qemu/target/arm/tcg/hflags.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

498 lines
16 KiB
C
Raw Normal View History

/*
* ARM hflags
*
* This code is licensed under the GNU GPL v2 or later.
*
* SPDX-License-Identifier: GPL-2.0-or-later
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "cpu-features.h"
#include "exec/helper-proto.h"
#include "cpregs.h"
static inline bool fgt_svc(CPUARMState *env, int el)
{
/*
* Assuming fine-grained-traps are active, return true if we
* should be trapping on SVC instructions. Only AArch64 can
* trap on an SVC at EL1, but we don't need to special-case this
* because if this is AArch32 EL1 then arm_fgt_active() is false.
* We also know el is 0 or 1.
*/
return el == 0 ?
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) :
FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1);
}
/* Return true if memory alignment should be enforced. */
static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr)
{
#ifdef CONFIG_USER_ONLY
return false;
#else
/* Check the alignment enable bit. */
if (sctlr & SCTLR_A) {
return true;
}
/*
* With PMSA, when the MPU is disabled, all memory types in the
* default map are Normal, so don't need aligment enforcing.
*/
if (arm_feature(env, ARM_FEATURE_PMSA)) {
return false;
}
/*
* With VMSA, if translation is disabled, then the default memory type
* is Device(-nGnRnE) instead of Normal, which requires that alignment
* be enforced. Since this affects all ram, it is most efficient
* to handle this during translation.
*/
if (sctlr & SCTLR_M) {
/* Translation enabled: memory type in PTE via MAIR_ELx. */
return false;
}
if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) {
/* Stage 2 translation enabled: memory type in PTE. */
return false;
}
return true;
#endif
}
static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el);
DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx));
if (arm_singlestep_active(env)) {
DP_TBFLAG_ANY(flags, SS_ACTIVE, 1);
}
return flags;
}
static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx,
CPUARMTBFlags flags)
{
bool sctlr_b = arm_sctlr_b(env);
if (sctlr_b) {
DP_TBFLAG_A32(flags, SCTLR__B, 1);
}
if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
DP_TBFLAG_A32(flags, NS, !access_secure_reg(env));
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
uint32_t ccr = env->v7m.ccr[env->v7m.secure];
/* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */
if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_v7m_is_handler_mode(env)) {
DP_TBFLAG_M32(flags, HANDLER, 1);
}
/*
* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN
* is suppressing them because the requested execution priority
* is less than 0.
*/
if (arm_feature(env, ARM_FEATURE_V8) &&
!((mmu_idx & ARM_MMU_IDX_M_NEGPRI) &&
(ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) {
DP_TBFLAG_M32(flags, STACKCHECK, 1);
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) {
DP_TBFLAG_M32(flags, SECURE, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
/* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */
static bool sme_fa64(CPUARMState *env, int el)
{
if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) {
return false;
}
if (el <= 1 && !el_is_in_host(env, el)) {
if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) {
return false;
}
}
if (el <= 2 && arm_is_el2_enabled(env)) {
if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) {
return false;
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) {
return false;
}
}
return true;
}
static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
int el = arm_current_el(env);
uint64_t sctlr = arm_sctlr(env, el);
if (aprofile_require_alignment(env, el, sctlr)) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_el_is_aa64(env, 1)) {
DP_TBFLAG_A32(flags, VFPEN, 1);
}
if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) {
DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
if (env->uncached_cpsr & CPSR_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
/*
* The SME exception we are testing for is raised via
* AArch64.CheckFPAdvSIMDEnabled(), as called from
* AArch32.CheckAdvSIMDOrFPEnabled().
*/
if (el == 0
&& FIELD_EX64(env->svcr, SVCR, SM)
&& (!arm_is_el2_enabled(env)
|| (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE)))
&& arm_el_is_aa64(env, 1)
&& !sme_fa64(env, el)) {
DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1);
}
target/arm: Fix usage of MMU indexes when EL3 is AArch32 Our current usage of MMU indexes when EL3 is AArch32 is confused. Architecturally, when EL3 is AArch32, all Secure code runs under the Secure PL1&0 translation regime: * code at EL3, which might be Mon, or SVC, or any of the other privileged modes (PL1) * code at EL0 (Secure PL0) This is different from when EL3 is AArch64, in which case EL3 is its own translation regime, and EL1 and EL0 (whether AArch32 or AArch64) have their own regime. We claimed to be mapping Secure PL1 to our ARMMMUIdx_EL3, but didn't do anything special about Secure PL0, which meant it used the same ARMMMUIdx_EL10_0 that NonSecure PL0 does. This resulted in a bug where arm_sctlr() incorrectly picked the NonSecure SCTLR as the controlling register when in Secure PL0, which meant we were spuriously generating alignment faults because we were looking at the wrong SCTLR control bits. The use of ARMMMUIdx_EL3 for Secure PL1 also resulted in the bug that we wouldn't honour the PAN bit for Secure PL1, because there's no equivalent _PAN mmu index for it. We could fix this in one of two ways: * The most straightforward is to add new MMU indexes EL30_0, EL30_3, EL30_3_PAN to correspond to "Secure PL1&0 at PL0", "Secure PL1&0 at PL1", and "Secure PL1&0 at PL1 with PAN". This matches how we use indexes for the AArch64 regimes, and preserves propirties like being able to determine the privilege level from an MMU index without any other information. However it would add two MMU indexes (we can share one with ARMMMUIdx_EL3), and we are already using 14 of the 16 the core TLB code permits. * The more complicated approach is the one we take here. We use the same MMU indexes (E10_0, E10_1, E10_1_PAN) for Secure PL1&0 than we do for NonSecure PL1&0. This saves on MMU indexes, but means we need to check in some places whether we're in the Secure PL1&0 regime or not before we interpret an MMU index. The changes in this commit were created by auditing all the places where we use specific ARMMMUIdx_ values, and checking whether they needed to be changed to handle the new index value usage. Note for potential stable backports: taking also the previous (comment-change-only) commit might make the backport easier. Cc: qemu-stable@nongnu.org Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2326 Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Tested-by: Bernhard Beschow <shentey@gmail.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20240809160430.1144805-3-peter.maydell@linaro.org
2024-08-09 19:04:30 +03:00
if (arm_aa32_secure_pl1_0(env)) {
DP_TBFLAG_A32(flags, S_PL1_0, 1);
}
return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el,
ARMMMUIdx mmu_idx)
{
CPUARMTBFlags flags = {};
ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx);
uint64_t tcr = regime_tcr(env, mmu_idx);
uint64_t hcr = arm_hcr_el2_eff(env);
uint64_t sctlr;
int tbii, tbid;
DP_TBFLAG_ANY(flags, AARCH64_STATE, 1);
/* Get control bits for tagged addresses. */
tbid = aa64_va_parameter_tbi(tcr, mmu_idx);
tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx);
DP_TBFLAG_A64(flags, TBII, tbii);
DP_TBFLAG_A64(flags, TBID, tbid);
if (cpu_isar_feature(aa64_sve, env_archcpu(env))) {
int sve_el = sve_exception_el(env, el);
/*
* If either FP or SVE are disabled, translator does not need len.
* If SVE EL > FP EL, FP exception has precedence, and translator
* does not need SVE EL. Save potential re-translations by forcing
* the unneeded data to zero.
*/
if (fp_el != 0) {
if (sve_el > fp_el) {
sve_el = 0;
}
} else if (sve_el == 0) {
DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el));
}
DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el);
}
if (cpu_isar_feature(aa64_sme, env_archcpu(env))) {
int sme_el = sme_exception_el(env, el);
bool sm = FIELD_EX64(env->svcr, SVCR, SM);
DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el);
if (sme_el == 0) {
/* Similarly, do not compute SVL if SME is disabled. */
int svl = sve_vqm1_for_el_sm(env, el, true);
DP_TBFLAG_A64(flags, SVL, svl);
if (sm) {
/* If SVE is disabled, we will not have set VL above. */
DP_TBFLAG_A64(flags, VL, svl);
}
}
if (sm) {
DP_TBFLAG_A64(flags, PSTATE_SM, 1);
DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el));
}
DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA));
}
sctlr = regime_sctlr(env, stage1);
if (aprofile_require_alignment(env, el, sctlr)) {
DP_TBFLAG_ANY(flags, ALIGN_MEM, 1);
}
if (arm_cpu_data_is_big_endian_a64(el, sctlr)) {
DP_TBFLAG_ANY(flags, BE_DATA, 1);
}
if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) {
/*
* In order to save space in flags, we record only whether
* pauth is "inactive", meaning all insns are implemented as
* a nop, or "active" when some action must be performed.
* The decision of which action to take is left to a helper.
*/
if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) {
DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1);
}
}
if (cpu_isar_feature(aa64_bti, env_archcpu(env))) {
/* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) {
DP_TBFLAG_A64(flags, BT, 1);
}
}
if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) {
if (sctlr & SCTLR_nAA) {
DP_TBFLAG_A64(flags, NAA, 1);
}
}
/* Compute the condition for using AccType_UNPRIV for LDTR et al. */
if (!(env->pstate & PSTATE_UAO)) {
switch (mmu_idx) {
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
/* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */
if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
/*
* Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is
* gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR.
*/
if (env->cp15.hcr_el2 & HCR_TGE) {
DP_TBFLAG_A64(flags, UNPRIV, 1);
}
break;
default:
break;
}
}
if (env->pstate & PSTATE_IL) {
DP_TBFLAG_ANY(flags, PSTATE__IL, 1);
}
if (arm_fgt_active(env, el)) {
DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1);
if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) {
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
}
if (fgt_svc(env, el)) {
DP_TBFLAG_ANY(flags, FGT_SVC, 1);
}
}
/*
* ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care
* of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present.
*/
if (el == 1 && (hcr & HCR_NV)) {
DP_TBFLAG_A64(flags, TRAP_ERET, 1);
DP_TBFLAG_A64(flags, NV, 1);
if (hcr & HCR_NV1) {
DP_TBFLAG_A64(flags, NV1, 1);
}
if (hcr & HCR_NV2) {
DP_TBFLAG_A64(flags, NV2, 1);
if (hcr & HCR_E2H) {
DP_TBFLAG_A64(flags, NV2_MEM_E20, 1);
}
if (env->cp15.sctlr_el[2] & SCTLR_EE) {
DP_TBFLAG_A64(flags, NV2_MEM_BE, 1);
}
}
}
if (cpu_isar_feature(aa64_mte, env_archcpu(env))) {
/*
* Set MTE_ACTIVE if any access may be Checked, and leave clear
* if all accesses must be Unchecked:
* 1) If no TBI, then there are no tags in the address to check,
* 2) If Tag Check Override, then all accesses are Unchecked,
* 3) If Tag Check Fail == 0, then Checked access have no effect,
* 4) If no Allocation Tag Access, then all accesses are Unchecked.
*/
if (allocation_tag_access_enabled(env, el, sctlr)) {
DP_TBFLAG_A64(flags, ATA, 1);
if (tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) {
DP_TBFLAG_A64(flags, MTE_ACTIVE, 1);
if (!EX_TBFLAG_A64(flags, UNPRIV)) {
/*
* In non-unpriv contexts (eg EL0), unpriv load/stores
* act like normal ones; duplicate the MTE info to
* avoid translate-a64.c having to check UNPRIV to see
* whether it is OK to index into MTE_ACTIVE[].
*/
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
}
}
/* And again for unprivileged accesses, if required. */
if (EX_TBFLAG_A64(flags, UNPRIV)
&& tbid
&& !(env->pstate & PSTATE_TCO)
&& (sctlr & SCTLR_TCF0)
&& allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1);
}
/*
* For unpriv tag-setting accesses we also need ATA0. Again, in
* contexts where unpriv and normal insns are the same we
* duplicate the ATA bit to save effort for translate-a64.c.
*/
if (EX_TBFLAG_A64(flags, UNPRIV)) {
if (allocation_tag_access_enabled(env, 0, sctlr)) {
DP_TBFLAG_A64(flags, ATA0, 1);
}
} else {
DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA));
}
/* Cache TCMA as well as TBI. */
DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx));
}
return rebuild_hflags_common(env, fp_el, mmu_idx, flags);
}
static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
if (is_a64(env)) {
return rebuild_hflags_a64(env, el, fp_el, mmu_idx);
} else if (arm_feature(env, ARM_FEATURE_M)) {
return rebuild_hflags_m32(env, fp_el, mmu_idx);
} else {
return rebuild_hflags_a32(env, fp_el, mmu_idx);
}
}
void arm_rebuild_hflags(CPUARMState *env)
{
env->hflags = rebuild_hflags_internal(env);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx);
}
/*
* If we have triggered a EL state change we can't rely on the
* translator having passed it to us, we need to recompute.
*/
void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env)
{
int el = arm_current_el(env);
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx);
}
void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el)
{
int fp_el = fp_exception_el(env, el);
ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el);
env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx);
}
void assert_hflags_rebuild_correctly(CPUARMState *env)
{
#ifdef CONFIG_DEBUG_TCG
CPUARMTBFlags c = env->hflags;
CPUARMTBFlags r = rebuild_hflags_internal(env);
if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) {
fprintf(stderr, "TCG hflags mismatch "
"(current:(0x%08x,0x" TARGET_FMT_lx ")"
" rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n",
c.flags, c.flags2, r.flags, r.flags2);
abort();
}
#endif
}