qemu/hw/block/onenand.c

873 lines
26 KiB
C
Raw Normal View History

/*
* OneNAND flash memories emulation.
*
* Copyright (C) 2008 Nokia Corporation
* Written by Andrzej Zaborowski <andrew@openedhand.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "hw/hw.h"
#include "hw/block/flash.h"
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "sysemu/block-backend.h"
#include "exec/memory.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qom/object.h"
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
#define PAGE_SHIFT 11
/* Fixed */
#define BLOCK_SHIFT (PAGE_SHIFT + 6)
#define TYPE_ONE_NAND "onenand"
OBJECT_DECLARE_SIMPLE_TYPE(OneNANDState, ONE_NAND)
struct OneNANDState {
SysBusDevice parent_obj;
struct {
uint16_t man;
uint16_t dev;
uint16_t ver;
} id;
int shift;
hwaddr base;
qemu_irq intr;
qemu_irq rdy;
BlockBackend *blk;
BlockBackend *blk_cur;
uint8_t *image;
uint8_t *otp;
uint8_t *current;
MemoryRegion ram;
MemoryRegion mapped_ram;
uint8_t current_direction;
uint8_t *boot[2];
uint8_t *data[2][2];
MemoryRegion iomem;
MemoryRegion container;
int cycle;
int otpmode;
uint16_t addr[8];
uint16_t unladdr[8];
int bufaddr;
int count;
uint16_t command;
uint16_t config[2];
uint16_t status;
uint16_t intstatus;
uint16_t wpstatus;
ECCState ecc;
int density_mask;
int secs;
int secs_cur;
int blocks;
uint8_t *blockwp;
};
enum {
ONEN_BUF_BLOCK = 0,
ONEN_BUF_BLOCK2 = 1,
ONEN_BUF_DEST_BLOCK = 2,
ONEN_BUF_DEST_PAGE = 3,
ONEN_BUF_PAGE = 7,
};
enum {
ONEN_ERR_CMD = 1 << 10,
ONEN_ERR_ERASE = 1 << 11,
ONEN_ERR_PROG = 1 << 12,
ONEN_ERR_LOAD = 1 << 13,
};
enum {
ONEN_INT_RESET = 1 << 4,
ONEN_INT_ERASE = 1 << 5,
ONEN_INT_PROG = 1 << 6,
ONEN_INT_LOAD = 1 << 7,
ONEN_INT = 1 << 15,
};
enum {
ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
ONEN_LOCK_LOCKED = 1 << 1,
ONEN_LOCK_UNLOCKED = 1 << 2,
};
static void onenand_mem_setup(OneNANDState *s)
{
/* XXX: We should use IO_MEM_ROMD but we broke it earlier...
* Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
* write boot commands. Also take note of the BWPS bit. */
memory_region_init(&s->container, OBJECT(s), "onenand",
0x10000 << s->shift);
memory_region_add_subregion(&s->container, 0, &s->iomem);
memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
&s->ram, 0x0200 << s->shift,
0xbe00 << s->shift);
memory_region_add_subregion_overlap(&s->container,
0x0200 << s->shift,
&s->mapped_ram,
1);
}
static void onenand_intr_update(OneNANDState *s)
{
qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
}
static int onenand_pre_save(void *opaque)
{
OneNANDState *s = opaque;
if (s->current == s->otp) {
s->current_direction = 1;
} else if (s->current == s->image) {
s->current_direction = 2;
} else {
s->current_direction = 0;
}
return 0;
}
static int onenand_post_load(void *opaque, int version_id)
{
OneNANDState *s = opaque;
switch (s->current_direction) {
case 0:
break;
case 1:
s->current = s->otp;
break;
case 2:
s->current = s->image;
break;
default:
return -1;
}
onenand_intr_update(s);
return 0;
}
static const VMStateDescription vmstate_onenand = {
.name = "onenand",
.version_id = 1,
.minimum_version_id = 1,
.pre_save = onenand_pre_save,
.post_load = onenand_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(current_direction, OneNANDState),
VMSTATE_INT32(cycle, OneNANDState),
VMSTATE_INT32(otpmode, OneNANDState),
VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
VMSTATE_INT32(bufaddr, OneNANDState),
VMSTATE_INT32(count, OneNANDState),
VMSTATE_UINT16(command, OneNANDState),
VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
VMSTATE_UINT16(status, OneNANDState),
VMSTATE_UINT16(intstatus, OneNANDState),
VMSTATE_UINT16(wpstatus, OneNANDState),
VMSTATE_INT32(secs_cur, OneNANDState),
VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
VMSTATE_UINT8(ecc.cp, OneNANDState),
VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
VMSTATE_UINT16(ecc.count, OneNANDState),
VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
((64 + 2) << PAGE_SHIFT)),
VMSTATE_END_OF_LIST()
}
};
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
static void onenand_reset(OneNANDState *s, int cold)
{
memset(&s->addr, 0, sizeof(s->addr));
s->command = 0;
s->count = 1;
s->bufaddr = 0;
s->config[0] = 0x40c0;
s->config[1] = 0x0000;
onenand_intr_update(s);
qemu_irq_raise(s->rdy);
s->status = 0x0000;
s->intstatus = cold ? 0x8080 : 0x8010;
s->unladdr[0] = 0;
s->unladdr[1] = 0;
s->wpstatus = 0x0002;
s->cycle = 0;
s->otpmode = 0;
s->blk_cur = s->blk;
s->current = s->image;
s->secs_cur = s->secs;
if (cold) {
/* Lock the whole flash */
memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
8 << BDRV_SECTOR_BITS) < 0) {
hw_error("%s: Loading the BootRAM failed.\n", __func__);
}
}
}
static void onenand_system_reset(DeviceState *dev)
{
OneNANDState *s = ONE_NAND(dev);
onenand_reset(s, 1);
}
static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
void *dest)
{
assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
if (s->blk_cur) {
return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
secn << BDRV_SECTOR_BITS) < 0;
} else if (sec + secn > s->secs_cur) {
return 1;
}
memcpy(dest, s->current + (sec << 9), secn << 9);
return 0;
}
static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
void *src)
{
int result = 0;
if (secn > 0) {
uint32_t size = secn << BDRV_SECTOR_BITS;
uint32_t offset = sec << BDRV_SECTOR_BITS;
assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
const uint8_t *sp = (const uint8_t *)src;
uint8_t *dp = 0;
if (s->blk_cur) {
dp = g_malloc(size);
if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
result = 1;
}
} else {
if (sec + secn > s->secs_cur) {
result = 1;
} else {
dp = (uint8_t *)s->current + offset;
}
}
if (!result) {
uint32_t i;
for (i = 0; i < size; i++) {
dp[i] &= sp[i];
}
if (s->blk_cur) {
result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
}
}
if (dp && s->blk_cur) {
g_free(dp);
}
}
return result;
}
static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
void *dest)
{
uint8_t buf[512];
if (s->blk_cur) {
uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
return 1;
}
memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
} else if (sec + secn > s->secs_cur) {
return 1;
} else {
memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
}
return 0;
}
static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
void *src)
{
int result = 0;
if (secn > 0) {
const uint8_t *sp = (const uint8_t *)src;
uint8_t *dp = 0, *dpp = 0;
uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
if (s->blk_cur) {
dp = g_malloc(512);
if (!dp
|| blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
result = 1;
} else {
dpp = dp + ((sec & 31) << 4);
}
} else {
if (sec + secn > s->secs_cur) {
result = 1;
} else {
dpp = s->current + (s->secs_cur << 9) + (sec << 4);
}
}
if (!result) {
uint32_t i;
for (i = 0; i < (secn << 4); i++) {
dpp[i] &= sp[i];
}
if (s->blk_cur) {
result = blk_pwrite(s->blk_cur, offset, dp,
BDRV_SECTOR_SIZE, 0) < 0;
}
}
g_free(dp);
}
return result;
}
static inline int onenand_erase(OneNANDState *s, int sec, int num)
{
uint8_t *blankbuf, *tmpbuf;
blankbuf = g_malloc(512);
tmpbuf = g_malloc(512);
memset(blankbuf, 0xff, 512);
for (; num > 0; num--, sec++) {
if (s->blk_cur) {
int erasesec = s->secs_cur + (sec >> 5);
if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
BDRV_SECTOR_SIZE, 0) < 0) {
goto fail;
}
if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
BDRV_SECTOR_SIZE) < 0) {
goto fail;
}
memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
BDRV_SECTOR_SIZE, 0) < 0) {
goto fail;
}
} else {
if (sec + 1 > s->secs_cur) {
goto fail;
}
memcpy(s->current + (sec << 9), blankbuf, 512);
memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
blankbuf, 1 << 4);
}
}
g_free(tmpbuf);
g_free(blankbuf);
return 0;
fail:
g_free(tmpbuf);
g_free(blankbuf);
return 1;
}
static void onenand_command(OneNANDState *s)
{
int b;
int sec;
void *buf;
#define SETADDR(block, page) \
sec = (s->addr[page] & 3) + \
((((s->addr[page] >> 2) & 0x3f) + \
(((s->addr[block] & 0xfff) | \
(s->addr[block] >> 15 ? \
s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
#define SETBUF_M() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
buf += (s->bufaddr & 3) << 9;
#define SETBUF_S() \
buf = (s->bufaddr & 8) ? \
s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
buf += (s->bufaddr & 3) << 4;
switch (s->command) {
case 0x00: /* Load single/multiple sector data unit into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#if 0
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x13: /* Load single/multiple spare sector into buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_load_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
break;
case 0x80: /* Program single/multiple sector data unit from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_M()
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#if 0
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
#endif
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1a: /* Program single/multiple spare area sector from buffer */
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
SETBUF_S()
if (onenand_prog_spare(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
* or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
* then we need two split the read/write into two chunks.
*/
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x1b: /* Copy-back program */
SETBUF_S()
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
if (onenand_load_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
if (onenand_prog_main(s, sec, s->count, buf))
s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
/* TODO: spare areas */
s->intstatus |= ONEN_INT | ONEN_INT_PROG;
break;
case 0x23: /* Unlock NAND array block(s) */
s->intstatus |= ONEN_INT;
/* XXX the previous (?) area should be locked automatically */
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
}
break;
case 0x27: /* Unlock All NAND array blocks */
s->intstatus |= ONEN_INT;
for (b = 0; b < s->blocks; b ++) {
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
}
break;
case 0x2a: /* Lock NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
break;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
}
break;
case 0x2c: /* Lock-tight NAND array block(s) */
s->intstatus |= ONEN_INT;
for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
if (b >= s->blocks) {
s->status |= ONEN_ERR_CMD;
break;
}
if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
continue;
s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
}
break;
case 0x71: /* Erase-Verify-Read */
s->intstatus |= ONEN_INT;
break;
case 0x95: /* Multi-block erase */
qemu_irq_pulse(s->intr);
/* Fall through. */
case 0x94: /* Block erase */
sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
(s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
<< (BLOCK_SHIFT - 9);
if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xb0: /* Erase suspend */
break;
case 0x30: /* Erase resume */
s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
break;
case 0xf0: /* Reset NAND Flash core */
onenand_reset(s, 0);
break;
case 0xf3: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x65: /* OTP Access */
s->intstatus |= ONEN_INT;
s->blk_cur = NULL;
s->current = s->otp;
s->secs_cur = 1 << (BLOCK_SHIFT - 9);
s->addr[ONEN_BUF_BLOCK] = 0;
s->otpmode = 1;
break;
default:
s->status |= ONEN_ERR_CMD;
s->intstatus |= ONEN_INT;
qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n",
s->command);
}
onenand_intr_update(s);
}
static uint64_t onenand_read(void *opaque, hwaddr addr,
unsigned size)
{
OneNANDState *s = (OneNANDState *) opaque;
int offset = addr >> s->shift;
switch (offset) {
case 0x0000 ... 0xbffe:
return lduw_le_p(s->boot[0] + addr);
case 0xf000: /* Manufacturer ID */
return s->id.man;
case 0xf001: /* Device ID */
return s->id.dev;
case 0xf002: /* Version ID */
return s->id.ver;
/* TODO: get the following values from a real chip! */
case 0xf003: /* Data Buffer size */
return 1 << PAGE_SHIFT;
case 0xf004: /* Boot Buffer size */
return 0x200;
case 0xf005: /* Amount of buffers */
return 1 | (2 << 8);
case 0xf006: /* Technology */
return 0;
case 0xf100 ... 0xf107: /* Start addresses */
return s->addr[offset - 0xf100];
case 0xf200: /* Start buffer */
return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
case 0xf220: /* Command */
return s->command;
case 0xf221: /* System Configuration 1 */
return s->config[0] & 0xffe0;
case 0xf222: /* System Configuration 2 */
return s->config[1];
case 0xf240: /* Controller Status */
return s->status;
case 0xf241: /* Interrupt */
return s->intstatus;
case 0xf24c: /* Unlock Start Block Address */
return s->unladdr[0];
case 0xf24d: /* Unlock End Block Address */
return s->unladdr[1];
case 0xf24e: /* Write Protection Status */
return s->wpstatus;
case 0xff00: /* ECC Status */
return 0x00;
case 0xff01: /* ECC Result of main area data */
case 0xff02: /* ECC Result of spare area data */
case 0xff03: /* ECC Result of main area data */
case 0xff04: /* ECC Result of spare area data */
qemu_log_mask(LOG_UNIMP,
"onenand: ECC result registers unimplemented\n");
return 0x0000;
}
qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n",
offset);
return 0;
}
static void onenand_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
OneNANDState *s = (OneNANDState *) opaque;
int offset = addr >> s->shift;
int sec;
switch (offset) {
case 0x0000 ... 0x01ff:
case 0x8000 ... 0x800f:
if (s->cycle) {
s->cycle = 0;
if (value == 0x0000) {
SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
onenand_load_main(s, sec,
1 << (PAGE_SHIFT - 9), s->data[0][0]);
s->addr[ONEN_BUF_PAGE] += 4;
s->addr[ONEN_BUF_PAGE] &= 0xff;
}
break;
}
switch (value) {
case 0x00f0: /* Reset OneNAND */
onenand_reset(s, 0);
break;
case 0x00e0: /* Load Data into Buffer */
s->cycle = 1;
break;
case 0x0090: /* Read Identification Data */
memset(s->boot[0], 0, 3 << s->shift);
s->boot[0][0 << s->shift] = s->id.man & 0xff;
s->boot[0][1 << s->shift] = s->id.dev & 0xff;
s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"unknown OneNAND boot command %" PRIx64 "\n",
value);
}
break;
case 0xf100 ... 0xf107: /* Start addresses */
s->addr[offset - 0xf100] = value;
break;
case 0xf200: /* Start buffer */
s->bufaddr = (value >> 8) & 0xf;
if (PAGE_SHIFT == 11)
s->count = (value & 3) ?: 4;
else if (PAGE_SHIFT == 10)
s->count = (value & 1) ?: 2;
break;
case 0xf220: /* Command */
if (s->intstatus & (1 << 15))
break;
s->command = value;
onenand_command(s);
break;
case 0xf221: /* System Configuration 1 */
s->config[0] = value;
onenand_intr_update(s);
qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
break;
case 0xf222: /* System Configuration 2 */
s->config[1] = value;
break;
case 0xf241: /* Interrupt */
s->intstatus &= value;
if ((1 << 15) & ~s->intstatus)
s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
ONEN_ERR_PROG | ONEN_ERR_LOAD);
onenand_intr_update(s);
break;
case 0xf24c: /* Unlock Start Block Address */
s->unladdr[0] = value & (s->blocks - 1);
/* For some reason we have to set the end address to by default
* be same as start because the software forgets to write anything
* in there. */
s->unladdr[1] = value & (s->blocks - 1);
break;
case 0xf24d: /* Unlock End Block Address */
s->unladdr[1] = value & (s->blocks - 1);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"write to unknown OneNAND register 0x%x\n",
offset);
}
}
static const MemoryRegionOps onenand_ops = {
.read = onenand_read,
.write = onenand_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void onenand_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
OneNANDState *s = ONE_NAND(dev);
uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
void *ram;
Error *local_err = NULL;
s->base = (hwaddr)-1;
s->rdy = NULL;
s->blocks = size >> BLOCK_SHIFT;
s->secs = size >> 9;
s->blockwp = g_malloc(s->blocks);
s->density_mask = (s->id.dev & 0x08)
? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
0x10000 << s->shift);
if (!s->blk) {
s->image = memset(g_malloc(size + (size >> 5)),
0xff, size + (size >> 5));
} else {
if (blk_is_read_only(s->blk)) {
error_setg(errp, "Can't use a read-only drive");
return;
}
blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
BLK_PERM_ALL, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
s->blk_cur = s->blk;
}
s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
0xff, (64 + 2) << PAGE_SHIFT);
memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
Fix bad error handling after memory_region_init_ram() Symptom: $ qemu-system-x86_64 -m 10000000 Unexpected error in ram_block_add() at /work/armbru/qemu/exec.c:1456: upstream-qemu: cannot set up guest memory 'pc.ram': Cannot allocate memory Aborted (core dumped) Root cause: commit ef701d7 screwed up handling of out-of-memory conditions. Before the commit, we report the error and exit(1), in one place, ram_block_add(). The commit lifts the error handling up the call chain some, to three places. Fine. Except it uses &error_abort in these places, changing the behavior from exit(1) to abort(), and thus undoing the work of commit 3922825 "exec: Don't abort when we can't allocate guest memory". The three places are: * memory_region_init_ram() Commit 4994653 (right after commit ef701d7) lifted the error handling further, through memory_region_init_ram(), multiplying the incorrect use of &error_abort. Later on, imitation of existing (bad) code may have created more. * memory_region_init_ram_ptr() The &error_abort is still there. * memory_region_init_rom_device() Doesn't need fixing, because commit 33e0eb5 (soon after commit ef701d7) lifted the error handling further, and in the process changed it from &error_abort to passing it up the call chain. Correct, because the callers are realize() methods. Fix the error handling after memory_region_init_ram() with a Coccinelle semantic patch: @r@ expression mr, owner, name, size, err; position p; @@ memory_region_init_ram(mr, owner, name, size, ( - &error_abort + &error_fatal | err@p ) ); @script:python@ p << r.p; @@ print "%s:%s:%s" % (p[0].file, p[0].line, p[0].column) When the last argument is &error_abort, it gets replaced by &error_fatal. This is the fix. If the last argument is anything else, its position is reported. This lets us check the fix is complete. Four positions get reported: * ram_backend_memory_alloc() Error is passed up the call chain, ultimately through user_creatable_complete(). As far as I can tell, it's callers all handle the error sanely. * fsl_imx25_realize(), fsl_imx31_realize(), dp8393x_realize() DeviceClass.realize() methods, errors handled sanely further up the call chain. We're good. Test case again behaves: $ qemu-system-x86_64 -m 10000000 qemu-system-x86_64: cannot set up guest memory 'pc.ram': Cannot allocate memory [Exit 1 ] The next commits will repair the rest of commit ef701d7's damage. Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-Id: <1441983105-26376-3-git-send-email-armbru@redhat.com> Reviewed-by: Peter Crosthwaite <crosthwaite.peter@gmail.com>
2015-09-11 17:51:43 +03:00
0xc000 << s->shift, &error_fatal);
vmstate_register_ram_global(&s->ram);
ram = memory_region_get_ram_ptr(&s->ram);
s->boot[0] = ram + (0x0000 << s->shift);
s->boot[1] = ram + (0x8000 << s->shift);
s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
onenand_mem_setup(s);
sysbus_init_irq(sbd, &s->intr);
sysbus_init_mmio(sbd, &s->container);
vmstate_register(VMSTATE_IF(dev),
((s->shift & 0x7f) << 24)
| ((s->id.man & 0xff) << 16)
| ((s->id.dev & 0xff) << 8)
| (s->id.ver & 0xff),
&vmstate_onenand, s);
}
static Property onenand_properties[] = {
DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
DEFINE_PROP_END_OF_LIST(),
};
static void onenand_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = onenand_realize;
dc->reset = onenand_system_reset;
device_class_set_props(dc, onenand_properties);
}
static const TypeInfo onenand_info = {
.name = TYPE_ONE_NAND,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(OneNANDState),
.class_init = onenand_class_init,
};
static void onenand_register_types(void)
{
type_register_static(&onenand_info);
}
void *onenand_raw_otp(DeviceState *onenand_device)
{
OneNANDState *s = ONE_NAND(onenand_device);
return s->otp;
}
type_init(onenand_register_types)