qemu/cpu-common.h

175 lines
6.9 KiB
C
Raw Normal View History

#ifndef CPU_COMMON_H
#define CPU_COMMON_H 1
/* CPU interfaces that are target indpendent. */
#ifdef TARGET_PHYS_ADDR_BITS
#include "targphys.h"
#endif
#ifndef NEED_CPU_H
#include "poison.h"
#endif
#include "bswap.h"
#include "qemu-queue.h"
#if !defined(CONFIG_USER_ONLY)
enum device_endian {
DEVICE_NATIVE_ENDIAN,
DEVICE_BIG_ENDIAN,
DEVICE_LITTLE_ENDIAN,
};
/* address in the RAM (different from a physical address) */
typedef unsigned long ram_addr_t;
/* memory API */
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
void cpu_register_physical_memory_log(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
ram_addr_t region_offset,
bool log_dirty);
static inline void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
ram_addr_t region_offset)
{
cpu_register_physical_memory_log(start_addr, size, phys_offset,
region_offset, false);
}
static inline void cpu_register_physical_memory(target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset)
{
cpu_register_physical_memory_offset(start_addr, size, phys_offset, 0);
}
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
ram_addr_t size, void *host);
ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size);
void qemu_ram_free(ram_addr_t addr);
void qemu_ram_free_from_ptr(ram_addr_t addr);
void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
/* This should only be used for ram local to a device. */
void *qemu_get_ram_ptr(ram_addr_t addr);
void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size);
/* Same but slower, to use for migration, where the order of
* RAMBlocks must not change. */
void *qemu_safe_ram_ptr(ram_addr_t addr);
void qemu_put_ram_ptr(void *addr);
/* This should not be used by devices. */
int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr);
ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr);
int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
CPUWriteMemoryFunc * const *mem_write,
void *opaque, enum device_endian endian);
void cpu_unregister_io_memory(int table_address);
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write);
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
void *buf, int len)
{
cpu_physical_memory_rw(addr, buf, len, 0);
}
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
const void *buf, int len)
{
cpu_physical_memory_rw(addr, (void *)buf, len, 1);
}
void *cpu_physical_memory_map(target_phys_addr_t addr,
target_phys_addr_t *plen,
int is_write);
void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
int is_write, target_phys_addr_t access_len);
void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
void cpu_unregister_map_client(void *cookie);
struct CPUPhysMemoryClient;
typedef struct CPUPhysMemoryClient CPUPhysMemoryClient;
struct CPUPhysMemoryClient {
void (*set_memory)(struct CPUPhysMemoryClient *client,
target_phys_addr_t start_addr,
ram_addr_t size,
ram_addr_t phys_offset,
bool log_dirty);
int (*sync_dirty_bitmap)(struct CPUPhysMemoryClient *client,
target_phys_addr_t start_addr,
target_phys_addr_t end_addr);
int (*migration_log)(struct CPUPhysMemoryClient *client,
int enable);
int (*log_start)(struct CPUPhysMemoryClient *client,
target_phys_addr_t phys_addr, ram_addr_t size);
int (*log_stop)(struct CPUPhysMemoryClient *client,
target_phys_addr_t phys_addr, ram_addr_t size);
QLIST_ENTRY(CPUPhysMemoryClient) list;
};
void cpu_register_phys_memory_client(CPUPhysMemoryClient *);
void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *);
/* Coalesced MMIO regions are areas where write operations can be reordered.
* This usually implies that write operations are side-effect free. This allows
* batching which can make a major impact on performance when using
* virtualization.
*/
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
void qemu_flush_coalesced_mmio_buffer(void);
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_le_phys(target_phys_addr_t addr);
uint32_t lduw_be_phys(target_phys_addr_t addr);
uint32_t ldl_le_phys(target_phys_addr_t addr);
uint32_t ldl_be_phys(target_phys_addr_t addr);
uint64_t ldq_le_phys(target_phys_addr_t addr);
uint64_t ldq_be_phys(target_phys_addr_t addr);
void stb_phys(target_phys_addr_t addr, uint32_t val);
void stw_le_phys(target_phys_addr_t addr, uint32_t val);
void stw_be_phys(target_phys_addr_t addr, uint32_t val);
void stl_le_phys(target_phys_addr_t addr, uint32_t val);
void stl_be_phys(target_phys_addr_t addr, uint32_t val);
void stq_le_phys(target_phys_addr_t addr, uint64_t val);
void stq_be_phys(target_phys_addr_t addr, uint64_t val);
#ifdef NEED_CPU_H
uint32_t lduw_phys(target_phys_addr_t addr);
uint32_t ldl_phys(target_phys_addr_t addr);
uint64_t ldq_phys(target_phys_addr_t addr);
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
void stw_phys(target_phys_addr_t addr, uint32_t val);
void stl_phys(target_phys_addr_t addr, uint32_t val);
void stq_phys(target_phys_addr_t addr, uint64_t val);
#endif
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
const uint8_t *buf, int len);
#define IO_MEM_SHIFT 3
#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
/* Acts like a ROM when read and like a device when written. */
#define IO_MEM_ROMD (1)
#define IO_MEM_SUBPAGE (2)
#endif
#endif /* !CPU_COMMON_H */