qemu/bsd-user/x86_64/target_arch_cpu.h

246 lines
9.1 KiB
C
Raw Normal View History

/*
* x86_64 cpu init and loop
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef _TARGET_ARCH_CPU_H_
#define _TARGET_ARCH_CPU_H_
#include "target_arch.h"
#define TARGET_DEFAULT_CPU_MODEL "qemu64"
static inline void target_cpu_init(CPUX86State *env,
struct target_pt_regs *regs)
{
uint64_t *gdt_table;
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
env->cr[4] |= CR4_OSFXSR_MASK;
env->hflags |= HF_OSFXSR_MASK;
}
/* enable 64 bit mode if possible */
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(1);
}
env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
env->hflags |= HF_LMA_MASK;
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags |= IF_MASK;
/* register setup */
env->regs[R_EAX] = regs->rax;
env->regs[R_EBX] = regs->rbx;
env->regs[R_ECX] = regs->rcx;
env->regs[R_EDX] = regs->rdx;
env->regs[R_ESI] = regs->rsi;
env->regs[R_EDI] = regs->rdi;
env->regs[R_EBP] = regs->rbp;
env->regs[R_ESP] = regs->rsp;
env->eip = regs->rip;
/* interrupt setup */
env->idt.limit = 511;
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
bsd_x86_64_set_idt_base(env->idt.base);
bsd_x86_64_set_idt(0, 0);
bsd_x86_64_set_idt(1, 0);
bsd_x86_64_set_idt(2, 0);
bsd_x86_64_set_idt(3, 3);
bsd_x86_64_set_idt(4, 3);
bsd_x86_64_set_idt(5, 0);
bsd_x86_64_set_idt(6, 0);
bsd_x86_64_set_idt(7, 0);
bsd_x86_64_set_idt(8, 0);
bsd_x86_64_set_idt(9, 0);
bsd_x86_64_set_idt(10, 0);
bsd_x86_64_set_idt(11, 0);
bsd_x86_64_set_idt(12, 0);
bsd_x86_64_set_idt(13, 0);
bsd_x86_64_set_idt(14, 0);
bsd_x86_64_set_idt(15, 0);
bsd_x86_64_set_idt(16, 0);
bsd_x86_64_set_idt(17, 0);
bsd_x86_64_set_idt(18, 0);
bsd_x86_64_set_idt(19, 0);
bsd_x86_64_set_idt(0x80, 3);
/* segment setup */
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
gdt_table = g2h_untagged(env->gdt.base);
/* 64 bit code segment */
bsd_x86_64_write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | DESC_L_MASK
| (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
bsd_x86_64_write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
cpu_x86_load_seg(env, R_CS, __USER_CS);
cpu_x86_load_seg(env, R_SS, __USER_DS);
cpu_x86_load_seg(env, R_DS, 0);
cpu_x86_load_seg(env, R_ES, 0);
cpu_x86_load_seg(env, R_FS, 0);
cpu_x86_load_seg(env, R_GS, 0);
}
static inline void target_cpu_loop(CPUX86State *env)
{
CPUState *cs = env_cpu(env);
int trapnr;
abi_ulong pc;
/* target_siginfo_t info; */
for (;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch (trapnr) {
case 0x80:
/* syscall from int $0x80 */
if (bsd_type == target_freebsd) {
abi_ulong params = (abi_ulong) env->regs[R_ESP] +
sizeof(int32_t);
int32_t syscall_nr = env->regs[R_EAX];
int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int32_t);
} else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int64_t);
}
get_user_s32(arg1, params);
params += sizeof(int32_t);
get_user_s32(arg2, params);
params += sizeof(int32_t);
get_user_s32(arg3, params);
params += sizeof(int32_t);
get_user_s32(arg4, params);
params += sizeof(int32_t);
get_user_s32(arg5, params);
params += sizeof(int32_t);
get_user_s32(arg6, params);
params += sizeof(int32_t);
get_user_s32(arg7, params);
params += sizeof(int32_t);
get_user_s32(arg8, params);
env->regs[R_EAX] = do_freebsd_syscall(env,
syscall_nr,
arg1,
arg2,
arg3,
arg4,
arg5,
arg6,
arg7,
arg8);
} else { /* if (bsd_type == target_openbsd) */
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP]);
}
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
case EXCP_SYSCALL:
/* syscall from syscall instruction */
if (bsd_type == target_freebsd) {
env->regs[R_EAX] = do_freebsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[R_ECX],
env->regs[8],
env->regs[9], 0, 0);
} else { /* if (bsd_type == target_openbsd) */
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9]);
}
env->eip = env->exception_next_eip;
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
default:
pc = env->segs[R_CS].base + env->eip;
fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - "
"aborting\n", (long)pc, trapnr);
abort();
}
process_pending_signals(env);
}
}
static inline void target_cpu_clone_regs(CPUX86State *env, target_ulong newsp)
{
if (newsp) {
env->regs[R_ESP] = newsp;
}
env->regs[R_EAX] = 0;
}
static inline void target_cpu_reset(CPUArchState *cpu)
{
cpu_reset(env_cpu(cpu));
}
#endif /* ! _TARGET_ARCH_CPU_H_ */