qemu/hw/sun4m.c

114 lines
4.6 KiB
C
Raw Normal View History

/*
* QEMU Sun4m System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include "m48t08.h"
#define KERNEL_LOAD_ADDR 0x00004000
#define MMU_CONTEXT_TBL 0x00003000
#define MMU_L1PTP (MMU_CONTEXT_TBL + 0x0400)
#define MMU_L2PTP (MMU_CONTEXT_TBL + 0x0800)
#define PROM_ADDR 0xffd04000
#define PROM_FILENAMEB "proll.bin"
#define PROM_FILENAMEE "proll.elf"
#define PROLL_MAGIC_ADDR 0x20000000
#define PHYS_JJ_EEPROM 0x71200000 /* [2000] MK48T08 */
#define PHYS_JJ_IDPROM_OFF 0x1FD8
#define PHYS_JJ_EEPROM_SIZE 0x2000
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
#define PHYS_JJ_TCX_FB 0x50800000 /* Start address, frame buffer body */
#define PHYS_JJ_TCX_0E 0x5E000000 /* Top address, one byte used. */
#define PHYS_JJ_IOMMU 0x10000000 /* First page of sun4m IOMMU */
#define PHYS_JJ_LEDMA 0x78400010 /* ledma, off by 10 from unused SCSI */
#define PHYS_JJ_LE 0x78C00000 /* LANCE, typical sun4m */
#define PHYS_JJ_LE_IRQ 6
#define PHYS_JJ_CLOCK 0x71D00000
#define PHYS_JJ_CLOCK_IRQ 10
#define PHYS_JJ_CLOCK1 0x71D10000
#define PHYS_JJ_CLOCK1_IRQ 14
#define PHYS_JJ_INTR0 0x71E00000 /* CPU0 interrupt control registers */
#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
/* TSC handling */
uint64_t cpu_get_tsc()
{
return qemu_get_clock(vm_clock);
}
void DMA_run() {}
void SB16_run() {}
int serial_can_receive(SerialState *s) { return 0; }
void serial_receive_byte(SerialState *s, int ch) {}
void serial_receive_break(SerialState *s) {}
static m48t08_t *nvram;
/* Sun4m hardware initialisation */
void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
DisplayState *ds, const char **fd_filename, int snapshot,
const char *kernel_filename, const char *kernel_cmdline,
const char *initrd_filename)
{
char buf[1024];
int ret, linux_boot;
unsigned long bios_offset;
linux_boot = (kernel_filename != NULL);
/* allocate RAM */
cpu_register_physical_memory(0, ram_size, 0);
bios_offset = ram_size;
iommu_init(PHYS_JJ_IOMMU);
sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
tcx_init(ds, PHYS_JJ_TCX_FB);
lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr);
timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ);
timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR);
/* We load Proll as the kernel and start it. It will issue a magic
IO to load the real kernel */
if (linux_boot) {
snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
ret = load_kernel(buf,
phys_ram_base + KERNEL_LOAD_ADDR);
if (ret < 0) {
fprintf(stderr, "qemu: could not load kernel '%s'\n",
buf);
exit(1);
}
}
/* Setup a MMU entry for entire address space */
stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00..
/* 3 = U:RWX S:RWX */
stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2);
}