qemu/accel/tcg/tcg-accel-ops-rr.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

341 lines
9.3 KiB
C
Raw Normal View History

/*
* QEMU TCG Single Threaded vCPUs implementation
*
* Copyright (c) 2003-2008 Fabrice Bellard
* Copyright (c) 2014 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
#include "qemu/lockable.h"
#include "sysemu/tcg.h"
#include "sysemu/replay.h"
#include "sysemu/cpu-timers.h"
#include "qemu/main-loop.h"
#include "qemu/notify.h"
#include "qemu/guest-random.h"
#include "exec/exec-all.h"
#include "tcg/startup.h"
#include "tcg-accel-ops.h"
#include "tcg-accel-ops-rr.h"
#include "tcg-accel-ops-icount.h"
/* Kick all RR vCPUs */
void rr_kick_vcpu_thread(CPUState *unused)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
cpu_exit(cpu);
};
}
/*
* TCG vCPU kick timer
*
* The kick timer is responsible for moving single threaded vCPU
* emulation on to the next vCPU. If more than one vCPU is running a
* timer event we force a cpu->exit so the next vCPU can get
* scheduled.
*
* The timer is removed if all vCPUs are idle and restarted again once
* idleness is complete.
*/
static QEMUTimer *rr_kick_vcpu_timer;
static CPUState *rr_current_cpu;
static inline int64_t rr_next_kick_time(void)
{
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
}
/* Kick the currently round-robin scheduled vCPU to next */
static void rr_kick_next_cpu(void)
{
CPUState *cpu;
do {
cpu = qatomic_read(&rr_current_cpu);
if (cpu) {
cpu_exit(cpu);
}
/* Finish kicking this cpu before reading again. */
smp_mb();
} while (cpu != qatomic_read(&rr_current_cpu));
}
static void rr_kick_thread(void *opaque)
{
timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
rr_kick_next_cpu();
}
static void rr_start_kick_timer(void)
{
if (!rr_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
rr_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
rr_kick_thread, NULL);
}
if (rr_kick_vcpu_timer && !timer_pending(rr_kick_vcpu_timer)) {
timer_mod(rr_kick_vcpu_timer, rr_next_kick_time());
}
}
static void rr_stop_kick_timer(void)
{
if (rr_kick_vcpu_timer && timer_pending(rr_kick_vcpu_timer)) {
timer_del(rr_kick_vcpu_timer);
}
}
static void rr_wait_io_event(void)
{
CPUState *cpu;
while (all_cpu_threads_idle() && replay_can_wait()) {
rr_stop_kick_timer();
qemu_cond_wait_bql(first_cpu->halt_cond);
}
rr_start_kick_timer();
CPU_FOREACH(cpu) {
qemu_wait_io_event_common(cpu);
}
}
/*
* Destroy any remaining vCPUs which have been unplugged and have
* finished running
*/
static void rr_deal_with_unplugged_cpus(void)
{
CPUState *cpu;
CPU_FOREACH(cpu) {
if (cpu->unplug && !cpu_can_run(cpu)) {
tcg_cpu_destroy(cpu);
break;
}
}
}
static void rr_force_rcu(Notifier *notify, void *data)
{
rr_kick_next_cpu();
}
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
/*
* Calculate the number of CPUs that we will process in a single iteration of
* the main CPU thread loop so that we can fairly distribute the instruction
* count across CPUs.
*
* The CPU count is cached based on the CPU list generation ID to avoid
* iterating the list every time.
*/
static int rr_cpu_count(void)
{
static unsigned int last_gen_id = ~0;
static int cpu_count;
CPUState *cpu;
QEMU_LOCK_GUARD(&qemu_cpu_list_lock);
if (cpu_list_generation_id_get() != last_gen_id) {
cpu_count = 0;
CPU_FOREACH(cpu) {
++cpu_count;
}
last_gen_id = cpu_list_generation_id_get();
}
return cpu_count;
}
/*
* In the single-threaded case each vCPU is simulated in turn. If
* there is more than a single vCPU we create a simple timer to kick
* the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
* This is done explicitly rather than relying on side-effects
* elsewhere.
*/
static void *rr_cpu_thread_fn(void *arg)
{
Notifier force_rcu;
CPUState *cpu = arg;
assert(tcg_enabled());
rcu_register_thread();
force_rcu.notify = rr_force_rcu;
rcu_add_force_rcu_notifier(&force_rcu);
tcg_register_thread();
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_lock();
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
cpu->neg.can_do_io = true;
cpu_thread_signal_created(cpu);
qemu_guest_random_seed_thread_part2(cpu->random_seed);
/* wait for initial kick-off after machine start */
while (first_cpu->stopped) {
qemu_cond_wait_bql(first_cpu->halt_cond);
/* process any pending work */
CPU_FOREACH(cpu) {
current_cpu = cpu;
qemu_wait_io_event_common(cpu);
}
}
rr_start_kick_timer();
cpu = first_cpu;
/* process any pending work */
cpu->exit_request = 1;
while (1) {
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
/* Only used for icount_enabled() */
int64_t cpu_budget = 0;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_unlock();
replay_mutex_lock();
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_lock();
if (icount_enabled()) {
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
int cpu_count = rr_cpu_count();
/* Account partial waits to QEMU_CLOCK_VIRTUAL. */
icount_account_warp_timer();
/*
* Run the timers here. This is much more efficient than
* waking up the I/O thread and waiting for completion.
*/
icount_handle_deadline();
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
cpu_budget = icount_percpu_budget(cpu_count);
}
replay_mutex_unlock();
if (!cpu) {
cpu = first_cpu;
}
while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
/* Store rr_current_cpu before evaluating cpu_can_run(). */
qatomic_set_mb(&rr_current_cpu, cpu);
current_cpu = cpu;
qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
(cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (cpu_can_run(cpu)) {
int r;
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_unlock();
if (icount_enabled()) {
accel/tcg/tcg-accel-ops-rr: ensure fairness with icount The round-robin scheduler will iterate over the CPU list with an assigned budget until the next timer expiry and may exit early because of a TB exit. This is fine under normal operation but with icount enabled and SMP it is possible for a CPU to be starved of run time and the system live-locks. For example, booting a riscv64 platform with '-icount shift=0,align=off,sleep=on -smp 2' we observe a livelock once the kernel has timers enabled and starts performing TLB shootdowns. In this case we have CPU 0 in M-mode with interrupts disabled sending an IPI to CPU 1. As we enter the TCG loop, we assign the icount budget to next timer interrupt to CPU 0 and begin executing where the guest is sat in a busy loop exhausting all of the budget before we try to execute CPU 1 which is the target of the IPI but CPU 1 is left with no budget with which to execute and the process repeats. We try here to add some fairness by splitting the budget across all of the CPUs on the thread fairly before entering each one. The CPU count is cached on CPU list generation ID to avoid iterating the list on each loop iteration. With this change it is possible to boot an SMP rv64 guest with icount enabled and no hangs. Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Tested-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Jamie Iles <quic_jiles@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20230427020925.51003-3-quic_jiles@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-04-27 05:09:25 +03:00
icount_prepare_for_run(cpu, cpu_budget);
}
r = tcg_cpu_exec(cpu);
if (icount_enabled()) {
icount_process_data(cpu);
}
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_lock();
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(cpu);
break;
} else if (r == EXCP_ATOMIC) {
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_unlock();
cpu_exec_step_atomic(cpu);
system/cpus: rename qemu_mutex_lock_iothread() to bql_lock() The Big QEMU Lock (BQL) has many names and they are confusing. The actual QemuMutex variable is called qemu_global_mutex but it's commonly referred to as the BQL in discussions and some code comments. The locking APIs, however, are called qemu_mutex_lock_iothread() and qemu_mutex_unlock_iothread(). The "iothread" name is historic and comes from when the main thread was split into into KVM vcpu threads and the "iothread" (now called the main loop thread). I have contributed to the confusion myself by introducing a separate --object iothread, a separate concept unrelated to the BQL. The "iothread" name is no longer appropriate for the BQL. Rename the locking APIs to: - void bql_lock(void) - void bql_unlock(void) - bool bql_locked(void) There are more APIs with "iothread" in their names. Subsequent patches will rename them. There are also comments and documentation that will be updated in later patches. Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com> Reviewed-by: Paul Durrant <paul@xen.org> Acked-by: Fabiano Rosas <farosas@suse.de> Acked-by: David Woodhouse <dwmw@amazon.co.uk> Reviewed-by: Cédric Le Goater <clg@kaod.org> Acked-by: Peter Xu <peterx@redhat.com> Acked-by: Eric Farman <farman@linux.ibm.com> Reviewed-by: Harsh Prateek Bora <harshpb@linux.ibm.com> Acked-by: Hyman Huang <yong.huang@smartx.com> Reviewed-by: Akihiko Odaki <akihiko.odaki@daynix.com> Message-id: 20240102153529.486531-2-stefanha@redhat.com Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
2024-01-02 18:35:25 +03:00
bql_lock();
break;
}
} else if (cpu->stop) {
if (cpu->unplug) {
cpu = CPU_NEXT(cpu);
}
break;
}
cpu = CPU_NEXT(cpu);
} /* while (cpu && !cpu->exit_request).. */
/* Does not need a memory barrier because a spurious wakeup is okay. */
qatomic_set(&rr_current_cpu, NULL);
if (cpu && cpu->exit_request) {
qatomic_set_mb(&cpu->exit_request, 0);
}
if (icount_enabled() && all_cpu_threads_idle()) {
/*
* When all cpus are sleeping (e.g in WFI), to avoid a deadlock
* in the main_loop, wake it up in order to start the warp timer.
*/
qemu_notify_event();
}
rr_wait_io_event();
rr_deal_with_unplugged_cpus();
}
rcu_remove_force_rcu_notifier(&force_rcu);
rcu_unregister_thread();
return NULL;
}
void rr_start_vcpu_thread(CPUState *cpu)
{
char thread_name[VCPU_THREAD_NAME_SIZE];
static QemuCond *single_tcg_halt_cond;
static QemuThread *single_tcg_cpu_thread;
g_assert(tcg_enabled());
tcg_cpu_init_cflags(cpu, false);
if (!single_tcg_cpu_thread) {
cpu->thread = g_new0(QemuThread, 1);
cpu->halt_cond = g_new0(QemuCond, 1);
qemu_cond_init(cpu->halt_cond);
/* share a single thread for all cpus with TCG */
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
qemu_thread_create(cpu->thread, thread_name,
rr_cpu_thread_fn,
cpu, QEMU_THREAD_JOINABLE);
single_tcg_halt_cond = cpu->halt_cond;
single_tcg_cpu_thread = cpu->thread;
} else {
/* we share the thread */
cpu->thread = single_tcg_cpu_thread;
cpu->halt_cond = single_tcg_halt_cond;
cpu->thread_id = first_cpu->thread_id;
cpu->neg.can_do_io = 1;
cpu->created = true;
}
}