spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
/*
|
|
|
|
* QEMU SPAPR Dynamic Reconfiguration Connector Implementation
|
|
|
|
*
|
|
|
|
* Copyright IBM Corp. 2014
|
|
|
|
*
|
|
|
|
* Authors:
|
|
|
|
* Michael Roth <mdroth@linux.vnet.ibm.com>
|
|
|
|
*
|
|
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
|
|
* See the COPYING file in the top-level directory.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "hw/ppc/spapr_drc.h"
|
|
|
|
#include "qom/object.h"
|
|
|
|
#include "hw/qdev.h"
|
|
|
|
#include "qapi/visitor.h"
|
|
|
|
#include "qemu/error-report.h"
|
2015-09-11 00:11:02 +03:00
|
|
|
#include "hw/ppc/spapr.h" /* for RTAS return codes */
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
|
|
|
|
/* #define DEBUG_SPAPR_DRC */
|
|
|
|
|
|
|
|
#ifdef DEBUG_SPAPR_DRC
|
|
|
|
#define DPRINTF(fmt, ...) \
|
|
|
|
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
|
|
|
|
#define DPRINTFN(fmt, ...) \
|
|
|
|
do { DPRINTF(fmt, ## __VA_ARGS__); fprintf(stderr, "\n"); } while (0)
|
|
|
|
#else
|
|
|
|
#define DPRINTF(fmt, ...) \
|
|
|
|
do { } while (0)
|
|
|
|
#define DPRINTFN(fmt, ...) \
|
|
|
|
do { } while (0)
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define DRC_CONTAINER_PATH "/dr-connector"
|
|
|
|
#define DRC_INDEX_TYPE_SHIFT 28
|
2015-09-03 03:08:23 +03:00
|
|
|
#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
|
|
|
|
static sPAPRDRConnectorTypeShift get_type_shift(sPAPRDRConnectorType type)
|
|
|
|
{
|
|
|
|
uint32_t shift = 0;
|
|
|
|
|
|
|
|
/* make sure this isn't SPAPR_DR_CONNECTOR_TYPE_ANY, or some
|
|
|
|
* other wonky value.
|
|
|
|
*/
|
|
|
|
g_assert(is_power_of_2(type));
|
|
|
|
|
|
|
|
while (type != (1 << shift)) {
|
|
|
|
shift++;
|
|
|
|
}
|
|
|
|
return shift;
|
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t get_index(sPAPRDRConnector *drc)
|
|
|
|
{
|
|
|
|
/* no set format for a drc index: it only needs to be globally
|
|
|
|
* unique. this is how we encode the DRC type on bare-metal
|
|
|
|
* however, so might as well do that here
|
|
|
|
*/
|
|
|
|
return (get_type_shift(drc->type) << DRC_INDEX_TYPE_SHIFT) |
|
|
|
|
(drc->id & DRC_INDEX_ID_MASK);
|
|
|
|
}
|
|
|
|
|
2015-09-11 00:11:02 +03:00
|
|
|
static uint32_t set_isolation_state(sPAPRDRConnector *drc,
|
|
|
|
sPAPRDRIsolationState state)
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
{
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
|
|
|
|
DPRINTFN("drc: %x, set_isolation_state: %x", get_index(drc), state);
|
|
|
|
|
2015-09-11 00:11:03 +03:00
|
|
|
if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
|
|
|
|
/* cannot unisolate a non-existant resource, and, or resources
|
|
|
|
* which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 13.5.3.5)
|
|
|
|
*/
|
|
|
|
if (!drc->dev ||
|
|
|
|
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
drc->isolation_state = state;
|
|
|
|
|
|
|
|
if (drc->isolation_state == SPAPR_DR_ISOLATION_STATE_ISOLATED) {
|
|
|
|
/* if we're awaiting release, but still in an unconfigured state,
|
|
|
|
* it's likely the guest is still in the process of configuring
|
|
|
|
* the device and is transitioning the devices to an ISOLATED
|
|
|
|
* state as a part of that process. so we only complete the
|
|
|
|
* removal when this transition happens for a device in a
|
|
|
|
* configured state, as suggested by the state diagram from
|
|
|
|
* PAPR+ 2.7, 13.4
|
|
|
|
*/
|
|
|
|
if (drc->awaiting_release) {
|
|
|
|
if (drc->configured) {
|
|
|
|
DPRINTFN("finalizing device removal");
|
|
|
|
drck->detach(drc, DEVICE(drc->dev), drc->detach_cb,
|
|
|
|
drc->detach_cb_opaque, NULL);
|
|
|
|
} else {
|
|
|
|
DPRINTFN("deferring device removal on unconfigured device\n");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
drc->configured = false;
|
|
|
|
}
|
|
|
|
|
2015-09-11 00:11:02 +03:00
|
|
|
return RTAS_OUT_SUCCESS;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
|
2015-09-11 00:11:02 +03:00
|
|
|
static uint32_t set_indicator_state(sPAPRDRConnector *drc,
|
|
|
|
sPAPRDRIndicatorState state)
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
{
|
|
|
|
DPRINTFN("drc: %x, set_indicator_state: %x", get_index(drc), state);
|
|
|
|
drc->indicator_state = state;
|
2015-09-11 00:11:02 +03:00
|
|
|
return RTAS_OUT_SUCCESS;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
|
2015-09-11 00:11:02 +03:00
|
|
|
static uint32_t set_allocation_state(sPAPRDRConnector *drc,
|
|
|
|
sPAPRDRAllocationState state)
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
{
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
|
|
|
|
DPRINTFN("drc: %x, set_allocation_state: %x", get_index(drc), state);
|
|
|
|
|
2015-09-11 00:11:03 +03:00
|
|
|
if (state == SPAPR_DR_ALLOCATION_STATE_USABLE) {
|
|
|
|
/* if there's no resource/device associated with the DRC, there's
|
|
|
|
* no way for us to put it in an allocation state consistent with
|
|
|
|
* being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
|
|
|
|
* result in an RTAS return code of -3 / "no such indicator"
|
|
|
|
*/
|
|
|
|
if (!drc->dev) {
|
|
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
|
|
drc->allocation_state = state;
|
|
|
|
if (drc->awaiting_release &&
|
|
|
|
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
|
|
DPRINTFN("finalizing device removal");
|
|
|
|
drck->detach(drc, DEVICE(drc->dev), drc->detach_cb,
|
|
|
|
drc->detach_cb_opaque, NULL);
|
|
|
|
}
|
|
|
|
}
|
2015-09-11 00:11:02 +03:00
|
|
|
return RTAS_OUT_SUCCESS;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static uint32_t get_type(sPAPRDRConnector *drc)
|
|
|
|
{
|
|
|
|
return drc->type;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const char *get_name(sPAPRDRConnector *drc)
|
|
|
|
{
|
|
|
|
return drc->name;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const void *get_fdt(sPAPRDRConnector *drc, int *fdt_start_offset)
|
|
|
|
{
|
|
|
|
if (fdt_start_offset) {
|
|
|
|
*fdt_start_offset = drc->fdt_start_offset;
|
|
|
|
}
|
|
|
|
return drc->fdt;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void set_configured(sPAPRDRConnector *drc)
|
|
|
|
{
|
|
|
|
DPRINTFN("drc: %x, set_configured", get_index(drc));
|
|
|
|
|
|
|
|
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
|
|
|
|
/* guest should be not configuring an isolated device */
|
|
|
|
DPRINTFN("drc: %x, set_configured: skipping isolated device",
|
|
|
|
get_index(drc));
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
drc->configured = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* dr-entity-sense sensor value
|
|
|
|
* returned via get-sensor-state RTAS calls
|
|
|
|
* as expected by state diagram in PAPR+ 2.7, 13.4
|
|
|
|
* based on the current allocation/indicator/power states
|
|
|
|
* for the DR connector.
|
|
|
|
*/
|
2015-09-11 00:11:02 +03:00
|
|
|
static uint32_t entity_sense(sPAPRDRConnector *drc, sPAPRDREntitySense *state)
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
{
|
|
|
|
if (drc->dev) {
|
|
|
|
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
|
|
|
|
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
|
|
/* for logical DR, we return a state of UNUSABLE
|
|
|
|
* iff the allocation state UNUSABLE.
|
|
|
|
* Otherwise, report the state as USABLE/PRESENT,
|
|
|
|
* as we would for PCI.
|
|
|
|
*/
|
2015-09-11 00:11:02 +03:00
|
|
|
*state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
} else {
|
|
|
|
/* this assumes all PCI devices are assigned to
|
|
|
|
* a 'live insertion' power domain, where QEMU
|
|
|
|
* manages power state automatically as opposed
|
|
|
|
* to the guest. present, non-PCI resources are
|
|
|
|
* unaffected by power state.
|
|
|
|
*/
|
2015-09-11 00:11:02 +03:00
|
|
|
*state = SPAPR_DR_ENTITY_SENSE_PRESENT;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
|
|
/* PCI devices, and only PCI devices, use EMPTY
|
|
|
|
* in cases where we'd otherwise use UNUSABLE
|
|
|
|
*/
|
2015-09-11 00:11:02 +03:00
|
|
|
*state = SPAPR_DR_ENTITY_SENSE_EMPTY;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
} else {
|
2015-09-11 00:11:02 +03:00
|
|
|
*state = SPAPR_DR_ENTITY_SENSE_UNUSABLE;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
DPRINTFN("drc: %x, entity_sense: %x", get_index(drc), state);
|
2015-09-11 00:11:02 +03:00
|
|
|
return RTAS_OUT_SUCCESS;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
static void prop_get_index(Object *obj, Visitor *v, void *opaque,
|
|
|
|
const char *name, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
uint32_t value = (uint32_t)drck->get_index(drc);
|
|
|
|
visit_type_uint32(v, &value, name, errp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void prop_get_type(Object *obj, Visitor *v, void *opaque,
|
|
|
|
const char *name, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
uint32_t value = (uint32_t)drck->get_type(drc);
|
|
|
|
visit_type_uint32(v, &value, name, errp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static char *prop_get_name(Object *obj, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
return g_strdup(drck->get_name(drc));
|
|
|
|
}
|
|
|
|
|
|
|
|
static void prop_get_entity_sense(Object *obj, Visitor *v, void *opaque,
|
|
|
|
const char *name, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
2015-09-11 00:11:02 +03:00
|
|
|
uint32_t value;
|
|
|
|
|
|
|
|
drck->entity_sense(drc, &value);
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
visit_type_uint32(v, &value, name, errp);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void prop_get_fdt(Object *obj, Visitor *v, void *opaque,
|
|
|
|
const char *name, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
int fdt_offset_next, fdt_offset, fdt_depth;
|
|
|
|
void *fdt;
|
|
|
|
|
|
|
|
if (!drc->fdt) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
fdt = drc->fdt;
|
|
|
|
fdt_offset = drc->fdt_start_offset;
|
|
|
|
fdt_depth = 0;
|
|
|
|
|
|
|
|
do {
|
|
|
|
const char *name = NULL;
|
|
|
|
const struct fdt_property *prop = NULL;
|
|
|
|
int prop_len = 0, name_len = 0;
|
|
|
|
uint32_t tag;
|
|
|
|
|
|
|
|
tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
|
|
|
|
switch (tag) {
|
|
|
|
case FDT_BEGIN_NODE:
|
|
|
|
fdt_depth++;
|
|
|
|
name = fdt_get_name(fdt, fdt_offset, &name_len);
|
|
|
|
visit_start_struct(v, NULL, NULL, name, 0, NULL);
|
|
|
|
break;
|
|
|
|
case FDT_END_NODE:
|
|
|
|
/* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
|
|
|
|
g_assert(fdt_depth > 0);
|
|
|
|
visit_end_struct(v, NULL);
|
|
|
|
fdt_depth--;
|
|
|
|
break;
|
|
|
|
case FDT_PROP: {
|
|
|
|
int i;
|
|
|
|
prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
|
|
|
|
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
|
|
|
|
visit_start_list(v, name, NULL);
|
|
|
|
for (i = 0; i < prop_len; i++) {
|
|
|
|
visit_type_uint8(v, (uint8_t *)&prop->data[i], NULL, NULL);
|
|
|
|
|
|
|
|
}
|
|
|
|
visit_end_list(v, NULL);
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
default:
|
|
|
|
error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
|
|
|
|
}
|
|
|
|
fdt_offset = fdt_offset_next;
|
|
|
|
} while (fdt_depth != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
|
|
|
|
int fdt_start_offset, bool coldplug, Error **errp)
|
|
|
|
{
|
|
|
|
DPRINTFN("drc: %x, attach", get_index(drc));
|
|
|
|
|
|
|
|
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
|
|
|
|
error_setg(errp, "an attached device is still awaiting release");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
|
|
g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
|
|
|
|
}
|
|
|
|
g_assert(fdt || coldplug);
|
|
|
|
|
|
|
|
/* NOTE: setting initial isolation state to UNISOLATED means we can't
|
|
|
|
* detach unless guest has a userspace/kernel that moves this state
|
|
|
|
* back to ISOLATED in response to an unplug event, or this is done
|
|
|
|
* manually by the admin prior. if we force things while the guest
|
|
|
|
* may be accessing the device, we can easily crash the guest, so we
|
|
|
|
* we defer completion of removal in such cases to the reset() hook.
|
|
|
|
*/
|
|
|
|
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
|
|
|
|
}
|
|
|
|
drc->indicator_state = SPAPR_DR_INDICATOR_STATE_ACTIVE;
|
|
|
|
|
|
|
|
drc->dev = d;
|
|
|
|
drc->fdt = fdt;
|
|
|
|
drc->fdt_start_offset = fdt_start_offset;
|
pseries: define coldplugged devices as "configured"
When a device is hotplugged, attach() sets "configured" to
false, waiting an action from the OS to configure it and then
to call ibm,configure-connector. On ibm,configure-connector,
the hypervisor sets "configured" to true.
In case of coldplugged device, attach() sets "configured" to
false, but firmware and OS never call the ibm,configure-connector
in this case, so it remains set to false.
It could be harmless, but when we unplug a device, hypervisor
waits the device becomes configured because for it, a not configured
device is a device being configured, so it waits the end of configuration
to unplug it... and it never happens, so it is never unplugged.
This patch set by default coldplugged device to "configured=true",
hotplugged device to "configured=false".
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2015-08-13 15:53:02 +03:00
|
|
|
drc->configured = coldplug;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
|
|
|
|
object_property_add_link(OBJECT(drc), "device",
|
|
|
|
object_get_typename(OBJECT(drc->dev)),
|
|
|
|
(Object **)(&drc->dev),
|
|
|
|
NULL, 0, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void detach(sPAPRDRConnector *drc, DeviceState *d,
|
|
|
|
spapr_drc_detach_cb *detach_cb,
|
|
|
|
void *detach_cb_opaque, Error **errp)
|
|
|
|
{
|
|
|
|
DPRINTFN("drc: %x, detach", get_index(drc));
|
|
|
|
|
|
|
|
drc->detach_cb = detach_cb;
|
|
|
|
drc->detach_cb_opaque = detach_cb_opaque;
|
|
|
|
|
|
|
|
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
|
|
|
|
DPRINTFN("awaiting transition to isolated state before removal");
|
|
|
|
drc->awaiting_release = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
|
|
|
|
drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
|
|
DPRINTFN("awaiting transition to unusable state before removal");
|
|
|
|
drc->awaiting_release = true;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
drc->indicator_state = SPAPR_DR_INDICATOR_STATE_INACTIVE;
|
|
|
|
|
|
|
|
if (drc->detach_cb) {
|
|
|
|
drc->detach_cb(drc->dev, drc->detach_cb_opaque);
|
|
|
|
}
|
|
|
|
|
|
|
|
drc->awaiting_release = false;
|
|
|
|
g_free(drc->fdt);
|
|
|
|
drc->fdt = NULL;
|
|
|
|
drc->fdt_start_offset = 0;
|
|
|
|
object_property_del(OBJECT(drc), "device", NULL);
|
|
|
|
drc->dev = NULL;
|
|
|
|
drc->detach_cb = NULL;
|
|
|
|
drc->detach_cb_opaque = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool release_pending(sPAPRDRConnector *drc)
|
|
|
|
{
|
|
|
|
return drc->awaiting_release;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void reset(DeviceState *d)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
|
|
|
|
DPRINTFN("drc reset: %x", drck->get_index(drc));
|
|
|
|
/* immediately upon reset we can safely assume DRCs whose devices
|
|
|
|
* are pending removal can be safely removed, and that they will
|
|
|
|
* subsequently be left in an ISOLATED state. move the DRC to this
|
|
|
|
* state in these cases (which will in turn complete any pending
|
|
|
|
* device removals)
|
|
|
|
*/
|
|
|
|
if (drc->awaiting_release) {
|
|
|
|
drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_ISOLATED);
|
|
|
|
/* generally this should also finalize the removal, but if the device
|
|
|
|
* hasn't yet been configured we normally defer removal under the
|
|
|
|
* assumption that this transition is taking place as part of device
|
|
|
|
* configuration. so check if we're still waiting after this, and
|
|
|
|
* force removal if we are
|
|
|
|
*/
|
|
|
|
if (drc->awaiting_release) {
|
|
|
|
drck->detach(drc, DEVICE(drc->dev), drc->detach_cb,
|
|
|
|
drc->detach_cb_opaque, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* non-PCI devices may be awaiting a transition to UNUSABLE */
|
|
|
|
if (drc->type != SPAPR_DR_CONNECTOR_TYPE_PCI &&
|
|
|
|
drc->awaiting_release) {
|
|
|
|
drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_UNUSABLE);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void realize(DeviceState *d, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
Object *root_container;
|
|
|
|
char link_name[256];
|
|
|
|
gchar *child_name;
|
|
|
|
Error *err = NULL;
|
|
|
|
|
|
|
|
DPRINTFN("drc realize: %x", drck->get_index(drc));
|
|
|
|
/* NOTE: we do this as part of realize/unrealize due to the fact
|
|
|
|
* that the guest will communicate with the DRC via RTAS calls
|
|
|
|
* referencing the global DRC index. By unlinking the DRC
|
|
|
|
* from DRC_CONTAINER_PATH/<drc_index> we effectively make it
|
|
|
|
* inaccessible by the guest, since lookups rely on this path
|
|
|
|
* existing in the composition tree
|
|
|
|
*/
|
|
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
|
|
snprintf(link_name, sizeof(link_name), "%x", drck->get_index(drc));
|
|
|
|
child_name = object_get_canonical_path_component(OBJECT(drc));
|
|
|
|
DPRINTFN("drc child name: %s", child_name);
|
|
|
|
object_property_add_alias(root_container, link_name,
|
|
|
|
drc->owner, child_name, &err);
|
|
|
|
if (err) {
|
|
|
|
error_report("%s", error_get_pretty(err));
|
|
|
|
error_free(err);
|
|
|
|
object_unref(OBJECT(drc));
|
|
|
|
}
|
2015-07-10 03:51:28 +03:00
|
|
|
g_free(child_name);
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
DPRINTFN("drc realize complete");
|
|
|
|
}
|
|
|
|
|
|
|
|
static void unrealize(DeviceState *d, Error **errp)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
Object *root_container;
|
|
|
|
char name[256];
|
|
|
|
Error *err = NULL;
|
|
|
|
|
|
|
|
DPRINTFN("drc unrealize: %x", drck->get_index(drc));
|
|
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
|
|
snprintf(name, sizeof(name), "%x", drck->get_index(drc));
|
|
|
|
object_property_del(root_container, name, &err);
|
|
|
|
if (err) {
|
|
|
|
error_report("%s", error_get_pretty(err));
|
|
|
|
error_free(err);
|
|
|
|
object_unref(OBJECT(drc));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
sPAPRDRConnector *spapr_dr_connector_new(Object *owner,
|
|
|
|
sPAPRDRConnectorType type,
|
|
|
|
uint32_t id)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc =
|
|
|
|
SPAPR_DR_CONNECTOR(object_new(TYPE_SPAPR_DR_CONNECTOR));
|
spapr: Don't use QOM [*] syntax for DR connectors.
The dynamic reconfiguration (hotplug) code for the pseries machine type
uses a "DR connector" QOM object for each resource it will be possible
to hotplug. Each of these is added to its owner using
object_property_add_child(owner, "dr-connector[*], ...);
That works ok, mostly, but it means that the property indices are
arbitrary, depending on the order in which the connectors are constructed.
That might line up to something useful, but it doesn't have to.
It will get worse once we add hotplug RAM support. That will add a DR
connector object for every 256MB of potential memory. So if maxmem=2T,
for example, there are 8192 objects under the same parent.
The QOM interfaces aren't really designed for this. In particular
object_property_add() with [*] has O(n^2) time complexity (in the number of
existing children): first it has a linear search through array indices to
find a free slot, each of which is attempted to a recursive call to
object_property_add() with a specific [N]. Those calls are O(n) because
there's a linear search through all properties to check for duplicates.
By using a meaningful index value, which we already know is unique we can
avoid the [*] special behaviour. That lets us reduce the total time for
creating the DR objects from O(n^3) to O(n^2).
O(n^2) is still kind of crappy, but it's enough to reduce the startup time
of qemu (with in-progress memory hotplug support) with maxmem=2T from ~20
minutes to ~4 seconds.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
2015-09-16 09:57:51 +03:00
|
|
|
char *prop_name;
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
|
|
|
|
g_assert(type);
|
|
|
|
|
|
|
|
drc->type = type;
|
|
|
|
drc->id = id;
|
|
|
|
drc->owner = owner;
|
spapr: Don't use QOM [*] syntax for DR connectors.
The dynamic reconfiguration (hotplug) code for the pseries machine type
uses a "DR connector" QOM object for each resource it will be possible
to hotplug. Each of these is added to its owner using
object_property_add_child(owner, "dr-connector[*], ...);
That works ok, mostly, but it means that the property indices are
arbitrary, depending on the order in which the connectors are constructed.
That might line up to something useful, but it doesn't have to.
It will get worse once we add hotplug RAM support. That will add a DR
connector object for every 256MB of potential memory. So if maxmem=2T,
for example, there are 8192 objects under the same parent.
The QOM interfaces aren't really designed for this. In particular
object_property_add() with [*] has O(n^2) time complexity (in the number of
existing children): first it has a linear search through array indices to
find a free slot, each of which is attempted to a recursive call to
object_property_add() with a specific [N]. Those calls are O(n) because
there's a linear search through all properties to check for duplicates.
By using a meaningful index value, which we already know is unique we can
avoid the [*] special behaviour. That lets us reduce the total time for
creating the DR objects from O(n^3) to O(n^2).
O(n^2) is still kind of crappy, but it's enough to reduce the startup time
of qemu (with in-progress memory hotplug support) with maxmem=2T from ~20
minutes to ~4 seconds.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
2015-09-16 09:57:51 +03:00
|
|
|
prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", get_index(drc));
|
|
|
|
object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
object_property_set_bool(OBJECT(drc), true, "realized", NULL);
|
spapr: Don't use QOM [*] syntax for DR connectors.
The dynamic reconfiguration (hotplug) code for the pseries machine type
uses a "DR connector" QOM object for each resource it will be possible
to hotplug. Each of these is added to its owner using
object_property_add_child(owner, "dr-connector[*], ...);
That works ok, mostly, but it means that the property indices are
arbitrary, depending on the order in which the connectors are constructed.
That might line up to something useful, but it doesn't have to.
It will get worse once we add hotplug RAM support. That will add a DR
connector object for every 256MB of potential memory. So if maxmem=2T,
for example, there are 8192 objects under the same parent.
The QOM interfaces aren't really designed for this. In particular
object_property_add() with [*] has O(n^2) time complexity (in the number of
existing children): first it has a linear search through array indices to
find a free slot, each of which is attempted to a recursive call to
object_property_add() with a specific [N]. Those calls are O(n) because
there's a linear search through all properties to check for duplicates.
By using a meaningful index value, which we already know is unique we can
avoid the [*] special behaviour. That lets us reduce the total time for
creating the DR objects from O(n^3) to O(n^2).
O(n^2) is still kind of crappy, but it's enough to reduce the startup time
of qemu (with in-progress memory hotplug support) with maxmem=2T from ~20
minutes to ~4 seconds.
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Cc: Bharata B Rao <bharata@linux.vnet.ibm.com>
Tested-by: Bharata B Rao <bharata@linux.vnet.ibm.com>
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
2015-09-16 09:57:51 +03:00
|
|
|
g_free(prop_name);
|
spapr_drc: initial implementation of sPAPRDRConnector device
This device emulates a firmware abstraction used by pSeries guests to
manage hotplug/dynamic-reconfiguration of host-bridges, PCI devices,
memory, and CPUs. It is conceptually similar to an SHPC device,
complete with LED indicators to identify individual slots to physical
physical users and indicate when it is safe to remove a device. In
some cases it is also used to manage virtualized resources, such a
memory, CPUs, and physical-host bridges, which in the case of pSeries
guests are virtualized resources where the physical components are
managed by the host.
Guests communicate with these DR Connectors using RTAS calls,
generally by addressing the unique DRC index associated with a
particular connector for a particular resource. For introspection
purposes we expose this state initially as QOM properties, and
in subsequent patches will introduce the RTAS calls that make use of
it. This constitutes to the 'guest' interface.
On the QEMU side we provide an attach/detach interface to associate
or cleanup a DeviceState with a particular sPAPRDRConnector in
response to hotplug/unplug, respectively. This constitutes the
'physical' interface to the DR Connector.
Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexander Graf <agraf@suse.de>
2015-05-07 08:33:43 +03:00
|
|
|
|
|
|
|
/* human-readable name for a DRC to encode into the DT
|
|
|
|
* description. this is mainly only used within a guest in place
|
|
|
|
* of the unique DRC index.
|
|
|
|
*
|
|
|
|
* in the case of VIO/PCI devices, it corresponds to a
|
|
|
|
* "location code" that maps a logical device/function (DRC index)
|
|
|
|
* to a physical (or virtual in the case of VIO) location in the
|
|
|
|
* system by chaining together the "location label" for each
|
|
|
|
* encapsulating component.
|
|
|
|
*
|
|
|
|
* since this is more to do with diagnosing physical hardware
|
|
|
|
* issues than guest compatibility, we choose location codes/DRC
|
|
|
|
* names that adhere to the documented format, but avoid encoding
|
|
|
|
* the entire topology information into the label/code, instead
|
|
|
|
* just using the location codes based on the labels for the
|
|
|
|
* endpoints (VIO/PCI adaptor connectors), which is basically
|
|
|
|
* just "C" followed by an integer ID.
|
|
|
|
*
|
|
|
|
* DRC names as documented by PAPR+ v2.7, 13.5.2.4
|
|
|
|
* location codes as documented by PAPR+ v2.7, 12.3.1.5
|
|
|
|
*/
|
|
|
|
switch (drc->type) {
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_CPU:
|
|
|
|
drc->name = g_strdup_printf("CPU %d", id);
|
|
|
|
break;
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_PHB:
|
|
|
|
drc->name = g_strdup_printf("PHB %d", id);
|
|
|
|
break;
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_VIO:
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_PCI:
|
|
|
|
drc->name = g_strdup_printf("C%d", id);
|
|
|
|
break;
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_LMB:
|
|
|
|
drc->name = g_strdup_printf("LMB %d", id);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
g_assert(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* PCI slot always start in a USABLE state, and stay there */
|
|
|
|
if (drc->type == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
|
|
|
|
}
|
|
|
|
|
|
|
|
return drc;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void spapr_dr_connector_instance_init(Object *obj)
|
|
|
|
{
|
|
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
|
|
|
|
object_property_add_uint32_ptr(obj, "isolation-state",
|
|
|
|
&drc->isolation_state, NULL);
|
|
|
|
object_property_add_uint32_ptr(obj, "indicator-state",
|
|
|
|
&drc->indicator_state, NULL);
|
|
|
|
object_property_add_uint32_ptr(obj, "allocation-state",
|
|
|
|
&drc->allocation_state, NULL);
|
|
|
|
object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
|
|
|
|
object_property_add(obj, "index", "uint32", prop_get_index,
|
|
|
|
NULL, NULL, NULL, NULL);
|
|
|
|
object_property_add(obj, "connector_type", "uint32", prop_get_type,
|
|
|
|
NULL, NULL, NULL, NULL);
|
|
|
|
object_property_add_str(obj, "name", prop_get_name, NULL, NULL);
|
|
|
|
object_property_add(obj, "entity-sense", "uint32", prop_get_entity_sense,
|
|
|
|
NULL, NULL, NULL, NULL);
|
|
|
|
object_property_add(obj, "fdt", "struct", prop_get_fdt,
|
|
|
|
NULL, NULL, NULL, NULL);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
|
|
|
|
{
|
|
|
|
DeviceClass *dk = DEVICE_CLASS(k);
|
|
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
|
|
|
|
dk->reset = reset;
|
|
|
|
dk->realize = realize;
|
|
|
|
dk->unrealize = unrealize;
|
|
|
|
drck->set_isolation_state = set_isolation_state;
|
|
|
|
drck->set_indicator_state = set_indicator_state;
|
|
|
|
drck->set_allocation_state = set_allocation_state;
|
|
|
|
drck->get_index = get_index;
|
|
|
|
drck->get_type = get_type;
|
|
|
|
drck->get_name = get_name;
|
|
|
|
drck->get_fdt = get_fdt;
|
|
|
|
drck->set_configured = set_configured;
|
|
|
|
drck->entity_sense = entity_sense;
|
|
|
|
drck->attach = attach;
|
|
|
|
drck->detach = detach;
|
|
|
|
drck->release_pending = release_pending;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const TypeInfo spapr_dr_connector_info = {
|
|
|
|
.name = TYPE_SPAPR_DR_CONNECTOR,
|
|
|
|
.parent = TYPE_DEVICE,
|
|
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
|
|
.instance_init = spapr_dr_connector_instance_init,
|
|
|
|
.class_size = sizeof(sPAPRDRConnectorClass),
|
|
|
|
.class_init = spapr_dr_connector_class_init,
|
|
|
|
};
|
|
|
|
|
|
|
|
static void spapr_drc_register_types(void)
|
|
|
|
{
|
|
|
|
type_register_static(&spapr_dr_connector_info);
|
|
|
|
}
|
|
|
|
|
|
|
|
type_init(spapr_drc_register_types)
|
|
|
|
|
|
|
|
/* helper functions for external users */
|
|
|
|
|
|
|
|
sPAPRDRConnector *spapr_dr_connector_by_index(uint32_t index)
|
|
|
|
{
|
|
|
|
Object *obj;
|
|
|
|
char name[256];
|
|
|
|
|
|
|
|
snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
|
|
|
|
obj = object_resolve_path(name, NULL);
|
|
|
|
|
|
|
|
return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
sPAPRDRConnector *spapr_dr_connector_by_id(sPAPRDRConnectorType type,
|
|
|
|
uint32_t id)
|
|
|
|
{
|
|
|
|
return spapr_dr_connector_by_index(
|
|
|
|
(get_type_shift(type) << DRC_INDEX_TYPE_SHIFT) |
|
|
|
|
(id & DRC_INDEX_ID_MASK));
|
|
|
|
}
|
2015-05-07 08:33:51 +03:00
|
|
|
|
|
|
|
/* generate a string the describes the DRC to encode into the
|
|
|
|
* device tree.
|
|
|
|
*
|
|
|
|
* as documented by PAPR+ v2.7, 13.5.2.6 and C.6.1
|
|
|
|
*/
|
|
|
|
static const char *spapr_drc_get_type_str(sPAPRDRConnectorType type)
|
|
|
|
{
|
|
|
|
switch (type) {
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_CPU:
|
|
|
|
return "CPU";
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_PHB:
|
|
|
|
return "PHB";
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_VIO:
|
|
|
|
return "SLOT";
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_PCI:
|
|
|
|
return "28";
|
|
|
|
case SPAPR_DR_CONNECTOR_TYPE_LMB:
|
|
|
|
return "MEM";
|
|
|
|
default:
|
|
|
|
g_assert(false);
|
|
|
|
}
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* spapr_drc_populate_dt
|
|
|
|
*
|
|
|
|
* @fdt: libfdt device tree
|
|
|
|
* @path: path in the DT to generate properties
|
|
|
|
* @owner: parent Object/DeviceState for which to generate DRC
|
|
|
|
* descriptions for
|
|
|
|
* @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
|
|
|
|
* to the types of DRCs to generate entries for
|
|
|
|
*
|
|
|
|
* generate OF properties to describe DRC topology/indices to guests
|
|
|
|
*
|
|
|
|
* as documented in PAPR+ v2.1, 13.5.2
|
|
|
|
*/
|
|
|
|
int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
|
|
|
|
uint32_t drc_type_mask)
|
|
|
|
{
|
|
|
|
Object *root_container;
|
|
|
|
ObjectProperty *prop;
|
|
|
|
uint32_t drc_count = 0;
|
|
|
|
GArray *drc_indexes, *drc_power_domains;
|
|
|
|
GString *drc_names, *drc_types;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
/* the first entry of each properties is a 32-bit integer encoding
|
|
|
|
* the number of elements in the array. we won't know this until
|
|
|
|
* we complete the iteration through all the matching DRCs, but
|
|
|
|
* reserve the space now and set the offsets accordingly so we
|
|
|
|
* can fill them in later.
|
|
|
|
*/
|
|
|
|
drc_indexes = g_array_new(false, true, sizeof(uint32_t));
|
|
|
|
drc_indexes = g_array_set_size(drc_indexes, 1);
|
|
|
|
drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
|
|
|
|
drc_power_domains = g_array_set_size(drc_power_domains, 1);
|
|
|
|
drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
|
|
|
|
drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
|
|
|
|
|
|
|
|
/* aliases for all DRConnector objects will be rooted in QOM
|
|
|
|
* composition tree at DRC_CONTAINER_PATH
|
|
|
|
*/
|
|
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
|
|
|
|
|
|
QTAILQ_FOREACH(prop, &root_container->properties, node) {
|
|
|
|
Object *obj;
|
|
|
|
sPAPRDRConnector *drc;
|
|
|
|
sPAPRDRConnectorClass *drck;
|
|
|
|
uint32_t drc_index, drc_power_domain;
|
|
|
|
|
|
|
|
if (!strstart(prop->type, "link<", NULL)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
obj = object_property_get_link(root_container, prop->name, NULL);
|
|
|
|
drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
|
|
|
|
if (owner && (drc->owner != owner)) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if ((drc->type & drc_type_mask) == 0) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
drc_count++;
|
|
|
|
|
|
|
|
/* ibm,drc-indexes */
|
|
|
|
drc_index = cpu_to_be32(drck->get_index(drc));
|
|
|
|
g_array_append_val(drc_indexes, drc_index);
|
|
|
|
|
|
|
|
/* ibm,drc-power-domains */
|
|
|
|
drc_power_domain = cpu_to_be32(-1);
|
|
|
|
g_array_append_val(drc_power_domains, drc_power_domain);
|
|
|
|
|
|
|
|
/* ibm,drc-names */
|
|
|
|
drc_names = g_string_append(drc_names, drck->get_name(drc));
|
|
|
|
drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
|
|
|
|
|
|
|
|
/* ibm,drc-types */
|
|
|
|
drc_types = g_string_append(drc_types,
|
|
|
|
spapr_drc_get_type_str(drc->type));
|
|
|
|
drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* now write the drc count into the space we reserved at the
|
|
|
|
* beginning of the arrays previously
|
|
|
|
*/
|
|
|
|
*(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
|
|
|
|
*(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
|
|
|
|
*(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
|
|
|
|
*(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
|
|
|
|
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
|
|
|
|
drc_indexes->data,
|
|
|
|
drc_indexes->len * sizeof(uint32_t));
|
|
|
|
if (ret) {
|
|
|
|
fprintf(stderr, "Couldn't create ibm,drc-indexes property\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
|
|
|
|
drc_power_domains->data,
|
|
|
|
drc_power_domains->len * sizeof(uint32_t));
|
|
|
|
if (ret) {
|
|
|
|
fprintf(stderr, "Couldn't finalize ibm,drc-power-domains property\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
|
|
|
|
drc_names->str, drc_names->len);
|
|
|
|
if (ret) {
|
|
|
|
fprintf(stderr, "Couldn't finalize ibm,drc-names property\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
|
|
|
|
drc_types->str, drc_types->len);
|
|
|
|
if (ret) {
|
|
|
|
fprintf(stderr, "Couldn't finalize ibm,drc-types property\n");
|
|
|
|
goto out;
|
|
|
|
}
|
|
|
|
|
|
|
|
out:
|
|
|
|
g_array_free(drc_indexes, true);
|
|
|
|
g_array_free(drc_power_domains, true);
|
|
|
|
g_string_free(drc_names, true);
|
|
|
|
g_string_free(drc_types, true);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|