2011-09-12 18:44:30 +04:00
|
|
|
/*
|
|
|
|
* QEMU System Emulator
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
|
|
*
|
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
|
|
* in the Software without restriction, including without limitation the rights
|
|
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
|
|
* furnished to do so, subject to the following conditions:
|
|
|
|
*
|
|
|
|
* The above copyright notice and this permission notice shall be included in
|
|
|
|
* all copies or substantial portions of the Software.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
|
|
* THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#ifndef QEMU_MAIN_LOOP_H
|
|
|
|
#define QEMU_MAIN_LOOP_H 1
|
|
|
|
|
|
|
|
#ifdef SIGRTMIN
|
|
|
|
#define SIG_IPI (SIGRTMIN+4)
|
|
|
|
#else
|
|
|
|
#define SIG_IPI SIGUSR1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_init_main_loop: Set up the process so that it can run the main loop.
|
|
|
|
*
|
|
|
|
* This includes setting up signal handlers. It should be called before
|
|
|
|
* any other threads are created. In addition, threads other than the
|
|
|
|
* main one should block signals that are trapped by the main loop.
|
|
|
|
* For simplicity, you can consider these signals to be safe: SIGUSR1,
|
|
|
|
* SIGUSR2, thread signals (SIGFPE, SIGILL, SIGSEGV, SIGBUS) and real-time
|
|
|
|
* signals if available. Remember that Windows in practice does not have
|
|
|
|
* signals, though.
|
|
|
|
*/
|
|
|
|
int qemu_init_main_loop(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* main_loop_wait: Run one iteration of the main loop.
|
|
|
|
*
|
|
|
|
* If @nonblocking is true, poll for events, otherwise suspend until
|
|
|
|
* one actually occurs. The main loop usually consists of a loop that
|
|
|
|
* repeatedly calls main_loop_wait(false).
|
|
|
|
*
|
|
|
|
* Main loop services include file descriptor callbacks, bottom halves
|
|
|
|
* and timers (defined in qemu-timer.h). Bottom halves are similar to timers
|
|
|
|
* that execute immediately, but have a lower overhead and scheduling them
|
|
|
|
* is wait-free, thread-safe and signal-safe.
|
|
|
|
*
|
|
|
|
* It is sometimes useful to put a whole program in a coroutine. In this
|
|
|
|
* case, the coroutine actually should be started from within the main loop,
|
|
|
|
* so that the main loop can run whenever the coroutine yields. To do this,
|
|
|
|
* you can use a bottom half to enter the coroutine as soon as the main loop
|
|
|
|
* starts:
|
|
|
|
*
|
|
|
|
* void enter_co_bh(void *opaque) {
|
|
|
|
* QEMUCoroutine *co = opaque;
|
|
|
|
* qemu_coroutine_enter(co, NULL);
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* ...
|
|
|
|
* QEMUCoroutine *co = qemu_coroutine_create(coroutine_entry);
|
|
|
|
* QEMUBH *start_bh = qemu_bh_new(enter_co_bh, co);
|
|
|
|
* qemu_bh_schedule(start_bh);
|
|
|
|
* while (...) {
|
|
|
|
* main_loop_wait(false);
|
|
|
|
* }
|
|
|
|
*
|
|
|
|
* (In the future we may provide a wrapper for this).
|
|
|
|
*
|
|
|
|
* @nonblocking: Whether the caller should block until an event occurs.
|
|
|
|
*/
|
|
|
|
int main_loop_wait(int nonblocking);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_notify_event: Force processing of pending events.
|
|
|
|
*
|
|
|
|
* Similar to signaling a condition variable, qemu_notify_event forces
|
|
|
|
* main_loop_wait to look at pending events and exit. The caller of
|
|
|
|
* main_loop_wait will usually call it again very soon, so qemu_notify_event
|
|
|
|
* also has the side effect of recalculating the sets of file descriptors
|
|
|
|
* that the main loop waits for.
|
|
|
|
*
|
|
|
|
* Calling qemu_notify_event is rarely necessary, because main loop
|
|
|
|
* services (bottom halves and timers) call it themselves. One notable
|
|
|
|
* exception occurs when using qemu_set_fd_handler2 (see below).
|
|
|
|
*/
|
|
|
|
void qemu_notify_event(void);
|
|
|
|
|
|
|
|
#ifdef _WIN32
|
|
|
|
/* return TRUE if no sleep should be done afterwards */
|
|
|
|
typedef int PollingFunc(void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_add_polling_cb: Register a Windows-specific polling callback
|
|
|
|
*
|
|
|
|
* Currently, under Windows some events are polled rather than waited for.
|
|
|
|
* Polling callbacks do not ensure that @func is called timely, because
|
|
|
|
* the main loop might wait for an arbitrarily long time. If possible,
|
|
|
|
* you should instead create a separate thread that does a blocking poll
|
|
|
|
* and set a Win32 event object. The event can then be passed to
|
|
|
|
* qemu_add_wait_object.
|
|
|
|
*
|
|
|
|
* Polling callbacks really have nothing Windows specific in them, but
|
|
|
|
* as they are a hack and are currenly not necessary under POSIX systems,
|
|
|
|
* they are only available when QEMU is running under Windows.
|
|
|
|
*
|
|
|
|
* @func: The function that does the polling, and returns 1 to force
|
|
|
|
* immediate completion of main_loop_wait.
|
|
|
|
* @opaque: A pointer-size value that is passed to @func.
|
|
|
|
*/
|
|
|
|
int qemu_add_polling_cb(PollingFunc *func, void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_del_polling_cb: Unregister a Windows-specific polling callback
|
|
|
|
*
|
|
|
|
* This function removes a callback that was registered with
|
|
|
|
* qemu_add_polling_cb.
|
|
|
|
*
|
|
|
|
* @func: The function that was passed to qemu_add_polling_cb.
|
|
|
|
* @opaque: A pointer-size value that was passed to qemu_add_polling_cb.
|
|
|
|
*/
|
|
|
|
void qemu_del_polling_cb(PollingFunc *func, void *opaque);
|
|
|
|
|
|
|
|
/* Wait objects handling */
|
|
|
|
typedef void WaitObjectFunc(void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_add_wait_object: Register a callback for a Windows handle
|
|
|
|
*
|
|
|
|
* Under Windows, the iohandler mechanism can only be used with sockets.
|
|
|
|
* QEMU must use the WaitForMultipleObjects API to wait on other handles.
|
|
|
|
* This function registers a #HANDLE with QEMU, so that it will be included
|
|
|
|
* in the main loop's calls to WaitForMultipleObjects. When the handle
|
|
|
|
* is in a signaled state, QEMU will call @func.
|
|
|
|
*
|
|
|
|
* @handle: The Windows handle to be observed.
|
|
|
|
* @func: A function to be called when @handle is in a signaled state.
|
|
|
|
* @opaque: A pointer-size value that is passed to @func.
|
|
|
|
*/
|
|
|
|
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_del_wait_object: Unregister a callback for a Windows handle
|
|
|
|
*
|
|
|
|
* This function removes a callback that was registered with
|
|
|
|
* qemu_add_wait_object.
|
|
|
|
*
|
|
|
|
* @func: The function that was passed to qemu_add_wait_object.
|
|
|
|
* @opaque: A pointer-size value that was passed to qemu_add_wait_object.
|
|
|
|
*/
|
|
|
|
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/* async I/O support */
|
|
|
|
|
|
|
|
typedef void IOReadHandler(void *opaque, const uint8_t *buf, int size);
|
|
|
|
typedef int IOCanReadHandler(void *opaque);
|
|
|
|
typedef void IOHandler(void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_set_fd_handler2: Register a file descriptor with the main loop
|
|
|
|
*
|
|
|
|
* This function tells the main loop to wake up whenever one of the
|
|
|
|
* following conditions is true:
|
|
|
|
*
|
|
|
|
* 1) if @fd_write is not %NULL, when the file descriptor is writable;
|
|
|
|
*
|
|
|
|
* 2) if @fd_read is not %NULL, when the file descriptor is readable.
|
|
|
|
*
|
|
|
|
* @fd_read_poll can be used to disable the @fd_read callback temporarily.
|
|
|
|
* This is useful to avoid calling qemu_set_fd_handler2 every time the
|
|
|
|
* client becomes interested in reading (or dually, stops being interested).
|
|
|
|
* A typical example is when @fd is a listening socket and you want to bound
|
|
|
|
* the number of active clients. Remember to call qemu_notify_event whenever
|
|
|
|
* the condition may change from %false to %true.
|
|
|
|
*
|
|
|
|
* The callbacks that are set up by qemu_set_fd_handler2 are level-triggered.
|
|
|
|
* If @fd_read does not read from @fd, or @fd_write does not write to @fd
|
|
|
|
* until its buffers are full, they will be called again on the next
|
|
|
|
* iteration.
|
|
|
|
*
|
|
|
|
* @fd: The file descriptor to be observed. Under Windows it must be
|
|
|
|
* a #SOCKET.
|
|
|
|
*
|
|
|
|
* @fd_read_poll: A function that returns 1 if the @fd_read callback
|
|
|
|
* should be fired. If the function returns 0, the main loop will not
|
|
|
|
* end its iteration even if @fd becomes readable.
|
|
|
|
*
|
|
|
|
* @fd_read: A level-triggered callback that is fired if @fd is readable
|
|
|
|
* at the beginning of a main loop iteration, or if it becomes readable
|
|
|
|
* during one.
|
|
|
|
*
|
|
|
|
* @fd_write: A level-triggered callback that is fired when @fd is writable
|
|
|
|
* at the beginning of a main loop iteration, or if it becomes writable
|
|
|
|
* during one.
|
|
|
|
*
|
|
|
|
* @opaque: A pointer-sized value that is passed to @fd_read_poll,
|
|
|
|
* @fd_read and @fd_write.
|
|
|
|
*/
|
|
|
|
int qemu_set_fd_handler2(int fd,
|
|
|
|
IOCanReadHandler *fd_read_poll,
|
|
|
|
IOHandler *fd_read,
|
|
|
|
IOHandler *fd_write,
|
|
|
|
void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_set_fd_handler: Register a file descriptor with the main loop
|
|
|
|
*
|
|
|
|
* This function tells the main loop to wake up whenever one of the
|
|
|
|
* following conditions is true:
|
|
|
|
*
|
|
|
|
* 1) if @fd_write is not %NULL, when the file descriptor is writable;
|
|
|
|
*
|
|
|
|
* 2) if @fd_read is not %NULL, when the file descriptor is readable.
|
|
|
|
*
|
|
|
|
* The callbacks that are set up by qemu_set_fd_handler are level-triggered.
|
|
|
|
* If @fd_read does not read from @fd, or @fd_write does not write to @fd
|
|
|
|
* until its buffers are full, they will be called again on the next
|
|
|
|
* iteration.
|
|
|
|
*
|
|
|
|
* @fd: The file descriptor to be observed. Under Windows it must be
|
|
|
|
* a #SOCKET.
|
|
|
|
*
|
|
|
|
* @fd_read: A level-triggered callback that is fired if @fd is readable
|
|
|
|
* at the beginning of a main loop iteration, or if it becomes readable
|
|
|
|
* during one.
|
|
|
|
*
|
|
|
|
* @fd_write: A level-triggered callback that is fired when @fd is writable
|
|
|
|
* at the beginning of a main loop iteration, or if it becomes writable
|
|
|
|
* during one.
|
|
|
|
*
|
|
|
|
* @opaque: A pointer-sized value that is passed to @fd_read and @fd_write.
|
|
|
|
*/
|
|
|
|
int qemu_set_fd_handler(int fd,
|
|
|
|
IOHandler *fd_read,
|
|
|
|
IOHandler *fd_write,
|
|
|
|
void *opaque);
|
|
|
|
|
|
|
|
typedef struct QEMUBH QEMUBH;
|
|
|
|
typedef void QEMUBHFunc(void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_bh_new: Allocate a new bottom half structure.
|
|
|
|
*
|
|
|
|
* Bottom halves are lightweight callbacks whose invocation is guaranteed
|
|
|
|
* to be wait-free, thread-safe and signal-safe. The #QEMUBH structure
|
|
|
|
* is opaque and must be allocated prior to its use.
|
|
|
|
*/
|
|
|
|
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_bh_schedule: Schedule a bottom half.
|
|
|
|
*
|
|
|
|
* Scheduling a bottom half interrupts the main loop and causes the
|
|
|
|
* execution of the callback that was passed to qemu_bh_new.
|
|
|
|
*
|
|
|
|
* Bottom halves that are scheduled from a bottom half handler are instantly
|
|
|
|
* invoked. This can create an infinite loop if a bottom half handler
|
|
|
|
* schedules itself.
|
|
|
|
*
|
|
|
|
* @bh: The bottom half to be scheduled.
|
|
|
|
*/
|
|
|
|
void qemu_bh_schedule(QEMUBH *bh);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_bh_cancel: Cancel execution of a bottom half.
|
|
|
|
*
|
|
|
|
* Canceling execution of a bottom half undoes the effect of calls to
|
|
|
|
* qemu_bh_schedule without freeing its resources yet. While cancellation
|
|
|
|
* itself is also wait-free and thread-safe, it can of course race with the
|
|
|
|
* loop that executes bottom halves unless you are holding the iothread
|
|
|
|
* mutex. This makes it mostly useless if you are not holding the mutex.
|
|
|
|
*
|
|
|
|
* @bh: The bottom half to be canceled.
|
|
|
|
*/
|
|
|
|
void qemu_bh_cancel(QEMUBH *bh);
|
|
|
|
|
|
|
|
/**
|
|
|
|
*qemu_bh_delete: Cancel execution of a bottom half and free its resources.
|
|
|
|
*
|
|
|
|
* Deleting a bottom half frees the memory that was allocated for it by
|
|
|
|
* qemu_bh_new. It also implies canceling the bottom half if it was
|
|
|
|
* scheduled.
|
|
|
|
*
|
|
|
|
* @bh: The bottom half to be deleted.
|
|
|
|
*/
|
|
|
|
void qemu_bh_delete(QEMUBH *bh);
|
|
|
|
|
|
|
|
#ifdef CONFIG_POSIX
|
|
|
|
/**
|
|
|
|
* qemu_add_child_watch: Register a child process for reaping.
|
|
|
|
*
|
|
|
|
* Under POSIX systems, a parent process must read the exit status of
|
|
|
|
* its child processes using waitpid, or the operating system will not
|
|
|
|
* free some of the resources attached to that process.
|
|
|
|
*
|
|
|
|
* This function directs the QEMU main loop to observe a child process
|
|
|
|
* and call waitpid as soon as it exits; the watch is then removed
|
|
|
|
* automatically. It is useful whenever QEMU forks a child process
|
|
|
|
* but will find out about its termination by other means such as a
|
|
|
|
* "broken pipe".
|
|
|
|
*
|
|
|
|
* @pid: The pid that QEMU should observe.
|
|
|
|
*/
|
|
|
|
int qemu_add_child_watch(pid_t pid);
|
|
|
|
#endif
|
|
|
|
|
2011-09-13 12:30:52 +04:00
|
|
|
/**
|
|
|
|
* qemu_mutex_lock_iothread: Lock the main loop mutex.
|
|
|
|
*
|
|
|
|
* This function locks the main loop mutex. The mutex is taken by
|
|
|
|
* qemu_init_main_loop and always taken except while waiting on
|
|
|
|
* external events (such as with select). The mutex should be taken
|
|
|
|
* by threads other than the main loop thread when calling
|
|
|
|
* qemu_bh_new(), qemu_set_fd_handler() and basically all other
|
|
|
|
* functions documented in this file.
|
|
|
|
*/
|
|
|
|
void qemu_mutex_lock_iothread(void);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* qemu_mutex_unlock_iothread: Unlock the main loop mutex.
|
|
|
|
*
|
|
|
|
* This function unlocks the main loop mutex. The mutex is taken by
|
|
|
|
* qemu_init_main_loop and always taken except while waiting on
|
|
|
|
* external events (such as with select). The mutex should be unlocked
|
|
|
|
* as soon as possible by threads other than the main loop thread,
|
|
|
|
* because it prevents the main loop from processing callbacks,
|
|
|
|
* including timers and bottom halves.
|
|
|
|
*/
|
|
|
|
void qemu_mutex_unlock_iothread(void);
|
|
|
|
|
2011-09-12 18:44:30 +04:00
|
|
|
/* internal interfaces */
|
|
|
|
|
|
|
|
void qemu_iohandler_fill(int *pnfds, fd_set *readfds, fd_set *writefds, fd_set *xfds);
|
|
|
|
void qemu_iohandler_poll(fd_set *readfds, fd_set *writefds, fd_set *xfds, int rc);
|
|
|
|
|
|
|
|
void qemu_bh_schedule_idle(QEMUBH *bh);
|
|
|
|
int qemu_bh_poll(void);
|
|
|
|
void qemu_bh_update_timeout(int *timeout);
|
|
|
|
|
|
|
|
#endif
|