qemu/hw/dp8393x.c

901 lines
26 KiB
C
Raw Normal View History

/*
* QEMU NS SONIC DP8393x netcard
*
* Copyright (c) 2008-2009 Herve Poussineau
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include "hw.h"
#include "qemu-timer.h"
#include "net.h"
#include "mips.h"
//#define DEBUG_SONIC
/* Calculate CRCs properly on Rx packets */
#define SONIC_CALCULATE_RXCRC
#if defined(SONIC_CALCULATE_RXCRC)
/* For crc32 */
#include <zlib.h>
#endif
#ifdef DEBUG_SONIC
#define DPRINTF(fmt, ...) \
do { printf("sonic: " fmt , ## __VA_ARGS__); } while (0)
static const char* reg_names[] = {
"CR", "DCR", "RCR", "TCR", "IMR", "ISR", "UTDA", "CTDA",
"TPS", "TFC", "TSA0", "TSA1", "TFS", "URDA", "CRDA", "CRBA0",
"CRBA1", "RBWC0", "RBWC1", "EOBC", "URRA", "RSA", "REA", "RRP",
"RWP", "TRBA0", "TRBA1", "0x1b", "0x1c", "0x1d", "0x1e", "LLFA",
"TTDA", "CEP", "CAP2", "CAP1", "CAP0", "CE", "CDP", "CDC",
"SR", "WT0", "WT1", "RSC", "CRCT", "FAET", "MPT", "MDT",
"0x30", "0x31", "0x32", "0x33", "0x34", "0x35", "0x36", "0x37",
"0x38", "0x39", "0x3a", "0x3b", "0x3c", "0x3d", "0x3e", "DCR2" };
#else
#define DPRINTF(fmt, ...) do {} while (0)
#endif
#define SONIC_ERROR(fmt, ...) \
do { printf("sonic ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0)
#define SONIC_CR 0x00
#define SONIC_DCR 0x01
#define SONIC_RCR 0x02
#define SONIC_TCR 0x03
#define SONIC_IMR 0x04
#define SONIC_ISR 0x05
#define SONIC_UTDA 0x06
#define SONIC_CTDA 0x07
#define SONIC_TPS 0x08
#define SONIC_TFC 0x09
#define SONIC_TSA0 0x0a
#define SONIC_TSA1 0x0b
#define SONIC_TFS 0x0c
#define SONIC_URDA 0x0d
#define SONIC_CRDA 0x0e
#define SONIC_CRBA0 0x0f
#define SONIC_CRBA1 0x10
#define SONIC_RBWC0 0x11
#define SONIC_RBWC1 0x12
#define SONIC_EOBC 0x13
#define SONIC_URRA 0x14
#define SONIC_RSA 0x15
#define SONIC_REA 0x16
#define SONIC_RRP 0x17
#define SONIC_RWP 0x18
#define SONIC_TRBA0 0x19
#define SONIC_TRBA1 0x1a
#define SONIC_LLFA 0x1f
#define SONIC_TTDA 0x20
#define SONIC_CEP 0x21
#define SONIC_CAP2 0x22
#define SONIC_CAP1 0x23
#define SONIC_CAP0 0x24
#define SONIC_CE 0x25
#define SONIC_CDP 0x26
#define SONIC_CDC 0x27
#define SONIC_SR 0x28
#define SONIC_WT0 0x29
#define SONIC_WT1 0x2a
#define SONIC_RSC 0x2b
#define SONIC_CRCT 0x2c
#define SONIC_FAET 0x2d
#define SONIC_MPT 0x2e
#define SONIC_MDT 0x2f
#define SONIC_DCR2 0x3f
#define SONIC_CR_HTX 0x0001
#define SONIC_CR_TXP 0x0002
#define SONIC_CR_RXDIS 0x0004
#define SONIC_CR_RXEN 0x0008
#define SONIC_CR_STP 0x0010
#define SONIC_CR_ST 0x0020
#define SONIC_CR_RST 0x0080
#define SONIC_CR_RRRA 0x0100
#define SONIC_CR_LCAM 0x0200
#define SONIC_CR_MASK 0x03bf
#define SONIC_DCR_DW 0x0020
#define SONIC_DCR_LBR 0x2000
#define SONIC_DCR_EXBUS 0x8000
#define SONIC_RCR_PRX 0x0001
#define SONIC_RCR_LBK 0x0002
#define SONIC_RCR_FAER 0x0004
#define SONIC_RCR_CRCR 0x0008
#define SONIC_RCR_CRS 0x0020
#define SONIC_RCR_LPKT 0x0040
#define SONIC_RCR_BC 0x0080
#define SONIC_RCR_MC 0x0100
#define SONIC_RCR_LB0 0x0200
#define SONIC_RCR_LB1 0x0400
#define SONIC_RCR_AMC 0x0800
#define SONIC_RCR_PRO 0x1000
#define SONIC_RCR_BRD 0x2000
#define SONIC_RCR_RNT 0x4000
#define SONIC_TCR_PTX 0x0001
#define SONIC_TCR_BCM 0x0002
#define SONIC_TCR_FU 0x0004
#define SONIC_TCR_EXC 0x0040
#define SONIC_TCR_CRSL 0x0080
#define SONIC_TCR_NCRS 0x0100
#define SONIC_TCR_EXD 0x0400
#define SONIC_TCR_CRCI 0x2000
#define SONIC_TCR_PINT 0x8000
#define SONIC_ISR_RBE 0x0020
#define SONIC_ISR_RDE 0x0040
#define SONIC_ISR_TC 0x0080
#define SONIC_ISR_TXDN 0x0200
#define SONIC_ISR_PKTRX 0x0400
#define SONIC_ISR_PINT 0x0800
#define SONIC_ISR_LCD 0x1000
typedef struct dp8393xState {
/* Hardware */
int it_shift;
qemu_irq irq;
#ifdef DEBUG_SONIC
int irq_level;
#endif
QEMUTimer *watchdog;
int64_t wt_last_update;
VLANClientState *vc;
int mmio_index;
/* Registers */
uint8_t cam[16][6];
uint16_t regs[0x40];
/* Temporaries */
uint8_t tx_buffer[0x10000];
int loopback_packet;
/* Memory access */
void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write);
void* mem_opaque;
} dp8393xState;
static void dp8393x_update_irq(dp8393xState *s)
{
int level = (s->regs[SONIC_IMR] & s->regs[SONIC_ISR]) ? 1 : 0;
#ifdef DEBUG_SONIC
if (level != s->irq_level) {
s->irq_level = level;
if (level) {
DPRINTF("raise irq, isr is 0x%04x\n", s->regs[SONIC_ISR]);
} else {
DPRINTF("lower irq\n");
}
}
#endif
qemu_set_irq(s->irq, level);
}
static void do_load_cam(dp8393xState *s)
{
uint16_t data[8];
int width, size;
uint16_t index = 0;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
while (s->regs[SONIC_CDC] & 0x1f) {
/* Fill current entry */
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP],
(uint8_t *)data, size, 0);
s->cam[index][0] = data[1 * width] & 0xff;
s->cam[index][1] = data[1 * width] >> 8;
s->cam[index][2] = data[2 * width] & 0xff;
s->cam[index][3] = data[2 * width] >> 8;
s->cam[index][4] = data[3 * width] & 0xff;
s->cam[index][5] = data[3 * width] >> 8;
DPRINTF("load cam[%d] with %02x%02x%02x%02x%02x%02x\n", index,
s->cam[index][0], s->cam[index][1], s->cam[index][2],
s->cam[index][3], s->cam[index][4], s->cam[index][5]);
/* Move to next entry */
s->regs[SONIC_CDC]--;
s->regs[SONIC_CDP] += size;
index++;
}
/* Read CAM enable */
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_CDP],
(uint8_t *)data, size, 0);
s->regs[SONIC_CE] = data[0 * width];
DPRINTF("load cam done. cam enable mask 0x%04x\n", s->regs[SONIC_CE]);
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_LCAM;
s->regs[SONIC_ISR] |= SONIC_ISR_LCD;
dp8393x_update_irq(s);
}
static void do_read_rra(dp8393xState *s)
{
uint16_t data[8];
int width, size;
/* Read memory */
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
size = sizeof(uint16_t) * 4 * width;
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_URRA] << 16) | s->regs[SONIC_RRP],
(uint8_t *)data, size, 0);
/* Update SONIC registers */
s->regs[SONIC_CRBA0] = data[0 * width];
s->regs[SONIC_CRBA1] = data[1 * width];
s->regs[SONIC_RBWC0] = data[2 * width];
s->regs[SONIC_RBWC1] = data[3 * width];
DPRINTF("CRBA0/1: 0x%04x/0x%04x, RBWC0/1: 0x%04x/0x%04x\n",
s->regs[SONIC_CRBA0], s->regs[SONIC_CRBA1],
s->regs[SONIC_RBWC0], s->regs[SONIC_RBWC1]);
/* Go to next entry */
s->regs[SONIC_RRP] += size;
/* Handle wrap */
if (s->regs[SONIC_RRP] == s->regs[SONIC_REA]) {
s->regs[SONIC_RRP] = s->regs[SONIC_RSA];
}
/* Check resource exhaustion */
if (s->regs[SONIC_RRP] == s->regs[SONIC_RWP])
{
s->regs[SONIC_ISR] |= SONIC_ISR_RBE;
dp8393x_update_irq(s);
}
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_RRRA;
}
static void do_software_reset(dp8393xState *s)
{
qemu_del_timer(s->watchdog);
s->regs[SONIC_CR] &= ~(SONIC_CR_LCAM | SONIC_CR_RRRA | SONIC_CR_TXP | SONIC_CR_HTX);
s->regs[SONIC_CR] |= SONIC_CR_RST | SONIC_CR_RXDIS;
}
static void set_next_tick(dp8393xState *s)
{
uint32_t ticks;
int64_t delay;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
qemu_del_timer(s->watchdog);
return;
}
ticks = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0];
s->wt_last_update = qemu_get_clock(vm_clock);
delay = ticks_per_sec * ticks / 5000000;
qemu_mod_timer(s->watchdog, s->wt_last_update + delay);
}
static void update_wt_regs(dp8393xState *s)
{
int64_t elapsed;
uint32_t val;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
qemu_del_timer(s->watchdog);
return;
}
elapsed = s->wt_last_update - qemu_get_clock(vm_clock);
val = s->regs[SONIC_WT1] << 16 | s->regs[SONIC_WT0];
val -= elapsed / 5000000;
s->regs[SONIC_WT1] = (val >> 16) & 0xffff;
s->regs[SONIC_WT0] = (val >> 0) & 0xffff;
set_next_tick(s);
}
static void do_start_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_STP;
set_next_tick(s);
}
static void do_stop_timer(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_ST;
update_wt_regs(s);
}
static void do_receiver_enable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXDIS;
}
static void do_receiver_disable(dp8393xState *s)
{
s->regs[SONIC_CR] &= ~SONIC_CR_RXEN;
}
static void do_transmit_packets(dp8393xState *s)
{
uint16_t data[12];
int width, size;
int tx_len, len;
uint16_t i;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
while (1) {
/* Read memory */
DPRINTF("Transmit packet at %08x\n",
(s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_CTDA]);
size = sizeof(uint16_t) * 6 * width;
s->regs[SONIC_TTDA] = s->regs[SONIC_CTDA];
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * width,
(uint8_t *)data, size, 0);
tx_len = 0;
/* Update registers */
s->regs[SONIC_TCR] = data[0 * width] & 0xf000;
s->regs[SONIC_TPS] = data[1 * width];
s->regs[SONIC_TFC] = data[2 * width];
s->regs[SONIC_TSA0] = data[3 * width];
s->regs[SONIC_TSA1] = data[4 * width];
s->regs[SONIC_TFS] = data[5 * width];
/* Handle programmable interrupt */
if (s->regs[SONIC_TCR] & SONIC_TCR_PINT) {
s->regs[SONIC_ISR] |= SONIC_ISR_PINT;
} else {
s->regs[SONIC_ISR] &= ~SONIC_ISR_PINT;
}
for (i = 0; i < s->regs[SONIC_TFC]; ) {
/* Append fragment */
len = s->regs[SONIC_TFS];
if (tx_len + len > sizeof(s->tx_buffer)) {
len = sizeof(s->tx_buffer) - tx_len;
}
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_TSA1] << 16) | s->regs[SONIC_TSA0],
&s->tx_buffer[tx_len], len, 0);
tx_len += len;
i++;
if (i != s->regs[SONIC_TFC]) {
/* Read next fragment details */
size = sizeof(uint16_t) * 3 * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * i) * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_TSA0] = data[0 * width];
s->regs[SONIC_TSA1] = data[1 * width];
s->regs[SONIC_TFS] = data[2 * width];
}
}
/* Handle Ethernet checksum */
if (!(s->regs[SONIC_TCR] & SONIC_TCR_CRCI)) {
/* Don't append FCS there, to look like slirp packets
* which don't have one */
} else {
/* Remove existing FCS */
tx_len -= 4;
}
if (s->regs[SONIC_RCR] & (SONIC_RCR_LB1 | SONIC_RCR_LB0)) {
/* Loopback */
s->regs[SONIC_TCR] |= SONIC_TCR_CRSL;
if (s->vc->fd_can_read(s)) {
s->loopback_packet = 1;
s->vc->fd_read(s, s->tx_buffer, tx_len);
}
} else {
/* Transmit packet */
qemu_send_packet(s->vc, s->tx_buffer, tx_len);
}
s->regs[SONIC_TCR] |= SONIC_TCR_PTX;
/* Write status */
data[0 * width] = s->regs[SONIC_TCR] & 0x0fff; /* status */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
(s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA],
(uint8_t *)data, size, 1);
if (!(s->regs[SONIC_CR] & SONIC_CR_HTX)) {
/* Read footer of packet */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_UTDA] << 16) | s->regs[SONIC_TTDA]) + sizeof(uint16_t) * (4 + 3 * s->regs[SONIC_TFC]) * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_CTDA] = data[0 * width] & ~0x1;
if (data[0 * width] & 0x1) {
/* EOL detected */
break;
}
}
}
/* Done */
s->regs[SONIC_CR] &= ~SONIC_CR_TXP;
s->regs[SONIC_ISR] |= SONIC_ISR_TXDN;
dp8393x_update_irq(s);
}
static void do_halt_transmission(dp8393xState *s)
{
/* Nothing to do */
}
static void do_command(dp8393xState *s, uint16_t command)
{
if ((s->regs[SONIC_CR] & SONIC_CR_RST) && !(command & SONIC_CR_RST)) {
s->regs[SONIC_CR] &= ~SONIC_CR_RST;
return;
}
s->regs[SONIC_CR] |= (command & SONIC_CR_MASK);
if (command & SONIC_CR_HTX)
do_halt_transmission(s);
if (command & SONIC_CR_TXP)
do_transmit_packets(s);
if (command & SONIC_CR_RXDIS)
do_receiver_disable(s);
if (command & SONIC_CR_RXEN)
do_receiver_enable(s);
if (command & SONIC_CR_STP)
do_stop_timer(s);
if (command & SONIC_CR_ST)
do_start_timer(s);
if (command & SONIC_CR_RST)
do_software_reset(s);
if (command & SONIC_CR_RRRA)
do_read_rra(s);
if (command & SONIC_CR_LCAM)
do_load_cam(s);
}
static uint16_t read_register(dp8393xState *s, int reg)
{
uint16_t val = 0;
switch (reg) {
/* Update data before reading it */
case SONIC_WT0:
case SONIC_WT1:
update_wt_regs(s);
val = s->regs[reg];
break;
/* Accept read to some registers only when in reset mode */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
val = s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg) + 1] << 8;
val |= s->cam[s->regs[SONIC_CEP] & 0xf][2* (SONIC_CAP0 - reg)];
}
break;
/* All other registers have no special contrainst */
default:
val = s->regs[reg];
}
DPRINTF("read 0x%04x from reg %s\n", val, reg_names[reg]);
return val;
}
static void write_register(dp8393xState *s, int reg, uint16_t val)
{
DPRINTF("write 0x%04x to reg %s\n", val, reg_names[reg]);
switch (reg) {
/* Command register */
case SONIC_CR:
do_command(s, val);;
break;
/* Prevent write to read-only registers */
case SONIC_CAP2:
case SONIC_CAP1:
case SONIC_CAP0:
case SONIC_SR:
case SONIC_MDT:
DPRINTF("writing to reg %d invalid\n", reg);
break;
/* Accept write to some registers only when in reset mode */
case SONIC_DCR:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xbfff;
} else {
DPRINTF("writing to DCR invalid\n");
}
break;
case SONIC_DCR2:
if (s->regs[SONIC_CR] & SONIC_CR_RST) {
s->regs[reg] = val & 0xf017;
} else {
DPRINTF("writing to DCR2 invalid\n");
}
break;
/* 12 lower bytes are Read Only */
case SONIC_TCR:
s->regs[reg] = val & 0xf000;
break;
/* 9 lower bytes are Read Only */
case SONIC_RCR:
s->regs[reg] = val & 0xffe0;
break;
/* Ignore most significant bit */
case SONIC_IMR:
s->regs[reg] = val & 0x7fff;
dp8393x_update_irq(s);
break;
/* Clear bits by writing 1 to them */
case SONIC_ISR:
val &= s->regs[reg];
s->regs[reg] &= ~val;
if (val & SONIC_ISR_RBE) {
do_read_rra(s);
}
dp8393x_update_irq(s);
break;
/* Ignore least significant bit */
case SONIC_RSA:
case SONIC_REA:
case SONIC_RRP:
case SONIC_RWP:
s->regs[reg] = val & 0xfffe;
break;
/* Invert written value for some registers */
case SONIC_CRCT:
case SONIC_FAET:
case SONIC_MPT:
s->regs[reg] = val ^ 0xffff;
break;
/* All other registers have no special contrainst */
default:
s->regs[reg] = val;
}
if (reg == SONIC_WT0 || reg == SONIC_WT1) {
set_next_tick(s);
}
}
static void dp8393x_watchdog(void *opaque)
{
dp8393xState *s = opaque;
if (s->regs[SONIC_CR] & SONIC_CR_STP) {
return;
}
s->regs[SONIC_WT1] = 0xffff;
s->regs[SONIC_WT0] = 0xffff;
set_next_tick(s);
/* Signal underflow */
s->regs[SONIC_ISR] |= SONIC_ISR_TC;
dp8393x_update_irq(s);
}
static uint32_t dp8393x_readw(void *opaque, target_phys_addr_t addr)
{
dp8393xState *s = opaque;
int reg;
if ((addr & ((1 << s->it_shift) - 1)) != 0) {
return 0;
}
reg = addr >> s->it_shift;
return read_register(s, reg);
}
static uint32_t dp8393x_readb(void *opaque, target_phys_addr_t addr)
{
uint16_t v = dp8393x_readw(opaque, addr & ~0x1);
return (v >> (8 * (addr & 0x1))) & 0xff;
}
static uint32_t dp8393x_readl(void *opaque, target_phys_addr_t addr)
{
uint32_t v;
v = dp8393x_readw(opaque, addr);
v |= dp8393x_readw(opaque, addr + 2) << 16;
return v;
}
static void dp8393x_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
dp8393xState *s = opaque;
int reg;
if ((addr & ((1 << s->it_shift) - 1)) != 0) {
return;
}
reg = addr >> s->it_shift;
write_register(s, reg, (uint16_t)val);
}
static void dp8393x_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
uint16_t old_val = dp8393x_readw(opaque, addr & ~0x1);
switch (addr & 3) {
case 0:
val = val | (old_val & 0xff00);
break;
case 1:
val = (val << 8) | (old_val & 0x00ff);
break;
}
dp8393x_writew(opaque, addr & ~0x1, val);
}
static void dp8393x_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
dp8393x_writew(opaque, addr, val & 0xffff);
dp8393x_writew(opaque, addr + 2, (val >> 16) & 0xffff);
}
static CPUReadMemoryFunc *dp8393x_read[3] = {
dp8393x_readb,
dp8393x_readw,
dp8393x_readl,
};
static CPUWriteMemoryFunc *dp8393x_write[3] = {
dp8393x_writeb,
dp8393x_writew,
dp8393x_writel,
};
static int nic_can_receive(void *opaque)
{
dp8393xState *s = opaque;
if (!(s->regs[SONIC_CR] & SONIC_CR_RXEN))
return 0;
if (s->regs[SONIC_ISR] & SONIC_ISR_RBE)
return 0;
return 1;
}
static int receive_filter(dp8393xState *s, const uint8_t * buf, int size)
{
static const uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
int i;
/* Check for runt packet (remember that checksum is not there) */
if (size < 64 - 4) {
return (s->regs[SONIC_RCR] & SONIC_RCR_RNT) ? 0 : -1;
}
/* Check promiscuous mode */
if ((s->regs[SONIC_RCR] & SONIC_RCR_PRO) && (buf[0] & 1) == 0) {
return 0;
}
/* Check multicast packets */
if ((s->regs[SONIC_RCR] & SONIC_RCR_AMC) && (buf[0] & 1) == 1) {
return SONIC_RCR_MC;
}
/* Check broadcast */
if ((s->regs[SONIC_RCR] & SONIC_RCR_BRD) && !memcmp(buf, bcast, sizeof(bcast))) {
return SONIC_RCR_BC;
}
/* Check CAM */
for (i = 0; i < 16; i++) {
if (s->regs[SONIC_CE] & (1 << i)) {
/* Entry enabled */
if (!memcmp(buf, s->cam[i], sizeof(s->cam[i]))) {
return 0;
}
}
}
return -1;
}
static void nic_receive(void *opaque, const uint8_t * buf, int size)
{
uint16_t data[10];
dp8393xState *s = opaque;
int packet_type;
uint32_t available, address;
int width, rx_len = size;
uint32_t checksum;
width = (s->regs[SONIC_DCR] & SONIC_DCR_DW) ? 2 : 1;
s->regs[SONIC_RCR] &= ~(SONIC_RCR_PRX | SONIC_RCR_LBK | SONIC_RCR_FAER |
SONIC_RCR_CRCR | SONIC_RCR_LPKT | SONIC_RCR_BC | SONIC_RCR_MC);
packet_type = receive_filter(s, buf, size);
if (packet_type < 0) {
DPRINTF("packet not for netcard\n");
return;
}
/* XXX: Check byte ordering */
/* Check for EOL */
if (s->regs[SONIC_LLFA] & 0x1) {
/* Are we still in resource exhaustion? */
size = sizeof(uint16_t) * 1 * width;
address = ((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width;
s->memory_rw(s->mem_opaque, address, (uint8_t*)data, size, 0);
if (data[0 * width] & 0x1) {
/* Still EOL ; stop reception */
return;
} else {
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
}
}
/* Save current position */
s->regs[SONIC_TRBA1] = s->regs[SONIC_CRBA1];
s->regs[SONIC_TRBA0] = s->regs[SONIC_CRBA0];
/* Calculate the ethernet checksum */
#ifdef SONIC_CALCULATE_RXCRC
checksum = cpu_to_le32(crc32(0, buf, rx_len));
#else
checksum = 0;
#endif
/* Put packet into RBA */
DPRINTF("Receive packet at %08x\n", (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0]);
address = (s->regs[SONIC_CRBA1] << 16) | s->regs[SONIC_CRBA0];
s->memory_rw(s->mem_opaque, address, (uint8_t*)buf, rx_len, 1);
address += rx_len;
s->memory_rw(s->mem_opaque, address, (uint8_t*)&checksum, 4, 1);
rx_len += 4;
s->regs[SONIC_CRBA1] = address >> 16;
s->regs[SONIC_CRBA0] = address & 0xffff;
available = (s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0];
available -= rx_len / 2;
s->regs[SONIC_RBWC1] = available >> 16;
s->regs[SONIC_RBWC0] = available & 0xffff;
/* Update status */
if (((s->regs[SONIC_RBWC1] << 16) | s->regs[SONIC_RBWC0]) < s->regs[SONIC_EOBC]) {
s->regs[SONIC_RCR] |= SONIC_RCR_LPKT;
}
s->regs[SONIC_RCR] |= packet_type;
s->regs[SONIC_RCR] |= SONIC_RCR_PRX;
if (s->loopback_packet) {
s->regs[SONIC_RCR] |= SONIC_RCR_LBK;
s->loopback_packet = 0;
}
/* Write status to memory */
DPRINTF("Write status at %08x\n", (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]);
data[0 * width] = s->regs[SONIC_RCR]; /* status */
data[1 * width] = rx_len; /* byte count */
data[2 * width] = s->regs[SONIC_TRBA0]; /* pkt_ptr0 */
data[3 * width] = s->regs[SONIC_TRBA1]; /* pkt_ptr1 */
data[4 * width] = s->regs[SONIC_RSC]; /* seq_no */
size = sizeof(uint16_t) * 5 * width;
s->memory_rw(s->mem_opaque, (s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA], (uint8_t *)data, size, 1);
/* Move to next descriptor */
size = sizeof(uint16_t) * width;
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 5 * width,
(uint8_t *)data, size, 0);
s->regs[SONIC_LLFA] = data[0 * width];
if (s->regs[SONIC_LLFA] & 0x1) {
/* EOL detected */
s->regs[SONIC_ISR] |= SONIC_ISR_RDE;
} else {
data[0 * width] = 0; /* in_use */
s->memory_rw(s->mem_opaque,
((s->regs[SONIC_URDA] << 16) | s->regs[SONIC_CRDA]) + sizeof(uint16_t) * 6 * width,
(uint8_t *)data, size, 1);
s->regs[SONIC_CRDA] = s->regs[SONIC_LLFA];
s->regs[SONIC_ISR] |= SONIC_ISR_PKTRX;
s->regs[SONIC_RSC] = (s->regs[SONIC_RSC] & 0xff00) | (((s->regs[SONIC_RSC] & 0x00ff) + 1) & 0x00ff);
if (s->regs[SONIC_RCR] & SONIC_RCR_LPKT) {
/* Read next RRA */
do_read_rra(s);
}
}
/* Done */
dp8393x_update_irq(s);
}
static void nic_reset(void *opaque)
{
dp8393xState *s = opaque;
qemu_del_timer(s->watchdog);
s->regs[SONIC_CR] = SONIC_CR_RST | SONIC_CR_STP | SONIC_CR_RXDIS;
s->regs[SONIC_DCR] &= ~(SONIC_DCR_EXBUS | SONIC_DCR_LBR);
s->regs[SONIC_RCR] &= ~(SONIC_RCR_LB0 | SONIC_RCR_LB1 | SONIC_RCR_BRD | SONIC_RCR_RNT);
s->regs[SONIC_TCR] |= SONIC_TCR_NCRS | SONIC_TCR_PTX;
s->regs[SONIC_TCR] &= ~SONIC_TCR_BCM;
s->regs[SONIC_IMR] = 0;
s->regs[SONIC_ISR] = 0;
s->regs[SONIC_DCR2] = 0;
s->regs[SONIC_EOBC] = 0x02F8;
s->regs[SONIC_RSC] = 0;
s->regs[SONIC_CE] = 0;
s->regs[SONIC_RSC] = 0;
/* Network cable is connected */
s->regs[SONIC_RCR] |= SONIC_RCR_CRS;
dp8393x_update_irq(s);
}
static void nic_cleanup(VLANClientState *vc)
{
dp8393xState *s = vc->opaque;
cpu_unregister_io_memory(s->mmio_index);
qemu_del_timer(s->watchdog);
qemu_free_timer(s->watchdog);
qemu_free(s);
}
void dp83932_init(NICInfo *nd, target_phys_addr_t base, int it_shift,
qemu_irq irq, void* mem_opaque,
void (*memory_rw)(void *opaque, target_phys_addr_t addr, uint8_t *buf, int len, int is_write))
{
dp8393xState *s;
qemu_check_nic_model(nd, "dp83932");
s = qemu_mallocz(sizeof(dp8393xState));
s->mem_opaque = mem_opaque;
s->memory_rw = memory_rw;
s->it_shift = it_shift;
s->irq = irq;
s->watchdog = qemu_new_timer(vm_clock, dp8393x_watchdog, s);
s->regs[SONIC_SR] = 0x0004; /* only revision recognized by Linux */
s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
nic_receive, nic_can_receive, nic_cleanup, s);
qemu_format_nic_info_str(s->vc, nd->macaddr);
qemu_register_reset(nic_reset, 0, s);
nic_reset(s);
s->mmio_index = cpu_register_io_memory(0, dp8393x_read, dp8393x_write, s);
cpu_register_physical_memory(base, 0x40 << it_shift, s->mmio_index);
}