 16 + 2);
}
#elif defined(HOST_SPARC)
{
char relname[256];
int type;
int addend;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
switch(type) {
case R_SPARC_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_SPARC_HI22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffff) "
" | (((%s + %d) >> 10) & 0x3fffff);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_LO10:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3ff) "
" | ((%s + %d) & 0x3ff);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_WDISP30:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffffff) "
" | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) "
" & 0x3fffffff);\n",
reloc_offset, reloc_offset, relname, addend,
reloc_offset);
break;
case R_SPARC_WDISP22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffff) "
" | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) "
" & 0x3fffff);\n",
rel->r_offset - start_offset,
rel->r_offset - start_offset,
relname, addend,
rel->r_offset - start_offset);
break;
default:
error("unsupported sparc relocation (%d)", type);
}
}
}
}
#elif defined(HOST_SPARC64)
{
char relname[256];
int type;
int addend;
int reloc_offset;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = strtab + symtab[ELF64_R_SYM(rel->r_info)].st_name;
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
switch(type) {
case R_SPARC_32:
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %d;\n",
reloc_offset, relname, addend);
break;
case R_SPARC_HI22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffff) "
" | (((%s + %d) >> 10) & 0x3fffff);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_LO10:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3ff) "
" | ((%s + %d) & 0x3ff);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_OLO10:
addend += ELF64_R_TYPE_DATA (rel->r_info);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3ff) "
" | ((%s + %d) & 0x3ff);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_WDISP30:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffffff) "
" | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) "
" & 0x3fffffff);\n",
reloc_offset, reloc_offset, relname, addend,
reloc_offset);
break;
case R_SPARC_WDISP22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x3fffff) "
" | ((((%s + %d) - (long)(gen_code_ptr + %d))>>2) "
" & 0x3fffff);\n",
reloc_offset, reloc_offset, relname, addend,
reloc_offset);
break;
case R_SPARC_HH22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x00000000) "
" | (((%s + %d) >> 42) & 0x00000000);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_LM22:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x00000000) "
" | (((%s + %d) >> 10) & 0x00000000);\n",
reloc_offset, reloc_offset, relname, addend);
break;
case R_SPARC_HM10:
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + %d) = "
"((*(uint32_t *)(gen_code_ptr + %d)) "
" & ~0x00000000) "
" | ((((%s + %d) >> 32 & 0x3ff)) & 0x00000000);\n",
reloc_offset, reloc_offset, relname, addend);
break;
default:
error("unsupported sparc64 relocation (%d) for symbol %s", type, relname);
}
}
}
}
#elif defined(HOST_M68K)
{
char relname[256];
int type;
int addend;
int reloc_offset;
Elf32_Sym *sym;
for(i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym = &(symtab[ELFW(R_SYM)(rel->r_info)]);
sym_name = strtab + symtab[ELFW(R_SYM)(rel->r_info)].st_name;
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = get32((uint32_t *)(text + rel->r_offset)) + rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
switch(type) {
case R_68K_32:
fprintf(outfile, " /* R_68K_32 RELOC, offset %x */\n", rel->r_offset) ;
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s + %#x;\n",
reloc_offset, relname, addend );
break;
case R_68K_PC32:
fprintf(outfile, " /* R_68K_PC32 RELOC, offset %x */\n", rel->r_offset);
fprintf(outfile, " *(uint32_t *)(gen_code_ptr + %d) = %s - (long)(gen_code_ptr + %#x) + %#x;\n",
reloc_offset, relname, reloc_offset, /*sym->st_value+*/ addend);
break;
default:
error("unsupported m68k relocation (%d)", type);
}
}
}
}
#elif defined(HOST_HPPA)
{
char relname[256];
int type, is_label;
int addend;
int reloc_offset;
for (i = 0, rel = relocs; i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset &&
rel->r_offset < start_offset + copy_size) {
sym_name = get_rel_sym_name(rel);
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
is_label = get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = rel->r_addend;
reloc_offset = rel->r_offset - start_offset;
if (is_label) {
switch (type) {
case R_PARISC_PCREL17F:
fprintf(outfile,
" tcg_out_reloc(s, gen_code_ptr + %d, %d, %s, %d);\n",
reloc_offset, type, relname, addend);
break;
default:
error("unsupported hppa label relocation (%d)", type);
}
} else {
switch (type) {
case R_PARISC_DIR21L:
fprintf(outfile,
" hppa_patch21l((uint32_t *)(gen_code_ptr + %d), %s, %d);\n",
reloc_offset, relname, addend);
break;
case R_PARISC_DIR14R:
fprintf(outfile,
" hppa_patch14r((uint32_t *)(gen_code_ptr + %d), %s, %d);\n",
reloc_offset, relname, addend);
break;
case R_PARISC_PCREL17F:
if (strstart(sym_name, "__op_gen_label", NULL)) {
fprintf(outfile,
" hppa_patch17f((uint32_t *)(gen_code_ptr + %d), %s, %d);\n",
reloc_offset, relname, addend);
} else {
fprintf(outfile,
" HPPA_RECORD_BRANCH(hppa_stubs, (uint32_t *)(gen_code_ptr + %d), %s);\n",
reloc_offset, relname);
}
break;
case R_PARISC_DPREL21L:
if (strstart(sym_name, "__op_param", &p))
fprintf(outfile,
" hppa_load_imm21l((uint32_t *)(gen_code_ptr + %d), param%s, %d);\n",
reloc_offset, p, addend);
else
fprintf(outfile,
" hppa_patch21l_dprel((uint32_t *)(gen_code_ptr + %d), %s, %d);\n",
reloc_offset, relname, addend);
break;
case R_PARISC_DPREL14R:
if (strstart(sym_name, "__op_param", &p))
fprintf(outfile,
" hppa_load_imm14r((uint32_t *)(gen_code_ptr + %d), param%s, %d);\n",
reloc_offset, p, addend);
else
fprintf(outfile,
" hppa_patch14r_dprel((uint32_t *)(gen_code_ptr + %d), %s, %d);\n",
reloc_offset, relname, addend);
break;
default:
error("unsupported hppa relocation (%d)", type);
}
}
}
}
}
#elif defined(HOST_MIPS) || defined(HOST_MIPS64)
{
for (i = 0, rel = relocs; i < nb_relocs; i++, rel++) {
if (rel->r_offset >= start_offset && rel->r_offset < start_offset + copy_size) {
char relname[256];
int type;
int addend;
int reloc_offset;
sym_name = strtab + symtab[ELF32_R_SYM(rel->r_info)].st_name;
/* the compiler leave some unnecessary references to the code */
if (sym_name[0] == '\0')
continue;
get_reloc_expr(relname, sizeof(relname), sym_name);
type = ELF32_R_TYPE(rel->r_info);
addend = get32((uint32_t *)(text + rel->r_offset));
reloc_offset = rel->r_offset - start_offset;
switch (type) {
case R_MIPS_26:
fprintf(outfile, " /* R_MIPS_26 RELOC, offset 0x%x, name %s */\n",
rel->r_offset, sym_name);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + 0x%x) = "
"(0x%x & ~0x3fffff) "
"| ((0x%x + ((%s - (*(uint32_t *)(gen_code_ptr + 0x%x))) >> 2)) "
" & 0x3fffff);\n",
reloc_offset, addend, addend, relname, reloc_offset);
break;
case R_MIPS_HI16:
fprintf(outfile, " /* R_MIPS_HI16 RELOC, offset 0x%x, name %s */\n",
rel->r_offset, sym_name);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + 0x%x) = "
"((*(uint32_t *)(gen_code_ptr + 0x%x)) "
" & ~0xffff) "
" | (((%s - 0x8000) >> 16) & 0xffff);\n",
reloc_offset, reloc_offset, relname);
break;
case R_MIPS_LO16:
fprintf(outfile, " /* R_MIPS_LO16 RELOC, offset 0x%x, name %s */\n",
rel->r_offset, sym_name);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + 0x%x) = "
"((*(uint32_t *)(gen_code_ptr + 0x%x)) "
" & ~0xffff) "
" | (%s & 0xffff);\n",
reloc_offset, reloc_offset, relname);
break;
case R_MIPS_PC16:
fprintf(outfile, " /* R_MIPS_PC16 RELOC, offset 0x%x, name %s */\n",
rel->r_offset, sym_name);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + 0x%x) = "
"(0x%x & ~0xffff) "
"| ((0x%x + ((%s - (*(uint32_t *)(gen_code_ptr + 0x%x))) >> 2)) "
" & 0xffff);\n",
reloc_offset, addend, addend, relname, reloc_offset);
break;
case R_MIPS_GOT16:
case R_MIPS_CALL16:
fprintf(outfile, " /* R_MIPS_GOT16 RELOC, offset 0x%x, name %s */\n",
rel->r_offset, sym_name);
fprintf(outfile,
" *(uint32_t *)(gen_code_ptr + 0x%x) = "
"((*(uint32_t *)(gen_code_ptr + 0x%x)) "
" & ~0xffff) "
" | (((%s - 0x8000) >> 16) & 0xffff);\n",
reloc_offset, reloc_offset, relname);
break;
default:
error("unsupported MIPS relocation (%d)", type);
}
}
}
}
#elif defined(HOST_ARM)
error("dyngen targets not supported on ARM");
#else
#error unsupported CPU
#endif
fprintf(outfile, " gen_code_ptr += %d;\n", copy_size);
fprintf(outfile, "}\n");
fprintf(outfile, "break;\n\n");
} else {
fprintf(outfile, "static inline void gen_%s(", name);
if (nb_args == 0) {
fprintf(outfile, "void");
} else {
for(i = 0; i < nb_args; i++) {
if (i != 0)
fprintf(outfile, ", ");
fprintf(outfile, "long param%d", i + 1);
}
}
fprintf(outfile, ")\n");
fprintf(outfile, "{\n");
for(i = 0; i < nb_args; i++) {
fprintf(outfile, " *gen_opparam_ptr++ = param%d;\n", i + 1);
}
fprintf(outfile, " *gen_opc_ptr++ = INDEX_%s;\n", name);
fprintf(outfile, "}\n\n");
}
}
int gen_file(FILE *outfile, int out_type)
{
int i;
EXE_SYM *sym;
if (out_type == OUT_INDEX_OP) {
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = get_sym_name(sym);
if (strstart(name, OP_PREFIX, NULL)) {
gen_code(name, sym->st_value, sym->st_size, outfile, 2);
}
}
} else if (out_type == OUT_GEN_OP) {
/* generate gen_xxx functions */
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = get_sym_name(sym);
if (strstart(name, OP_PREFIX, NULL)) {
#if defined(CONFIG_FORMAT_ELF) || defined(CONFIG_FORMAT_COFF)
if (sym->st_shndx != text_shndx)
error("invalid section for opcode (0x%x)", sym->st_shndx);
#endif
gen_code(name, sym->st_value, sym->st_size, outfile, 0);
}
}
} else {
/* generate big code generation switch */
#ifdef HOST_ARM
error("dyngen targets not supported on ARM");
#endif
#ifdef HOST_IA64
#error broken
{
long addend, not_first = 0;
unsigned long sym_idx;
int index, max_index;
const char *sym_name;
EXE_RELOC *rel;
max_index = -1;
for (i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
sym_idx = ELF64_R_SYM(rel->r_info);
sym_name = (strtab + symtab[sym_idx].st_name);
if (strstart(sym_name, "__op_gen_label", NULL))
continue;
if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B)
continue;
addend = rel->r_addend;
index = get_plt_index(sym_name, addend);
if (index <= max_index)
continue;
max_index = index;
fprintf(outfile, " extern void %s(void);\n", sym_name);
}
fprintf(outfile,
" struct ia64_fixup *plt_fixes = NULL, "
"*ltoff_fixes = NULL;\n"
" static long plt_target[] = {\n\t");
max_index = -1;
for (i = 0, rel = relocs;i < nb_relocs; i++, rel++) {
sym_idx = ELF64_R_SYM(rel->r_info);
sym_name = (strtab + symtab[sym_idx].st_name);
if (strstart(sym_name, "__op_gen_label", NULL))
continue;
if (ELF64_R_TYPE(rel->r_info) != R_IA64_PCREL21B)
continue;
addend = rel->r_addend;
index = get_plt_index(sym_name, addend);
if (index <= max_index)
continue;
max_index = index;
if (not_first)
fprintf(outfile, ",\n\t");
not_first = 1;
if (addend)
fprintf(outfile, "(long) &%s + %ld", sym_name, addend);
else
fprintf(outfile, "(long) &%s", sym_name);
}
fprintf(outfile, "\n };\n"
" unsigned int plt_offset[%u] = { 0 };\n", max_index + 1);
}
#endif
for(i = 0, sym = symtab; i < nb_syms; i++, sym++) {
const char *name;
name = get_sym_name(sym);
if (strstart(name, OP_PREFIX, NULL)) {
#if 0
printf("%4d: %s pos=0x%08x len=%d\n",
i, name, sym->st_value, sym->st_size);
#endif
#if defined(CONFIG_FORMAT_ELF) || defined(CONFIG_FORMAT_COFF)
if (sym->st_shndx != text_shndx)
error("invalid section for opcode (0x%x)", sym->st_shndx);
#endif
gen_code(name, sym->st_value, sym->st_size, outfile, 1);
}
}
}
return 0;
}
void usage(void)
{
printf("dyngen (c) 2003 Fabrice Bellard\n"
"usage: dyngen [-o outfile] [-c] objfile\n"
"Generate a dynamic code generator from an object file\n"
"-c output enum of operations\n"
"-g output gen_op_xx() functions\n"
);
exit(1);
}
int main(int argc, char **argv)
{
int c, out_type;
const char *filename, *outfilename;
FILE *outfile;
outfilename = "out.c";
out_type = OUT_CODE;
for(;;) {
c = getopt(argc, argv, "ho:cg");
if (c == -1)
break;
switch(c) {
case 'h':
usage();
break;
case 'o':
outfilename = optarg;
break;
case 'c':
out_type = OUT_INDEX_OP;
break;
case 'g':
out_type = OUT_GEN_OP;
break;
}
}
if (optind >= argc)
usage();
filename = argv[optind];
outfile = fopen(outfilename, "w");
if (!outfile)
error("could not open '%s'", outfilename);
load_object(filename);
gen_file(outfile, out_type);
fclose(outfile);
return 0;
}