2018-04-11 21:56:33 +03:00
|
|
|
/*
|
|
|
|
* qemu user cpu loop
|
|
|
|
*
|
|
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "qemu/osdep.h"
|
2019-05-23 17:35:08 +03:00
|
|
|
#include "qemu-common.h"
|
2018-04-11 21:56:33 +03:00
|
|
|
#include "qemu.h"
|
2018-04-11 21:56:36 +03:00
|
|
|
#include "elf.h"
|
2018-04-11 21:56:33 +03:00
|
|
|
#include "cpu_loop-common.h"
|
2021-03-05 16:54:49 +03:00
|
|
|
#include "semihosting/common-semi.h"
|
2018-04-11 21:56:33 +03:00
|
|
|
|
2018-04-11 21:56:36 +03:00
|
|
|
#define get_user_code_u32(x, gaddr, env) \
|
|
|
|
({ abi_long __r = get_user_u32((x), (gaddr)); \
|
|
|
|
if (!__r && bswap_code(arm_sctlr_b(env))) { \
|
|
|
|
(x) = bswap32(x); \
|
|
|
|
} \
|
|
|
|
__r; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define get_user_code_u16(x, gaddr, env) \
|
|
|
|
({ abi_long __r = get_user_u16((x), (gaddr)); \
|
|
|
|
if (!__r && bswap_code(arm_sctlr_b(env))) { \
|
|
|
|
(x) = bswap16(x); \
|
|
|
|
} \
|
|
|
|
__r; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define get_user_data_u32(x, gaddr, env) \
|
|
|
|
({ abi_long __r = get_user_u32((x), (gaddr)); \
|
|
|
|
if (!__r && arm_cpu_bswap_data(env)) { \
|
|
|
|
(x) = bswap32(x); \
|
|
|
|
} \
|
|
|
|
__r; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define get_user_data_u16(x, gaddr, env) \
|
|
|
|
({ abi_long __r = get_user_u16((x), (gaddr)); \
|
|
|
|
if (!__r && arm_cpu_bswap_data(env)) { \
|
|
|
|
(x) = bswap16(x); \
|
|
|
|
} \
|
|
|
|
__r; \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define put_user_data_u32(x, gaddr, env) \
|
|
|
|
({ typeof(x) __x = (x); \
|
|
|
|
if (arm_cpu_bswap_data(env)) { \
|
|
|
|
__x = bswap32(__x); \
|
|
|
|
} \
|
|
|
|
put_user_u32(__x, (gaddr)); \
|
|
|
|
})
|
|
|
|
|
|
|
|
#define put_user_data_u16(x, gaddr, env) \
|
|
|
|
({ typeof(x) __x = (x); \
|
|
|
|
if (arm_cpu_bswap_data(env)) { \
|
|
|
|
__x = bswap16(__x); \
|
|
|
|
} \
|
|
|
|
put_user_u16(__x, (gaddr)); \
|
|
|
|
})
|
|
|
|
|
|
|
|
/* Commpage handling -- there is no commpage for AArch64 */
|
|
|
|
|
|
|
|
/*
|
|
|
|
* See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
|
|
|
|
* Input:
|
|
|
|
* r0 = pointer to oldval
|
|
|
|
* r1 = pointer to newval
|
|
|
|
* r2 = pointer to target value
|
|
|
|
*
|
|
|
|
* Output:
|
|
|
|
* r0 = 0 if *ptr was changed, non-0 if no exchange happened
|
|
|
|
* C set if *ptr was changed, clear if no exchange happened
|
|
|
|
*
|
|
|
|
* Note segv's in kernel helpers are a bit tricky, we can set the
|
|
|
|
* data address sensibly but the PC address is just the entry point.
|
|
|
|
*/
|
|
|
|
static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
|
|
|
|
{
|
|
|
|
uint64_t oldval, newval, val;
|
|
|
|
uint32_t addr, cpsr;
|
|
|
|
target_siginfo_t info;
|
|
|
|
|
|
|
|
/* Based on the 32 bit code in do_kernel_trap */
|
|
|
|
|
|
|
|
/* XXX: This only works between threads, not between processes.
|
|
|
|
It's probably possible to implement this with native host
|
|
|
|
operations. However things like ldrex/strex are much harder so
|
|
|
|
there's not much point trying. */
|
|
|
|
start_exclusive();
|
|
|
|
cpsr = cpsr_read(env);
|
|
|
|
addr = env->regs[2];
|
|
|
|
|
|
|
|
if (get_user_u64(oldval, env->regs[0])) {
|
|
|
|
env->exception.vaddress = env->regs[0];
|
|
|
|
goto segv;
|
|
|
|
};
|
|
|
|
|
|
|
|
if (get_user_u64(newval, env->regs[1])) {
|
|
|
|
env->exception.vaddress = env->regs[1];
|
|
|
|
goto segv;
|
|
|
|
};
|
|
|
|
|
|
|
|
if (get_user_u64(val, addr)) {
|
|
|
|
env->exception.vaddress = addr;
|
|
|
|
goto segv;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (val == oldval) {
|
|
|
|
val = newval;
|
|
|
|
|
|
|
|
if (put_user_u64(val, addr)) {
|
|
|
|
env->exception.vaddress = addr;
|
|
|
|
goto segv;
|
|
|
|
};
|
|
|
|
|
|
|
|
env->regs[0] = 0;
|
|
|
|
cpsr |= CPSR_C;
|
|
|
|
} else {
|
|
|
|
env->regs[0] = -1;
|
|
|
|
cpsr &= ~CPSR_C;
|
|
|
|
}
|
|
|
|
cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
|
|
|
|
end_exclusive();
|
|
|
|
return;
|
|
|
|
|
|
|
|
segv:
|
|
|
|
end_exclusive();
|
|
|
|
/* We get the PC of the entry address - which is as good as anything,
|
|
|
|
on a real kernel what you get depends on which mode it uses. */
|
|
|
|
info.si_signo = TARGET_SIGSEGV;
|
|
|
|
info.si_errno = 0;
|
|
|
|
/* XXX: check env->error_code */
|
|
|
|
info.si_code = TARGET_SEGV_MAPERR;
|
|
|
|
info._sifields._sigfault._addr = env->exception.vaddress;
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Handle a jump to the kernel code page. */
|
|
|
|
static int
|
|
|
|
do_kernel_trap(CPUARMState *env)
|
|
|
|
{
|
|
|
|
uint32_t addr;
|
|
|
|
uint32_t cpsr;
|
|
|
|
uint32_t val;
|
|
|
|
|
|
|
|
switch (env->regs[15]) {
|
|
|
|
case 0xffff0fa0: /* __kernel_memory_barrier */
|
|
|
|
/* ??? No-op. Will need to do better for SMP. */
|
|
|
|
break;
|
|
|
|
case 0xffff0fc0: /* __kernel_cmpxchg */
|
|
|
|
/* XXX: This only works between threads, not between processes.
|
|
|
|
It's probably possible to implement this with native host
|
|
|
|
operations. However things like ldrex/strex are much harder so
|
|
|
|
there's not much point trying. */
|
|
|
|
start_exclusive();
|
|
|
|
cpsr = cpsr_read(env);
|
|
|
|
addr = env->regs[2];
|
|
|
|
/* FIXME: This should SEGV if the access fails. */
|
|
|
|
if (get_user_u32(val, addr))
|
|
|
|
val = ~env->regs[0];
|
|
|
|
if (val == env->regs[0]) {
|
|
|
|
val = env->regs[1];
|
|
|
|
/* FIXME: Check for segfaults. */
|
|
|
|
put_user_u32(val, addr);
|
|
|
|
env->regs[0] = 0;
|
|
|
|
cpsr |= CPSR_C;
|
|
|
|
} else {
|
|
|
|
env->regs[0] = -1;
|
|
|
|
cpsr &= ~CPSR_C;
|
|
|
|
}
|
|
|
|
cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
|
|
|
|
end_exclusive();
|
|
|
|
break;
|
|
|
|
case 0xffff0fe0: /* __kernel_get_tls */
|
|
|
|
env->regs[0] = cpu_get_tls(env);
|
|
|
|
break;
|
|
|
|
case 0xffff0f60: /* __kernel_cmpxchg64 */
|
|
|
|
arm_kernel_cmpxchg64_helper(env);
|
|
|
|
break;
|
|
|
|
|
|
|
|
default:
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
/* Jump back to the caller. */
|
|
|
|
addr = env->regs[14];
|
|
|
|
if (addr & 1) {
|
|
|
|
env->thumb = 1;
|
|
|
|
addr &= ~1;
|
|
|
|
}
|
|
|
|
env->regs[15] = addr;
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2020-11-17 18:56:34 +03:00
|
|
|
static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb)
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* Return true if this insn is one of the three magic UDF insns
|
|
|
|
* which the kernel treats as breakpoint insns.
|
|
|
|
*/
|
|
|
|
if (!is_thumb) {
|
|
|
|
return (opcode & 0x0fffffff) == 0x07f001f0;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Note that we get the two halves of the 32-bit T32 insn
|
|
|
|
* in the opposite order to the value the kernel uses in
|
|
|
|
* its undef_hook struct.
|
|
|
|
*/
|
|
|
|
return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-11 21:56:36 +03:00
|
|
|
void cpu_loop(CPUARMState *env)
|
|
|
|
{
|
2019-03-23 03:41:14 +03:00
|
|
|
CPUState *cs = env_cpu(env);
|
2018-04-11 21:56:36 +03:00
|
|
|
int trapnr;
|
|
|
|
unsigned int n, insn;
|
|
|
|
target_siginfo_t info;
|
|
|
|
uint32_t addr;
|
|
|
|
abi_ulong ret;
|
|
|
|
|
|
|
|
for(;;) {
|
|
|
|
cpu_exec_start(cs);
|
|
|
|
trapnr = cpu_exec(cs);
|
|
|
|
cpu_exec_end(cs);
|
|
|
|
process_queued_cpu_work(cs);
|
|
|
|
|
|
|
|
switch(trapnr) {
|
|
|
|
case EXCP_UDEF:
|
|
|
|
case EXCP_NOCP:
|
|
|
|
case EXCP_INVSTATE:
|
|
|
|
{
|
|
|
|
TaskState *ts = cs->opaque;
|
|
|
|
uint32_t opcode;
|
|
|
|
int rc;
|
|
|
|
|
|
|
|
/* we handle the FPU emulation here, as Linux */
|
|
|
|
/* we get the opcode */
|
|
|
|
/* FIXME - what to do if get_user() fails? */
|
|
|
|
get_user_code_u32(opcode, env->regs[15], env);
|
|
|
|
|
2020-11-17 18:56:34 +03:00
|
|
|
/*
|
|
|
|
* The Linux kernel treats some UDF patterns specially
|
|
|
|
* to use as breakpoints (instead of the architectural
|
|
|
|
* bkpt insn). These should trigger a SIGTRAP rather
|
|
|
|
* than SIGILL.
|
|
|
|
*/
|
|
|
|
if (insn_is_linux_bkpt(opcode, env->thumb)) {
|
|
|
|
goto excp_debug;
|
|
|
|
}
|
|
|
|
|
2018-04-11 21:56:36 +03:00
|
|
|
rc = EmulateAll(opcode, &ts->fpa, env);
|
|
|
|
if (rc == 0) { /* illegal instruction */
|
|
|
|
info.si_signo = TARGET_SIGILL;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = TARGET_ILL_ILLOPN;
|
|
|
|
info._sifields._sigfault._addr = env->regs[15];
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
|
|
} else if (rc < 0) { /* FP exception */
|
|
|
|
int arm_fpe=0;
|
|
|
|
|
|
|
|
/* translate softfloat flags to FPSR flags */
|
|
|
|
if (-rc & float_flag_invalid)
|
|
|
|
arm_fpe |= BIT_IOC;
|
|
|
|
if (-rc & float_flag_divbyzero)
|
|
|
|
arm_fpe |= BIT_DZC;
|
|
|
|
if (-rc & float_flag_overflow)
|
|
|
|
arm_fpe |= BIT_OFC;
|
|
|
|
if (-rc & float_flag_underflow)
|
|
|
|
arm_fpe |= BIT_UFC;
|
|
|
|
if (-rc & float_flag_inexact)
|
|
|
|
arm_fpe |= BIT_IXC;
|
|
|
|
|
|
|
|
FPSR fpsr = ts->fpa.fpsr;
|
|
|
|
//printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
|
|
|
|
|
|
|
|
if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
|
|
|
|
info.si_signo = TARGET_SIGFPE;
|
|
|
|
info.si_errno = 0;
|
|
|
|
|
|
|
|
/* ordered by priority, least first */
|
|
|
|
if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
|
|
|
|
if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
|
|
|
|
if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
|
|
|
|
if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
|
|
|
|
if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
|
|
|
|
|
|
|
|
info._sifields._sigfault._addr = env->regs[15];
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
|
|
} else {
|
|
|
|
env->regs[15] += 4;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* accumulate unenabled exceptions */
|
|
|
|
if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
|
|
|
|
fpsr |= BIT_IXC;
|
|
|
|
if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
|
|
|
|
fpsr |= BIT_UFC;
|
|
|
|
if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
|
|
|
|
fpsr |= BIT_OFC;
|
|
|
|
if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
|
|
|
|
fpsr |= BIT_DZC;
|
|
|
|
if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
|
|
|
|
fpsr |= BIT_IOC;
|
|
|
|
ts->fpa.fpsr=fpsr;
|
|
|
|
} else { /* everything OK */
|
|
|
|
/* increment PC */
|
|
|
|
env->regs[15] += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EXCP_SWI:
|
|
|
|
{
|
|
|
|
env->eabi = 1;
|
|
|
|
/* system call */
|
2020-04-21 00:22:03 +03:00
|
|
|
if (env->thumb) {
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
/* Thumb is always EABI style with syscall number in r7 */
|
|
|
|
n = env->regs[7];
|
2018-04-11 21:56:36 +03:00
|
|
|
} else {
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
/*
|
|
|
|
* Equivalent of kernel CONFIG_OABI_COMPAT: read the
|
|
|
|
* Arm SVC insn to extract the immediate, which is the
|
|
|
|
* syscall number in OABI.
|
|
|
|
*/
|
2020-04-21 00:22:03 +03:00
|
|
|
/* FIXME - what to do if get_user() fails? */
|
|
|
|
get_user_code_u32(insn, env->regs[15] - 4, env);
|
|
|
|
n = insn & 0xffffff;
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
if (n == 0) {
|
|
|
|
/* zero immediate: EABI, syscall number in r7 */
|
2018-04-11 21:56:36 +03:00
|
|
|
n = env->regs[7];
|
|
|
|
} else {
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
/*
|
|
|
|
* This XOR matches the kernel code: an immediate
|
|
|
|
* in the valid range (0x900000 .. 0x9fffff) is
|
|
|
|
* converted into the correct EABI-style syscall
|
|
|
|
* number; invalid immediates end up as values
|
|
|
|
* > 0xfffff and are handled below as out-of-range.
|
|
|
|
*/
|
|
|
|
n ^= ARM_SYSCALL_BASE;
|
2018-04-11 21:56:36 +03:00
|
|
|
env->eabi = 0;
|
|
|
|
}
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
if (n > ARM_NR_BASE) {
|
|
|
|
switch (n) {
|
|
|
|
case ARM_NR_cacheflush:
|
|
|
|
/* nop */
|
|
|
|
break;
|
|
|
|
case ARM_NR_set_tls:
|
|
|
|
cpu_set_tls(env, env->regs[0]);
|
|
|
|
env->regs[0] = 0;
|
|
|
|
break;
|
|
|
|
case ARM_NR_breakpoint:
|
|
|
|
env->regs[15] -= env->thumb ? 2 : 4;
|
|
|
|
goto excp_debug;
|
|
|
|
case ARM_NR_get_tls:
|
|
|
|
env->regs[0] = cpu_get_tls(env);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
if (n < 0xf0800) {
|
|
|
|
/*
|
|
|
|
* Syscalls 0xf0000..0xf07ff (or 0x9f0000..
|
|
|
|
* 0x9f07ff in OABI numbering) are defined
|
|
|
|
* to return -ENOSYS rather than raising
|
|
|
|
* SIGILL. Note that we have already
|
|
|
|
* removed the 0x900000 prefix.
|
|
|
|
*/
|
|
|
|
qemu_log_mask(LOG_UNIMP,
|
|
|
|
"qemu: Unsupported ARM syscall: 0x%x\n",
|
|
|
|
n);
|
|
|
|
env->regs[0] = -TARGET_ENOSYS;
|
|
|
|
} else {
|
|
|
|
/*
|
|
|
|
* Otherwise SIGILL. This includes any SWI with
|
|
|
|
* immediate not originally 0x9fxxxx, because
|
|
|
|
* of the earlier XOR.
|
|
|
|
*/
|
|
|
|
info.si_signo = TARGET_SIGILL;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = TARGET_ILL_ILLTRP;
|
|
|
|
info._sifields._sigfault._addr = env->regs[15];
|
|
|
|
if (env->thumb) {
|
|
|
|
info._sifields._sigfault._addr -= 2;
|
2020-04-21 00:22:05 +03:00
|
|
|
} else {
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
info._sifields._sigfault._addr -= 4;
|
2020-04-21 00:22:05 +03:00
|
|
|
}
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
queue_signal(env, info.si_signo,
|
|
|
|
QEMU_SI_FAULT, &info);
|
2018-04-11 21:56:36 +03:00
|
|
|
}
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
break;
|
2018-04-11 21:56:36 +03:00
|
|
|
}
|
|
|
|
} else {
|
linux-user/arm: Fix identification of syscall numbers
Our code to identify syscall numbers has some issues:
* for Thumb mode, we never need the immediate value from the insn,
but we always read it anyway
* bad immediate values in the svc insn should cause a SIGILL, but we
were abort()ing instead (via "goto error")
We can fix both these things by refactoring the code that identifies
the syscall number to more closely follow the kernel COMPAT_OABI code:
* for Thumb it is always r7
* for Arm, if the immediate value is 0, then this is an EABI call
with the syscall number in r7
* otherwise, we XOR the immediate value with 0x900000
(ARM_SYSCALL_BASE for QEMU; __NR_OABI_SYSCALL_BASE in the kernel),
which converts valid syscall immediates into the desired value,
and puts all invalid immediates in the range 0x100000 or above
* then we can just let the existing "value too large, deliver
SIGILL" case handle invalid numbers, and drop the 'goto error'
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Message-id: 20200420212206.12776-5-peter.maydell@linaro.org
2020-04-21 00:22:06 +03:00
|
|
|
ret = do_syscall(env,
|
|
|
|
n,
|
|
|
|
env->regs[0],
|
|
|
|
env->regs[1],
|
|
|
|
env->regs[2],
|
|
|
|
env->regs[3],
|
|
|
|
env->regs[4],
|
|
|
|
env->regs[5],
|
|
|
|
0, 0);
|
|
|
|
if (ret == -TARGET_ERESTARTSYS) {
|
|
|
|
env->regs[15] -= env->thumb ? 2 : 4;
|
|
|
|
} else if (ret != -TARGET_QEMU_ESIGRETURN) {
|
|
|
|
env->regs[0] = ret;
|
|
|
|
}
|
2018-04-11 21:56:36 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EXCP_SEMIHOST:
|
2021-01-09 01:42:49 +03:00
|
|
|
env->regs[0] = do_common_semihosting(cs);
|
2019-12-17 18:08:57 +03:00
|
|
|
env->regs[15] += env->thumb ? 2 : 4;
|
2018-04-11 21:56:36 +03:00
|
|
|
break;
|
|
|
|
case EXCP_INTERRUPT:
|
|
|
|
/* just indicate that signals should be handled asap */
|
|
|
|
break;
|
|
|
|
case EXCP_PREFETCH_ABORT:
|
|
|
|
case EXCP_DATA_ABORT:
|
|
|
|
addr = env->exception.vaddress;
|
|
|
|
{
|
|
|
|
info.si_signo = TARGET_SIGSEGV;
|
|
|
|
info.si_errno = 0;
|
|
|
|
/* XXX: check env->error_code */
|
|
|
|
info.si_code = TARGET_SEGV_MAPERR;
|
|
|
|
info._sifields._sigfault._addr = addr;
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case EXCP_DEBUG:
|
2020-04-21 00:22:03 +03:00
|
|
|
case EXCP_BKPT:
|
2018-04-11 21:56:36 +03:00
|
|
|
excp_debug:
|
2018-10-19 20:49:57 +03:00
|
|
|
info.si_signo = TARGET_SIGTRAP;
|
|
|
|
info.si_errno = 0;
|
|
|
|
info.si_code = TARGET_TRAP_BRKPT;
|
|
|
|
queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
|
2018-04-11 21:56:36 +03:00
|
|
|
break;
|
|
|
|
case EXCP_KERNEL_TRAP:
|
|
|
|
if (do_kernel_trap(env))
|
|
|
|
goto error;
|
|
|
|
break;
|
|
|
|
case EXCP_YIELD:
|
|
|
|
/* nothing to do here for user-mode, just resume guest code */
|
|
|
|
break;
|
|
|
|
case EXCP_ATOMIC:
|
|
|
|
cpu_exec_step_atomic(cs);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
error:
|
|
|
|
EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
process_pending_signals(env);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-04-11 21:56:33 +03:00
|
|
|
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
|
|
|
|
{
|
2019-03-23 02:07:18 +03:00
|
|
|
CPUState *cpu = env_cpu(env);
|
2018-04-11 21:56:36 +03:00
|
|
|
TaskState *ts = cpu->opaque;
|
|
|
|
struct image_info *info = ts->info;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
|
|
|
|
CPSRWriteByInstr);
|
|
|
|
for(i = 0; i < 16; i++) {
|
|
|
|
env->regs[i] = regs->uregs[i];
|
|
|
|
}
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
|
|
/* Enable BE8. */
|
|
|
|
if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
|
|
|
|
&& (info->elf_flags & EF_ARM_BE8)) {
|
|
|
|
env->uncached_cpsr |= CPSR_E;
|
|
|
|
env->cp15.sctlr_el[1] |= SCTLR_E0E;
|
|
|
|
} else {
|
|
|
|
env->cp15.sctlr_el[1] |= SCTLR_B;
|
|
|
|
}
|
2019-10-23 18:00:56 +03:00
|
|
|
arm_rebuild_hflags(env);
|
2018-04-11 21:56:36 +03:00
|
|
|
#endif
|
|
|
|
|
|
|
|
ts->stack_base = info->start_stack;
|
|
|
|
ts->heap_base = info->brk;
|
|
|
|
/* This will be filled in on the first SYS_HEAPINFO call. */
|
|
|
|
ts->heap_limit = 0;
|
2018-04-11 21:56:33 +03:00
|
|
|
}
|