qemu/hw/i386/pc_piix.c

994 lines
29 KiB
C
Raw Normal View History

/*
* QEMU PC System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <glib.h>
#include "hw/hw.h"
#include "hw/loader.h"
#include "hw/i386/pc.h"
#include "hw/i386/apic.h"
#include "hw/i386/smbios.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_ids.h"
#include "hw/usb.h"
#include "net/net.h"
#include "hw/boards.h"
#include "hw/ide.h"
#include "sysemu/kvm.h"
#include "hw/kvm/clock.h"
#include "sysemu/sysemu.h"
#include "hw/sysbus.h"
#include "hw/cpu/icc_bus.h"
#include "sysemu/arch_init.h"
#include "sysemu/block-backend.h"
#include "hw/i2c/smbus.h"
#include "hw/xen/xen.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "hw/acpi/acpi.h"
#include "cpu.h"
#include "qemu/error-report.h"
#ifdef CONFIG_XEN
# include <xen/hvm/hvm_info_table.h>
#endif
#define MAX_IDE_BUS 2
static const int ide_iobase[MAX_IDE_BUS] = { 0x1f0, 0x170 };
static const int ide_iobase2[MAX_IDE_BUS] = { 0x3f6, 0x376 };
static const int ide_irq[MAX_IDE_BUS] = { 14, 15 };
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
static bool has_acpi_build = true;
pc: hack for migration compatibility from QEMU 2.0 Changing the ACPI table size causes migration to break, and the memory hotplug work opened our eyes on how horribly we were breaking things in 2.0 already. The ACPI table size is rounded to the next 4k, which one would think gives some headroom. In practice this is not the case, because the user can control the ACPI table size (each CPU adds 97 bytes to the SSDT and 8 to the MADT) and so some "-smp" values will break the 4k boundary and fail to migrate. Similarly, PCI bridges add ~1870 bytes to the SSDT. This patch concerns itself with fixing migration from QEMU 2.0. It computes the payload size of QEMU 2.0 and always uses that one. The previous patch shrunk the ACPI tables enough that the QEMU 2.0 size should always be enough; non-AML tables can change depending on the configuration (especially MADT, SRAT, HPET) but they remain the same between QEMU 2.0 and 2.1, so we only compute our padding based on the sizes of the SSDT and DSDT. Migration from QEMU 1.7 should work for guests that have a number of CPUs other than 12, 13, 14, 54, 55, 56, 97, 98, 139, 140. It was already broken from QEMU 1.7 to QEMU 2.0 in the same way, though. Even with this patch, QEMU 1.7 and 2.0 have two different ideas of "-M pc-i440fx-2.0" when there are PCI bridges. Igor sent a patch to adopt the QEMU 1.7 definition. I think distributions should apply it if they move directly from QEMU 1.7 to 2.1+ without ever packaging version 2.0. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2014-07-28 19:34:15 +04:00
static int legacy_acpi_table_size;
static bool smbios_defaults = true;
static bool smbios_legacy_mode;
static bool smbios_uuid_encoded = true;
/* Make sure that guest addresses aligned at 1Gbyte boundaries get mapped to
* host addresses aligned at 1Gbyte boundaries. This way we can use 1GByte
* pages in the host.
*/
static bool gigabyte_align = true;
static bool has_reserved_memory = true;
/* PC hardware initialisation */
static void pc_init1(MachineState *machine,
int pci_enabled,
int kvmclock_enabled)
{
PCMachineState *pc_machine = PC_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *system_io = get_system_io();
int i;
ram_addr_t below_4g_mem_size, above_4g_mem_size;
PCIBus *pci_bus;
ISABus *isa_bus;
PCII440FXState *i440fx_state;
int piix3_devfn = -1;
qemu_irq *cpu_irq;
qemu_irq *gsi;
qemu_irq *i8259;
qemu_irq *smi_irq;
GSIState *gsi_state;
DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
BusState *idebus[MAX_IDE_BUS];
ISADevice *rtc_state;
ISADevice *floppy;
MemoryRegion *ram_memory;
MemoryRegion *pci_memory;
MemoryRegion *rom_memory;
DeviceState *icc_bridge;
FWCfgState *fw_cfg = NULL;
PcGuestInfo *guest_info;
ram_addr_t lowmem;
/* Check whether RAM fits below 4G (leaving 1/2 GByte for IO memory).
* If it doesn't, we need to split it in chunks below and above 4G.
* In any case, try to make sure that guest addresses aligned at
* 1G boundaries get mapped to host addresses aligned at 1G boundaries.
* For old machine types, use whatever split we used historically to avoid
* breaking migration.
*/
if (machine->ram_size >= 0xe0000000) {
lowmem = gigabyte_align ? 0xc0000000 : 0xe0000000;
} else {
lowmem = 0xe0000000;
}
/* Handle the machine opt max-ram-below-4g. It is basically doing
* min(qemu limit, user limit).
*/
if (lowmem > pc_machine->max_ram_below_4g) {
lowmem = pc_machine->max_ram_below_4g;
if (machine->ram_size - lowmem > lowmem &&
lowmem & ((1ULL << 30) - 1)) {
error_report("Warning: Large machine and max_ram_below_4g(%"PRIu64
") not a multiple of 1G; possible bad performance.",
pc_machine->max_ram_below_4g);
}
}
if (machine->ram_size >= lowmem) {
above_4g_mem_size = machine->ram_size - lowmem;
below_4g_mem_size = lowmem;
} else {
above_4g_mem_size = 0;
below_4g_mem_size = machine->ram_size;
}
if (xen_enabled() && xen_hvm_init(&below_4g_mem_size, &above_4g_mem_size,
&ram_memory) != 0) {
fprintf(stderr, "xen hardware virtual machine initialisation failed\n");
exit(1);
}
icc_bridge = qdev_create(NULL, TYPE_ICC_BRIDGE);
object_property_add_child(qdev_get_machine(), "icc-bridge",
OBJECT(icc_bridge), NULL);
pc_cpus_init(machine->cpu_model, icc_bridge);
if (kvm_enabled() && kvmclock_enabled) {
kvmclock_create();
}
if (pci_enabled) {
pci_memory = g_new(MemoryRegion, 1);
memory_region_init(pci_memory, NULL, "pci", UINT64_MAX);
rom_memory = pci_memory;
} else {
pci_memory = NULL;
rom_memory = system_memory;
}
guest_info = pc_guest_info_init(below_4g_mem_size, above_4g_mem_size);
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
guest_info->has_acpi_build = has_acpi_build;
pc: hack for migration compatibility from QEMU 2.0 Changing the ACPI table size causes migration to break, and the memory hotplug work opened our eyes on how horribly we were breaking things in 2.0 already. The ACPI table size is rounded to the next 4k, which one would think gives some headroom. In practice this is not the case, because the user can control the ACPI table size (each CPU adds 97 bytes to the SSDT and 8 to the MADT) and so some "-smp" values will break the 4k boundary and fail to migrate. Similarly, PCI bridges add ~1870 bytes to the SSDT. This patch concerns itself with fixing migration from QEMU 2.0. It computes the payload size of QEMU 2.0 and always uses that one. The previous patch shrunk the ACPI tables enough that the QEMU 2.0 size should always be enough; non-AML tables can change depending on the configuration (especially MADT, SRAT, HPET) but they remain the same between QEMU 2.0 and 2.1, so we only compute our padding based on the sizes of the SSDT and DSDT. Migration from QEMU 1.7 should work for guests that have a number of CPUs other than 12, 13, 14, 54, 55, 56, 97, 98, 139, 140. It was already broken from QEMU 1.7 to QEMU 2.0 in the same way, though. Even with this patch, QEMU 1.7 and 2.0 have two different ideas of "-M pc-i440fx-2.0" when there are PCI bridges. Igor sent a patch to adopt the QEMU 1.7 definition. I think distributions should apply it if they move directly from QEMU 1.7 to 2.1+ without ever packaging version 2.0. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2014-07-28 19:34:15 +04:00
guest_info->legacy_acpi_table_size = legacy_acpi_table_size;
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
guest_info->isapc_ram_fw = !pci_enabled;
guest_info->has_reserved_memory = has_reserved_memory;
if (smbios_defaults) {
MachineClass *mc = MACHINE_GET_CLASS(machine);
/* These values are guest ABI, do not change */
smbios_set_defaults("QEMU", "Standard PC (i440FX + PIIX, 1996)",
mc->name, smbios_legacy_mode, smbios_uuid_encoded);
}
/* allocate ram and load rom/bios */
if (!xen_enabled()) {
fw_cfg = pc_memory_init(machine, system_memory,
below_4g_mem_size, above_4g_mem_size,
rom_memory, &ram_memory, guest_info);
} else if (machine->kernel_filename != NULL) {
/* For xen HVM direct kernel boot, load linux here */
fw_cfg = xen_load_linux(machine->kernel_filename,
machine->kernel_cmdline,
machine->initrd_filename,
below_4g_mem_size,
guest_info);
}
gsi_state = g_malloc0(sizeof(*gsi_state));
if (kvm_irqchip_in_kernel()) {
kvm_pc_setup_irq_routing(pci_enabled);
gsi = qemu_allocate_irqs(kvm_pc_gsi_handler, gsi_state,
GSI_NUM_PINS);
} else {
gsi = qemu_allocate_irqs(gsi_handler, gsi_state, GSI_NUM_PINS);
}
if (pci_enabled) {
pci_bus = i440fx_init(&i440fx_state, &piix3_devfn, &isa_bus, gsi,
system_memory, system_io, machine->ram_size,
below_4g_mem_size,
above_4g_mem_size,
pci_memory, ram_memory);
} else {
pci_bus = NULL;
i440fx_state = NULL;
isa_bus = isa_bus_new(NULL, system_io);
no_hpet = 1;
}
isa_bus_irqs(isa_bus, gsi);
if (kvm_irqchip_in_kernel()) {
i8259 = kvm_i8259_init(isa_bus);
} else if (xen_enabled()) {
i8259 = xen_interrupt_controller_init();
} else {
cpu_irq = pc_allocate_cpu_irq();
i8259 = i8259_init(isa_bus, cpu_irq[0]);
}
for (i = 0; i < ISA_NUM_IRQS; i++) {
gsi_state->i8259_irq[i] = i8259[i];
}
if (pci_enabled) {
ioapic_init_gsi(gsi_state, "i440fx");
}
qdev_init_nofail(icc_bridge);
pc_register_ferr_irq(gsi[13]);
pc_vga_init(isa_bus, pci_enabled ? pci_bus : NULL);
assert(pc_machine->vmport != ON_OFF_AUTO_MAX);
if (pc_machine->vmport == ON_OFF_AUTO_AUTO) {
pc_machine->vmport = xen_enabled() ? ON_OFF_AUTO_OFF : ON_OFF_AUTO_ON;
}
/* init basic PC hardware */
pc_basic_device_init(isa_bus, gsi, &rtc_state, &floppy,
(pc_machine->vmport != ON_OFF_AUTO_ON), 0x4);
pc_nic_init(isa_bus, pci_bus);
ide_drive_get(hd, ARRAY_SIZE(hd));
if (pci_enabled) {
PCIDevice *dev;
if (xen_enabled()) {
dev = pci_piix3_xen_ide_init(pci_bus, hd, piix3_devfn + 1);
} else {
dev = pci_piix3_ide_init(pci_bus, hd, piix3_devfn + 1);
}
idebus[0] = qdev_get_child_bus(&dev->qdev, "ide.0");
idebus[1] = qdev_get_child_bus(&dev->qdev, "ide.1");
} else {
for(i = 0; i < MAX_IDE_BUS; i++) {
ISADevice *dev;
qdev: Keep global allocation counter per bus When we have 2 separate qdev devices that both create a qbus of the same type without specifying a bus name or device name, we end up with two buses of the same name, such as ide.0 on the Mac machines: dev: macio-ide, id "" bus: ide.0 type IDE dev: macio-ide, id "" bus: ide.0 type IDE If we now spawn a device that connects to a ide.0 the last created bus gets the device, with the first created bus inaccessible to the command line. After some discussion on IRC we concluded that the best quick fix way forward for this is to make automated bus-class type based allocation count a global counter. That's what this patch implements. With this we instead get dev: macio-ide, id "" bus: ide.1 type IDE dev: macio-ide, id "" bus: ide.0 type IDE on the example mentioned above. This also means that if you did -device ...,bus=ide.0 you got a device on the first bus (the last created one) before this patch and get that device on the second one (the first created one) now. Breaks migration unless you change bus=ide.0 to bus=ide.1 on the destination. This is intended and makes the bus enumeration work as expected. As per review request follows a list of otherwise affected boards and the reasoning for the conclusion that they are ok: target machine bus id times ------ ------- ------ ----- aarch64 n800 i2c-bus.0 2 aarch64 n810 i2c-bus.0 2 arm n800 i2c-bus.0 2 arm n810 i2c-bus.0 2 -> Devices are only created explicitly on one of the two buses, using s->mpu->i2c[0], so no change to the guest. aarch64 vexpress-a15 virtio-mmio-bus.0 4 aarch64 vexpress-a9 virtio-mmio-bus.0 4 aarch64 virt virtio-mmio-bus.0 32 arm vexpress-a15 virtio-mmio-bus.0 4 arm vexpress-a9 virtio-mmio-bus.0 4 arm virt virtio-mmio-bus.0 32 -> Makes -device bus= work for all virtio-mmio buses. Breaks migration. Workaround for migration from old to new: specify virtio-mmio-bus.4 or .32 respectively rather than .0 on the destination. aarch64 xilinx-zynq-a9 usb-bus.0 2 arm xilinx-zynq-a9 usb-bus.0 2 mips64el fulong2e usb-bus.0 2 -> Normal USB operation not affected. Migration driver needs command line to use the other bus. i386 isapc ide.0 2 x86_64 isapc ide.0 2 mips mips ide.0 2 mips64 mips ide.0 2 mips64el mips ide.0 2 mipsel mips ide.0 2 ppc g3beige ide.0 2 ppc mac99 ide.0 2 ppc prep ide.0 2 ppc64 g3beige ide.0 2 ppc64 mac99 ide.0 2 ppc64 prep ide.0 2 -> Makes -device bus= work for all IDE buses. Breaks migration. Workaround for migration from old to new: specify ide.1 rather than ide.0 on the destination. Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Faerber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-02-06 19:08:15 +04:00
char busname[] = "ide.0";
dev = isa_ide_init(isa_bus, ide_iobase[i], ide_iobase2[i],
ide_irq[i],
hd[MAX_IDE_DEVS * i], hd[MAX_IDE_DEVS * i + 1]);
qdev: Keep global allocation counter per bus When we have 2 separate qdev devices that both create a qbus of the same type without specifying a bus name or device name, we end up with two buses of the same name, such as ide.0 on the Mac machines: dev: macio-ide, id "" bus: ide.0 type IDE dev: macio-ide, id "" bus: ide.0 type IDE If we now spawn a device that connects to a ide.0 the last created bus gets the device, with the first created bus inaccessible to the command line. After some discussion on IRC we concluded that the best quick fix way forward for this is to make automated bus-class type based allocation count a global counter. That's what this patch implements. With this we instead get dev: macio-ide, id "" bus: ide.1 type IDE dev: macio-ide, id "" bus: ide.0 type IDE on the example mentioned above. This also means that if you did -device ...,bus=ide.0 you got a device on the first bus (the last created one) before this patch and get that device on the second one (the first created one) now. Breaks migration unless you change bus=ide.0 to bus=ide.1 on the destination. This is intended and makes the bus enumeration work as expected. As per review request follows a list of otherwise affected boards and the reasoning for the conclusion that they are ok: target machine bus id times ------ ------- ------ ----- aarch64 n800 i2c-bus.0 2 aarch64 n810 i2c-bus.0 2 arm n800 i2c-bus.0 2 arm n810 i2c-bus.0 2 -> Devices are only created explicitly on one of the two buses, using s->mpu->i2c[0], so no change to the guest. aarch64 vexpress-a15 virtio-mmio-bus.0 4 aarch64 vexpress-a9 virtio-mmio-bus.0 4 aarch64 virt virtio-mmio-bus.0 32 arm vexpress-a15 virtio-mmio-bus.0 4 arm vexpress-a9 virtio-mmio-bus.0 4 arm virt virtio-mmio-bus.0 32 -> Makes -device bus= work for all virtio-mmio buses. Breaks migration. Workaround for migration from old to new: specify virtio-mmio-bus.4 or .32 respectively rather than .0 on the destination. aarch64 xilinx-zynq-a9 usb-bus.0 2 arm xilinx-zynq-a9 usb-bus.0 2 mips64el fulong2e usb-bus.0 2 -> Normal USB operation not affected. Migration driver needs command line to use the other bus. i386 isapc ide.0 2 x86_64 isapc ide.0 2 mips mips ide.0 2 mips64 mips ide.0 2 mips64el mips ide.0 2 mipsel mips ide.0 2 ppc g3beige ide.0 2 ppc mac99 ide.0 2 ppc prep ide.0 2 ppc64 g3beige ide.0 2 ppc64 mac99 ide.0 2 ppc64 prep ide.0 2 -> Makes -device bus= work for all IDE buses. Breaks migration. Workaround for migration from old to new: specify ide.1 rather than ide.0 on the destination. Signed-off-by: Alexander Graf <agraf@suse.de> Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Andreas Faerber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2014-02-06 19:08:15 +04:00
/*
* The ide bus name is ide.0 for the first bus and ide.1 for the
* second one.
*/
busname[4] = '0' + i;
idebus[i] = qdev_get_child_bus(DEVICE(dev), busname);
}
}
pc_cmos_init(below_4g_mem_size, above_4g_mem_size, machine->boot_order,
machine, floppy, idebus[0], idebus[1], rtc_state);
if (pci_enabled && usb_enabled(false)) {
pci_create_simple(pci_bus, piix3_devfn + 2, "piix3-usb-uhci");
}
if (pci_enabled && acpi_enabled) {
DeviceState *piix4_pm;
I2CBus *smbus;
smi_irq = qemu_allocate_irqs(pc_acpi_smi_interrupt, first_cpu, 1);
/* TODO: Populate SPD eeprom data. */
smbus = piix4_pm_init(pci_bus, piix3_devfn + 3, 0xb100,
gsi[9], *smi_irq,
kvm_enabled(), fw_cfg, &piix4_pm);
smbus_eeprom_init(smbus, 8, NULL, 0);
object_property_add_link(OBJECT(machine), PC_MACHINE_ACPI_DEVICE_PROP,
TYPE_HOTPLUG_HANDLER,
(Object **)&pc_machine->acpi_dev,
object_property_allow_set_link,
OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
object_property_set_link(OBJECT(machine), OBJECT(piix4_pm),
PC_MACHINE_ACPI_DEVICE_PROP, &error_abort);
}
if (pci_enabled) {
pc_pci_device_init(pci_bus);
}
}
static void pc_init_pci(MachineState *machine)
{
pc_init1(machine, 1, 1);
}
static void pc_compat_2_2(MachineState *machine)
{
x86_cpu_compat_set_features("kvm64", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("kvm32", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Conroe", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Penryn", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Nehalem", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Westmere", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("SandyBridge", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Broadwell", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G1", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G2", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G3", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G4", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Opteron_G5", FEAT_1_EDX, 0, CPUID_VME);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Haswell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_F16C);
x86_cpu_compat_set_features("Broadwell", FEAT_1_ECX, 0, CPUID_EXT_RDRAND);
}
static void pc_compat_2_1(MachineState *machine)
{
PCMachineState *pcms = PC_MACHINE(machine);
pc_compat_2_2(machine);
smbios_uuid_encoded = false;
x86_cpu_compat_set_features("coreduo", FEAT_1_ECX, CPUID_EXT_VMX, 0);
x86_cpu_compat_set_features("core2duo", FEAT_1_ECX, CPUID_EXT_VMX, 0);
x86_cpu_compat_kvm_no_autodisable(FEAT_8000_0001_ECX, CPUID_EXT3_SVM);
pcms->enforce_aligned_dimm = false;
}
static void pc_compat_2_0(MachineState *machine)
{
pc_compat_2_1(machine);
pc: hack for migration compatibility from QEMU 2.0 Changing the ACPI table size causes migration to break, and the memory hotplug work opened our eyes on how horribly we were breaking things in 2.0 already. The ACPI table size is rounded to the next 4k, which one would think gives some headroom. In practice this is not the case, because the user can control the ACPI table size (each CPU adds 97 bytes to the SSDT and 8 to the MADT) and so some "-smp" values will break the 4k boundary and fail to migrate. Similarly, PCI bridges add ~1870 bytes to the SSDT. This patch concerns itself with fixing migration from QEMU 2.0. It computes the payload size of QEMU 2.0 and always uses that one. The previous patch shrunk the ACPI tables enough that the QEMU 2.0 size should always be enough; non-AML tables can change depending on the configuration (especially MADT, SRAT, HPET) but they remain the same between QEMU 2.0 and 2.1, so we only compute our padding based on the sizes of the SSDT and DSDT. Migration from QEMU 1.7 should work for guests that have a number of CPUs other than 12, 13, 14, 54, 55, 56, 97, 98, 139, 140. It was already broken from QEMU 1.7 to QEMU 2.0 in the same way, though. Even with this patch, QEMU 1.7 and 2.0 have two different ideas of "-M pc-i440fx-2.0" when there are PCI bridges. Igor sent a patch to adopt the QEMU 1.7 definition. I think distributions should apply it if they move directly from QEMU 1.7 to 2.1+ without ever packaging version 2.0. Reviewed-by: Laszlo Ersek <lersek@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2014-07-28 19:34:15 +04:00
/* This value depends on the actual DSDT and SSDT compiled into
* the source QEMU; unfortunately it depends on the binary and
* not on the machine type, so we cannot make pc-i440fx-1.7 work on
* both QEMU 1.7 and QEMU 2.0.
*
* Large variations cause migration to fail for more than one
* consecutive value of the "-smp" maxcpus option.
*
* For small variations of the kind caused by different iasl versions,
* the 4k rounding usually leaves slack. However, there could be still
* one or two values that break. For QEMU 1.7 and QEMU 2.0 the
* slack is only ~10 bytes before one "-smp maxcpus" value breaks!
*
* 6652 is valid for QEMU 2.0, the right value for pc-i440fx-1.7 on
* QEMU 1.7 it is 6414. For RHEL/CentOS 7.0 it is 6418.
*/
legacy_acpi_table_size = 6652;
smbios_legacy_mode = true;
has_reserved_memory = false;
pc_set_legacy_acpi_data_size();
}
static void pc_compat_1_7(MachineState *machine)
{
pc_compat_2_0(machine);
smbios_defaults = false;
gigabyte_align = false;
option_rom_has_mr = true;
legacy_acpi_table_size = 6414;
x86_cpu_compat_kvm_no_autoenable(FEAT_1_ECX, CPUID_EXT_X2APIC);
}
static void pc_compat_1_6(MachineState *machine)
{
pc_compat_1_7(machine);
rom_file_has_mr = false;
i386: ACPI table generation code from seabios This adds C code for generating ACPI tables at runtime, imported from seabios git tree commit 51684b7ced75fb76776e8ee84833fcfb6ecf12dd Although ACPI tables come from a system BIOS on real hw, it makes sense that the ACPI tables are coupled with the virtual machine, since they have to abstract the x86 machine to the OS's. This is widely desired as a way to avoid the churn and proliferation of QEMU-specific interfaces associated with ACPI tables in bios code. Notes: As BIOS can reprogram devices prior to loading ACPI tables, we pre-format ACPI tables but defer loading hardware configuration there until tables are loaded. The code structure was intentionally kept as close to the seabios original as possible, to simplify comparison and making sure we didn't lose anything in translation. Minor code duplication results, to help ensure there are no functional regressions, I think it's better to merge it like this and do more code changes in follow-up patches. Cross-version compatibility concerns have been addressed: ACPI tables are exposed to guest as FW_CFG entries. When running with -M 1.5 and older, this patch disables ACPI table generation, and doesn't expose ACPI tables to guest. As table content is likely to change over time, the following measures are taken to simplify cross-version migration: - All tables besides the RSDP are packed in a single FW CFG entry. This entry size is currently 23K. We round it up to 64K to avoid too much churn there. - Tables are placed in special ROM blob (not mapped into guest memory) which is automatically migrated together with the guest, same as BIOS code. - Offsets where hardware configuration is loaded in ACPI tables are also migrated, this is in case future ACPI changes make us rearrange the tables in memory. This patch reuses some code from SeaBIOS, which was originally under LGPLv2 and then relicensed to GPLv3 or LGPLv3, in QEMU under GPLv2+. This relicensing has been acked by all contributors that had contributed to the code since the v2->v3 relicense. ACKs approving the v2+ relicensing are listed below. The list might include ACKs from people not holding copyright on any parts of the reused code, but it's better to err on the side of caution and include them. Affected SeaBIOS files (GPLv2+ license headers added) <http://thread.gmane.org/gmane.comp.bios.coreboot.seabios/5949>: src/acpi-dsdt-cpu-hotplug.dsl src/acpi-dsdt-dbug.dsl src/acpi-dsdt-hpet.dsl src/acpi-dsdt-isa.dsl src/acpi-dsdt-pci-crs.dsl src/acpi.c src/acpi.h src/ssdt-misc.dsl src/ssdt-pcihp.dsl src/ssdt-proc.dsl tools/acpi_extract.py tools/acpi_extract_preprocess.py Each one of the listed people agreed to the following: > If you allow the use of your contribution in QEMU under the > terms of GPLv2 or later as proposed by this patch, > please respond to this mail including the line: > > Acked-by: Name <email address> Acked-by: Gerd Hoffmann <kraxel@redhat.com> Acked-by: Jan Kiszka <jan.kiszka@siemens.com> Acked-by: Jason Baron <jbaron@akamai.com> Acked-by: David Woodhouse <David.Woodhouse@intel.com> Acked-by: Gleb Natapov <gleb@redhat.com> Acked-by: Marcelo Tosatti <mtosatti@redhat.com> Acked-by: Dave Frodin <dave.frodin@se-eng.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Acked-by: Kevin O'Connor <kevin@koconnor.net> Acked-by: Laszlo Ersek <lersek@redhat.com> Acked-by: Kenji Kaneshige <kaneshige.kenji@jp.fujitsu.com> Acked-by: Isaku Yamahata <yamahata@valinux.co.jp> Acked-by: Magnus Christensson <magnus.christensson@intel.com> Acked-by: Hu Tao <hutao@cn.fujitsu.com> Acked-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Gerd Hoffmann <kraxel@redhat.com> Tested-by: Gerd Hoffmann <kraxel@redhat.com> Reviewed-by: Igor Mammedov <imammedo@redhat.com> Tested-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
2013-07-24 19:56:14 +04:00
has_acpi_build = false;
}
static void pc_compat_1_5(MachineState *machine)
{
pc_compat_1_6(machine);
}
static void pc_compat_1_4(MachineState *machine)
pc: Kill the "use flash device for BIOS unless KVM" misfeature Use of a flash memory device for the BIOS was added in series "[PATCH v10 0/8] PC system flash support", commit 4732dca..1b89faf, v1.1. Flash vs. ROM is a guest-visible difference. Thus, flash use had to be suppressed for machine types pc-1.0 and older. This was accomplished by adding a dummy device "pc-sysfw" with property "rom_only": * Non-zero rom_only means "use ROM". Default for pc-1.0 and older. * Zero rom_only means "maybe use flash". Default for newer machines. Not only is the dummy device ugly, it was also retroactively added to the older machine types! Fortunately, it's not guest-visible (thus no immediate guest ABI breakage), and has no vmstate (thus no immediate migration breakage). Breakage occurs only if the user unwisely enables flash by setting rom_only to zero. Patch review FAIL #1. Why "maybe use flash"? Flash didn't (and still doesn't) work with KVM. Therefore, rom_only=0 really means "use flash, except when KVM is enabled, use ROM". This is a Bad Idea, because it makes enabling/ disabling KVM guest-visible. Patch review FAIL #2. Aside: it also precludes migrating between KVM on and off, but that's not possible for other reasons anyway. Fix as follows: 1. Change the meaning of rom_only=0 to mean "use flash, no ifs, buts, or maybes" for pc-i440fx-1.5 and pc-q35-1.5. Don't change anything for older machines (to remain bug-compatible). 2. Change the default value from 0 to 1 for these machines. Necessary, because 0 doesn't work with KVM. Once it does, we can flip the default back to 0. 3. Don't revert the retroactive addition of device "pc-sysfw" to older machine types. Seems not worth the trouble. 4. Add a TODO comment asking for device "pc-sysfw" to be dropped once flash works with KVM. Net effect is that you get a BIOS ROM again even when KVM is disabled, just like for machines predating the introduction of flash. To get flash instead, use "--global pc-sysfw.rom_only=0". Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1365780303-26398-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-04-12 19:25:03 +04:00
{
pc_compat_1_5(machine);
x86_cpu_compat_set_features("n270", FEAT_1_ECX, 0, CPUID_EXT_MOVBE);
x86_cpu_compat_set_features("Westmere", FEAT_1_ECX, 0, CPUID_EXT_PCLMULQDQ);
pc: Kill the "use flash device for BIOS unless KVM" misfeature Use of a flash memory device for the BIOS was added in series "[PATCH v10 0/8] PC system flash support", commit 4732dca..1b89faf, v1.1. Flash vs. ROM is a guest-visible difference. Thus, flash use had to be suppressed for machine types pc-1.0 and older. This was accomplished by adding a dummy device "pc-sysfw" with property "rom_only": * Non-zero rom_only means "use ROM". Default for pc-1.0 and older. * Zero rom_only means "maybe use flash". Default for newer machines. Not only is the dummy device ugly, it was also retroactively added to the older machine types! Fortunately, it's not guest-visible (thus no immediate guest ABI breakage), and has no vmstate (thus no immediate migration breakage). Breakage occurs only if the user unwisely enables flash by setting rom_only to zero. Patch review FAIL #1. Why "maybe use flash"? Flash didn't (and still doesn't) work with KVM. Therefore, rom_only=0 really means "use flash, except when KVM is enabled, use ROM". This is a Bad Idea, because it makes enabling/ disabling KVM guest-visible. Patch review FAIL #2. Aside: it also precludes migrating between KVM on and off, but that's not possible for other reasons anyway. Fix as follows: 1. Change the meaning of rom_only=0 to mean "use flash, no ifs, buts, or maybes" for pc-i440fx-1.5 and pc-q35-1.5. Don't change anything for older machines (to remain bug-compatible). 2. Change the default value from 0 to 1 for these machines. Necessary, because 0 doesn't work with KVM. Once it does, we can flip the default back to 0. 3. Don't revert the retroactive addition of device "pc-sysfw" to older machine types. Seems not worth the trouble. 4. Add a TODO comment asking for device "pc-sysfw" to be dropped once flash works with KVM. Net effect is that you get a BIOS ROM again even when KVM is disabled, just like for machines predating the introduction of flash. To get flash instead, use "--global pc-sysfw.rom_only=0". Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1365780303-26398-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-04-12 19:25:03 +04:00
}
static void pc_compat_1_3(MachineState *machine)
{
pc_compat_1_4(machine);
enable_compat_apic_id_mode();
}
/* PC compat function for pc-0.14 to pc-1.2 */
static void pc_compat_1_2(MachineState *machine)
{
pc_compat_1_3(machine);
x86_cpu_compat_kvm_no_autoenable(FEAT_KVM, KVM_FEATURE_PV_EOI);
}
static void pc_init_pci_2_2(MachineState *machine)
{
pc_compat_2_2(machine);
pc_init_pci(machine);
}
static void pc_init_pci_2_1(MachineState *machine)
{
pc_compat_2_1(machine);
pc_init_pci(machine);
}
static void pc_init_pci_2_0(MachineState *machine)
{
pc_compat_2_0(machine);
pc_init_pci(machine);
}
static void pc_init_pci_1_7(MachineState *machine)
{
pc_compat_1_7(machine);
pc_init_pci(machine);
}
static void pc_init_pci_1_6(MachineState *machine)
{
pc_compat_1_6(machine);
pc_init_pci(machine);
}
static void pc_init_pci_1_5(MachineState *machine)
{
pc_compat_1_5(machine);
pc_init_pci(machine);
}
static void pc_init_pci_1_4(MachineState *machine)
{
pc_compat_1_4(machine);
pc_init_pci(machine);
}
static void pc_init_pci_1_3(MachineState *machine)
{
pc_compat_1_3(machine);
pc_init_pci(machine);
}
/* PC machine init function for pc-0.14 to pc-1.2 */
static void pc_init_pci_1_2(MachineState *machine)
{
pc_compat_1_2(machine);
pc_init_pci(machine);
}
/* PC init function for pc-0.10 to pc-0.13 */
static void pc_init_pci_no_kvmclock(MachineState *machine)
{
pc_compat_1_2(machine);
pc_init1(machine, 1, 0);
}
static void pc_init_isa(MachineState *machine)
{
has_acpi_build = false;
smbios_defaults = false;
gigabyte_align = false;
smbios_legacy_mode = true;
has_reserved_memory = false;
option_rom_has_mr = true;
rom_file_has_mr = false;
if (!machine->cpu_model) {
machine->cpu_model = "486";
}
x86_cpu_compat_kvm_no_autoenable(FEAT_KVM, KVM_FEATURE_PV_EOI);
enable_compat_apic_id_mode();
pc_init1(machine, 0, 1);
}
#ifdef CONFIG_XEN
static void pc_xen_hvm_init(MachineState *machine)
{
PCIBus *bus;
pc_init_pci(machine);
bus = pci_find_primary_bus();
if (bus != NULL) {
pci_create_simple(bus, -1, "xen-platform");
}
}
#endif
#define PC_I440FX_MACHINE_OPTIONS \
PC_DEFAULT_MACHINE_OPTIONS, \
i386/pc: add piix and q35 machtypes to sorting families for -M \? With this patch applied, the output of -M \? is > Supported machines are: > pc Standard PC (i440FX + PIIX, 1996) (alias of pc-i440fx-2.2) > pc-i440fx-2.2 Standard PC (i440FX + PIIX, 1996) (default) > pc-i440fx-2.1 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-2.0 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.7 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.6 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.5 Standard PC (i440FX + PIIX, 1996) > pc-i440fx-1.4 Standard PC (i440FX + PIIX, 1996) > pc-1.3 Standard PC (i440FX + PIIX, 1996) > pc-1.2 Standard PC (i440FX + PIIX, 1996) > pc-1.1 Standard PC (i440FX + PIIX, 1996) > pc-1.0 Standard PC (i440FX + PIIX, 1996) > pc-0.15 Standard PC (i440FX + PIIX, 1996) > pc-0.14 Standard PC (i440FX + PIIX, 1996) > pc-0.13 Standard PC (i440FX + PIIX, 1996) > pc-0.12 Standard PC (i440FX + PIIX, 1996) > pc-0.11 Standard PC (i440FX + PIIX, 1996) > pc-0.10 Standard PC (i440FX + PIIX, 1996) > q35 Standard PC (Q35 + ICH9, 2009) (alias of pc-q35-2.2) > pc-q35-2.2 Standard PC (Q35 + ICH9, 2009) > pc-q35-2.1 Standard PC (Q35 + ICH9, 2009) > pc-q35-2.0 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.7 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.6 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.5 Standard PC (Q35 + ICH9, 2009) > pc-q35-1.4 Standard PC (Q35 + ICH9, 2009) > isapc ISA-only PC > none empty machine RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=1145042 Signed-off-by: Laszlo Ersek <lersek@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Signed-off-by: Michael S. Tsirkin <mst@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Reviewed-by: Marcel Apfelbaum <marcel.a@redhat.com> Acked-by: David Gibson <david@gibson.dropbear.id.au>
2014-09-23 00:38:36 +04:00
.family = "pc_piix", \
.desc = "Standard PC (i440FX + PIIX, 1996)", \
.hot_add_cpu = pc_hot_add_cpu
#define PC_I440FX_2_3_MACHINE_OPTIONS \
PC_I440FX_MACHINE_OPTIONS, \
.default_machine_opts = "firmware=bios-256k.bin", \
.default_display = "std"
static QEMUMachine pc_i440fx_machine_v2_3 = {
PC_I440FX_2_3_MACHINE_OPTIONS,
.name = "pc-i440fx-2.3",
.alias = "pc",
.init = pc_init_pci,
.is_default = 1,
};
#define PC_I440FX_2_2_MACHINE_OPTIONS PC_I440FX_2_3_MACHINE_OPTIONS
static QEMUMachine pc_i440fx_machine_v2_2 = {
PC_I440FX_2_2_MACHINE_OPTIONS,
.name = "pc-i440fx-2.2",
.init = pc_init_pci_2_2,
};
#define PC_I440FX_2_1_MACHINE_OPTIONS \
PC_I440FX_MACHINE_OPTIONS, \
.default_machine_opts = "firmware=bios-256k.bin"
static QEMUMachine pc_i440fx_machine_v2_1 = {
PC_I440FX_2_1_MACHINE_OPTIONS,
.name = "pc-i440fx-2.1",
.init = pc_init_pci_2_1,
.compat_props = (GlobalProperty[]) {
HW_COMPAT_2_1,
{ /* end of list */ }
},
};
#define PC_I440FX_2_0_MACHINE_OPTIONS PC_I440FX_2_1_MACHINE_OPTIONS
static QEMUMachine pc_i440fx_machine_v2_0 = {
PC_I440FX_2_0_MACHINE_OPTIONS,
.name = "pc-i440fx-2.0",
.init = pc_init_pci_2_0,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_2_0,
{ /* end of list */ }
},
};
#define PC_I440FX_1_7_MACHINE_OPTIONS PC_I440FX_MACHINE_OPTIONS
static QEMUMachine pc_i440fx_machine_v1_7 = {
PC_I440FX_1_7_MACHINE_OPTIONS,
.name = "pc-i440fx-1.7",
.init = pc_init_pci_1_7,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_7,
{ /* end of list */ }
},
};
#define PC_I440FX_1_6_MACHINE_OPTIONS PC_I440FX_MACHINE_OPTIONS
static QEMUMachine pc_i440fx_machine_v1_6 = {
PC_I440FX_1_6_MACHINE_OPTIONS,
.name = "pc-i440fx-1.6",
.init = pc_init_pci_1_6,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_6,
{ /* end of list */ }
},
};
static QEMUMachine pc_i440fx_machine_v1_5 = {
PC_I440FX_1_6_MACHINE_OPTIONS,
.name = "pc-i440fx-1.5",
.init = pc_init_pci_1_5,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_5,
{ /* end of list */ }
},
};
#define PC_I440FX_1_4_MACHINE_OPTIONS \
PC_I440FX_1_6_MACHINE_OPTIONS, \
.hot_add_cpu = NULL
static QEMUMachine pc_i440fx_machine_v1_4 = {
PC_I440FX_1_4_MACHINE_OPTIONS,
.name = "pc-i440fx-1.4",
pc: Kill the "use flash device for BIOS unless KVM" misfeature Use of a flash memory device for the BIOS was added in series "[PATCH v10 0/8] PC system flash support", commit 4732dca..1b89faf, v1.1. Flash vs. ROM is a guest-visible difference. Thus, flash use had to be suppressed for machine types pc-1.0 and older. This was accomplished by adding a dummy device "pc-sysfw" with property "rom_only": * Non-zero rom_only means "use ROM". Default for pc-1.0 and older. * Zero rom_only means "maybe use flash". Default for newer machines. Not only is the dummy device ugly, it was also retroactively added to the older machine types! Fortunately, it's not guest-visible (thus no immediate guest ABI breakage), and has no vmstate (thus no immediate migration breakage). Breakage occurs only if the user unwisely enables flash by setting rom_only to zero. Patch review FAIL #1. Why "maybe use flash"? Flash didn't (and still doesn't) work with KVM. Therefore, rom_only=0 really means "use flash, except when KVM is enabled, use ROM". This is a Bad Idea, because it makes enabling/ disabling KVM guest-visible. Patch review FAIL #2. Aside: it also precludes migrating between KVM on and off, but that's not possible for other reasons anyway. Fix as follows: 1. Change the meaning of rom_only=0 to mean "use flash, no ifs, buts, or maybes" for pc-i440fx-1.5 and pc-q35-1.5. Don't change anything for older machines (to remain bug-compatible). 2. Change the default value from 0 to 1 for these machines. Necessary, because 0 doesn't work with KVM. Once it does, we can flip the default back to 0. 3. Don't revert the retroactive addition of device "pc-sysfw" to older machine types. Seems not worth the trouble. 4. Add a TODO comment asking for device "pc-sysfw" to be dropped once flash works with KVM. Net effect is that you get a BIOS ROM again even when KVM is disabled, just like for machines predating the introduction of flash. To get flash instead, use "--global pc-sysfw.rom_only=0". Signed-off-by: Markus Armbruster <armbru@redhat.com> Message-id: 1365780303-26398-4-git-send-email-armbru@redhat.com Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2013-04-12 19:25:03 +04:00
.init = pc_init_pci_1_4,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_4,
{ /* end of list */ }
},
};
#define PC_COMPAT_1_3 \
PC_COMPAT_1_4, \
{\
.driver = "usb-tablet",\
.property = "usb_version",\
.value = stringify(1),\
},{\
.driver = "virtio-net-pci",\
.property = "ctrl_mac_addr",\
.value = "off", \
},{ \
.driver = "virtio-net-pci", \
.property = "mq", \
.value = "off", \
}, {\
.driver = "e1000",\
.property = "autonegotiation",\
.value = "off",\
}
static QEMUMachine pc_machine_v1_3 = {
PC_I440FX_1_4_MACHINE_OPTIONS,
.name = "pc-1.3",
.init = pc_init_pci_1_3,
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_3,
{ /* end of list */ }
},
};
#define PC_COMPAT_1_2 \
PC_COMPAT_1_3,\
{\
.driver = "nec-usb-xhci",\
.property = "msi",\
.value = "off",\
},{\
.driver = "nec-usb-xhci",\
.property = "msix",\
.value = "off",\
},{\
.driver = "ivshmem",\
.property = "use64",\
.value = "0",\
},{\
.driver = "qxl",\
.property = "revision",\
.value = stringify(3),\
},{\
.driver = "qxl-vga",\
.property = "revision",\
.value = stringify(3),\
},{\
.driver = "VGA",\
.property = "mmio",\
.value = "off",\
}
#define PC_I440FX_1_2_MACHINE_OPTIONS \
PC_I440FX_1_4_MACHINE_OPTIONS, \
.init = pc_init_pci_1_2
static QEMUMachine pc_machine_v1_2 = {
PC_I440FX_1_2_MACHINE_OPTIONS,
.name = "pc-1.2",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_2,
{ /* end of list */ }
},
};
#define PC_COMPAT_1_1 \
PC_COMPAT_1_2,\
{\
.driver = "virtio-scsi-pci",\
.property = "hotplug",\
.value = "off",\
},{\
.driver = "virtio-scsi-pci",\
.property = "param_change",\
.value = "off",\
},{\
.driver = "VGA",\
.property = "vgamem_mb",\
.value = stringify(8),\
},{\
.driver = "vmware-svga",\
.property = "vgamem_mb",\
.value = stringify(8),\
},{\
.driver = "qxl-vga",\
.property = "vgamem_mb",\
.value = stringify(8),\
},{\
.driver = "qxl",\
.property = "vgamem_mb",\
.value = stringify(8),\
virtio-blk: hide VIRTIO_BLK_F_CONFIG_WCE from old machine types QEMU has a policy of keeping a stable guest device ABI. When new guest device features are introduced they must not change hardware info seen by existing guests. This is important because operating systems or applications may "fingerprint" the hardware and refuse to run when the hardware changes. To always get the latest guest device ABI, run with x86 machine type "pc". This patch hides the new VIRTIO_BLK_F_CONFIG_WCE virtio feature bit from existing machine types. Only pc-1.2 and later will expose this feature by default. For more info on the VIRTIO_BLK_F_CONFIG_WCE feature bit, see: commit 13e3dce068773c971ff2f19d986378c55897c4a3 Author: Paolo Bonzini <pbonzini@redhat.com> Date: Thu Aug 9 16:07:19 2012 +0200 virtio-blk: support VIRTIO_BLK_F_CONFIG_WCE Also rename VIRTIO_BLK_F_WCACHE to VIRTIO_BLK_F_WCE for consistency with the spec. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com> Anthony Liguori <aliguori@us.ibm.com> reported: This broke qemu-test because it changed the pc-1.0 machine type: Setting guest RANDOM seed to 47167 *** Running tests *** Running test /tests/finger-print.sh... OK --- fingerprints/pc-1.0.x86_64 2011-12-18 13:08:40.000000000 -0600 +++ fingerprint.txt 2012-08-12 13:30:48.000000000 -0500 @@ -55,7 +55,7 @@ /sys/bus/pci/devices/0000:00:06.0/subsystem_device=0x0002 /sys/bus/pci/devices/0000:00:06.0/class=0x010000 /sys/bus/pci/devices/0000:00:06.0/revision=0x00 -/sys/bus/pci/devices/0000:00:06.0/virtio/host-features=0x710006d4 +/sys/bus/pci/devices/0000:00:06.0/virtio/host-features=0x71000ed4 /sys/class/dmi/id/bios_vendor=Bochs /sys/class/dmi/id/bios_date=01/01/2007 /sys/class/dmi/id/bios_version=Bochs Guest fingerprint changed for pc-1.0! Reported-by: Anthony Liguori <aliguori@us.ibm.com> Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2012-08-21 17:40:49 +04:00
},{\
.driver = "virtio-blk-pci",\
.property = "config-wce",\
.value = "off",\
}
2012-06-11 12:38:22 +04:00
static QEMUMachine pc_machine_v1_1 = {
PC_I440FX_1_2_MACHINE_OPTIONS,
2012-06-11 12:38:22 +04:00
.name = "pc-1.1",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_1,
{ /* end of list */ }
},
2012-06-11 12:38:22 +04:00
};
#define PC_COMPAT_1_0 \
PC_COMPAT_1_1,\
{\
.driver = TYPE_ISA_FDC,\
.property = "check_media_rate",\
.value = "off",\
}, {\
.driver = "virtio-balloon-pci",\
.property = "class",\
.value = stringify(PCI_CLASS_MEMORY_RAM),\
},{\
.driver = "apic-common",\
.property = "vapic",\
.value = "off",\
},{\
.driver = TYPE_USB_DEVICE,\
.property = "full-path",\
.value = "no",\
}
static QEMUMachine pc_machine_v1_0 = {
PC_I440FX_1_2_MACHINE_OPTIONS,
.name = "pc-1.0",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_1_0,
{ /* end of list */ }
},
.hw_version = "1.0",
};
#define PC_COMPAT_0_15 \
PC_COMPAT_1_0
static QEMUMachine pc_machine_v0_15 = {
PC_I440FX_1_2_MACHINE_OPTIONS,
.name = "pc-0.15",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_15,
{ /* end of list */ }
},
.hw_version = "0.15",
};
#define PC_COMPAT_0_14 \
PC_COMPAT_0_15,\
{\
.driver = "virtio-blk-pci",\
.property = "event_idx",\
.value = "off",\
},{\
.driver = "virtio-serial-pci",\
.property = "event_idx",\
.value = "off",\
},{\
.driver = "virtio-net-pci",\
.property = "event_idx",\
.value = "off",\
},{\
.driver = "virtio-balloon-pci",\
.property = "event_idx",\
.value = "off",\
}
static QEMUMachine pc_machine_v0_14 = {
PC_I440FX_1_2_MACHINE_OPTIONS,
.name = "pc-0.14",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_14,
{
.driver = "qxl",
.property = "revision",
.value = stringify(2),
},{
.driver = "qxl-vga",
.property = "revision",
.value = stringify(2),
},
{ /* end of list */ }
},
.hw_version = "0.14",
};
#define PC_COMPAT_0_13 \
PC_COMPAT_0_14,\
{\
.driver = TYPE_PCI_DEVICE,\
.property = "command_serr_enable",\
.value = "off",\
},{\
.driver = "AC97",\
.property = "use_broken_id",\
.value = stringify(1),\
}
#define PC_I440FX_0_13_MACHINE_OPTIONS \
PC_I440FX_1_2_MACHINE_OPTIONS, \
.init = pc_init_pci_no_kvmclock
static QEMUMachine pc_machine_v0_13 = {
PC_I440FX_0_13_MACHINE_OPTIONS,
.name = "pc-0.13",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_13,
{
.driver = "virtio-9p-pci",
.property = "vectors",
.value = stringify(0),
},{
.driver = "VGA",
.property = "rombar",
.value = stringify(0),
},{
.driver = "vmware-svga",
.property = "rombar",
.value = stringify(0),
},
{ /* end of list */ }
},
.hw_version = "0.13",
};
#define PC_COMPAT_0_12 \
PC_COMPAT_0_13,\
{\
.driver = "virtio-serial-pci",\
.property = "max_ports",\
.value = stringify(1),\
},{\
.driver = "virtio-serial-pci",\
.property = "vectors",\
.value = stringify(0),\
},{\
.driver = "usb-mouse",\
.property = "serial",\
.value = "1",\
},{\
.driver = "usb-tablet",\
.property = "serial",\
.value = "1",\
},{\
.driver = "usb-kbd",\
.property = "serial",\
.value = "1",\
}
static QEMUMachine pc_machine_v0_12 = {
PC_I440FX_0_13_MACHINE_OPTIONS,
.name = "pc-0.12",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_12,
{
.driver = "VGA",
.property = "rombar",
.value = stringify(0),
},{
.driver = "vmware-svga",
.property = "rombar",
.value = stringify(0),
},
{ /* end of list */ }
},
.hw_version = "0.12",
};
#define PC_COMPAT_0_11 \
PC_COMPAT_0_12,\
{\
.driver = "virtio-blk-pci",\
.property = "vectors",\
.value = stringify(0),\
},{\
.driver = TYPE_PCI_DEVICE,\
.property = "rombar",\
.value = stringify(0),\
}
static QEMUMachine pc_machine_v0_11 = {
PC_I440FX_0_13_MACHINE_OPTIONS,
.name = "pc-0.11",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_11,
{
.driver = "ide-drive",
.property = "ver",
.value = "0.11",
},{
.driver = "scsi-disk",
.property = "ver",
.value = "0.11",
},
{ /* end of list */ }
},
.hw_version = "0.11",
};
static QEMUMachine pc_machine_v0_10 = {
PC_I440FX_0_13_MACHINE_OPTIONS,
.name = "pc-0.10",
.compat_props = (GlobalProperty[]) {
PC_COMPAT_0_11,
{
.driver = "virtio-blk-pci",
.property = "class",
.value = stringify(PCI_CLASS_STORAGE_OTHER),
},{
.driver = "virtio-serial-pci",
.property = "class",
.value = stringify(PCI_CLASS_DISPLAY_OTHER),
},{
.driver = "virtio-net-pci",
.property = "vectors",
.value = stringify(0),
},{
.driver = "ide-drive",
.property = "ver",
.value = "0.10",
},{
.driver = "scsi-disk",
.property = "ver",
.value = "0.10",
},
{ /* end of list */ }
},
.hw_version = "0.10",
};
static QEMUMachine isapc_machine = {
PC_COMMON_MACHINE_OPTIONS,
.name = "isapc",
.desc = "ISA-only PC",
.init = pc_init_isa,
.max_cpus = 1,
.compat_props = (GlobalProperty[]) {
{ /* end of list */ }
},
};
#ifdef CONFIG_XEN
static QEMUMachine xenfv_machine = {
PC_COMMON_MACHINE_OPTIONS,
.name = "xenfv",
.desc = "Xen Fully-virtualized PC",
.init = pc_xen_hvm_init,
.max_cpus = HVM_MAX_VCPUS,
.default_machine_opts = "accel=xen",
.hot_add_cpu = pc_hot_add_cpu,
};
#endif
static void pc_machine_init(void)
{
qemu_register_pc_machine(&pc_i440fx_machine_v2_3);
qemu_register_pc_machine(&pc_i440fx_machine_v2_2);
qemu_register_pc_machine(&pc_i440fx_machine_v2_1);
qemu_register_pc_machine(&pc_i440fx_machine_v2_0);
qemu_register_pc_machine(&pc_i440fx_machine_v1_7);
qemu_register_pc_machine(&pc_i440fx_machine_v1_6);
qemu_register_pc_machine(&pc_i440fx_machine_v1_5);
qemu_register_pc_machine(&pc_i440fx_machine_v1_4);
qemu_register_pc_machine(&pc_machine_v1_3);
qemu_register_pc_machine(&pc_machine_v1_2);
qemu_register_pc_machine(&pc_machine_v1_1);
qemu_register_pc_machine(&pc_machine_v1_0);
qemu_register_pc_machine(&pc_machine_v0_15);
qemu_register_pc_machine(&pc_machine_v0_14);
qemu_register_pc_machine(&pc_machine_v0_13);
qemu_register_pc_machine(&pc_machine_v0_12);
qemu_register_pc_machine(&pc_machine_v0_11);
qemu_register_pc_machine(&pc_machine_v0_10);
qemu_register_pc_machine(&isapc_machine);
#ifdef CONFIG_XEN
qemu_register_pc_machine(&xenfv_machine);
#endif
}
machine_init(pc_machine_init);