qemu/hw/intc/arm_gicv3_kvm.c

906 lines
31 KiB
C
Raw Normal View History

/*
* ARM Generic Interrupt Controller using KVM in-kernel support
*
* Copyright (c) 2015 Samsung Electronics Co., Ltd.
* Written by Pavel Fedin
* Based on vGICv2 code by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
2016-03-14 11:01:28 +03:00
#include "qapi/error.h"
#include "hw/intc/arm_gicv3_common.h"
#include "hw/sysbus.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "kvm_arm.h"
#include "gicv3_internal.h"
#include "vgic_common.h"
#include "migration/blocker.h"
#ifdef DEBUG_GICV3_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
#define KVM_ARM_GICV3(obj) \
OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
#define KVM_ARM_GICV3_CLASS(klass) \
OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
#define KVM_ARM_GICV3_GET_CLASS(obj) \
OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
#define KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2) \
(ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
#define ICC_PMR_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
#define ICC_BPR0_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
#define ICC_AP0R_EL1(n) \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
#define ICC_AP1R_EL1(n) \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
#define ICC_BPR1_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
#define ICC_CTLR_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
#define ICC_SRE_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
#define ICC_IGRPEN0_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
#define ICC_IGRPEN1_EL1 \
KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
typedef struct KVMARMGICv3Class {
ARMGICv3CommonClass parent_class;
DeviceRealize parent_realize;
void (*parent_reset)(DeviceState *dev);
} KVMARMGICv3Class;
static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
{
GICv3State *s = (GICv3State *)opaque;
kvm_arm_gic_set_irq(s->num_irq, irq, level);
}
#define KVM_VGIC_ATTR(reg, typer) \
((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
static inline void kvm_gicd_access(GICv3State *s, int offset,
uint32_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
KVM_VGIC_ATTR(offset, 0),
val, write, &error_abort);
}
static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
uint32_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
val, write, &error_abort);
}
static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
uint64_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
val, write, &error_abort);
}
static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
uint32_t *val, bool write)
{
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
(VGIC_LEVEL_INFO_LINE_LEVEL <<
KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
val, write, &error_abort);
}
/* Loop through each distributor IRQ related register; since bits
* corresponding to SPIs and PPIs are RAZ/WI when affinity routing
* is enabled, we skip those.
*/
#define for_each_dist_irq_reg(_irq, _max, _field_width) \
for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
{
uint32_t reg, *field;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the first 8
* GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
* functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
* sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
* offset.
*/
field = (uint32_t *)(bmp + GIC_INTERNAL);
offset += (GIC_INTERNAL * 8) / 8;
for_each_dist_irq_reg(irq, s->num_irq, 8) {
kvm_gicd_access(s, offset, &reg, false);
*field = reg;
offset += 4;
field++;
}
}
static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
{
uint32_t reg, *field;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the first 8
* GICD_IPRIORITYR<n> registers are always RAZ/WI. The corresponding
* functionality is replaced by GICR_IPRIORITYR<n>. It doesn't need to
* sync them. So it needs to skip the field of GIC_INTERNAL irqs in bmp and
* offset.
*/
field = (uint32_t *)(bmp + GIC_INTERNAL);
offset += (GIC_INTERNAL * 8) / 8;
for_each_dist_irq_reg(irq, s->num_irq, 8) {
reg = *field;
kvm_gicd_access(s, offset, &reg, true);
offset += 4;
field++;
}
}
static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
uint32_t *bmp)
{
uint32_t reg;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the first 2
* GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
* functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
* them. So it should increase the offset to skip GIC_INTERNAL irqs.
* This matches the for_each_dist_irq_reg() macro which also skips the
* first GIC_INTERNAL irqs.
*/
offset += (GIC_INTERNAL * 2) / 8;
for_each_dist_irq_reg(irq, s->num_irq, 2) {
kvm_gicd_access(s, offset, &reg, false);
reg = half_unshuffle32(reg >> 1);
if (irq % 32 != 0) {
reg = (reg << 16);
}
*gic_bmp_ptr32(bmp, irq) |= reg;
offset += 4;
}
}
static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
uint32_t *bmp)
{
uint32_t reg;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the first 2
* GICD_ICFGR<n> registers are always RAZ/WI. The corresponding
* functionality is replaced by GICR_ICFGR<n>. It doesn't need to sync
* them. So it should increase the offset to skip GIC_INTERNAL irqs.
* This matches the for_each_dist_irq_reg() macro which also skips the
* first GIC_INTERNAL irqs.
*/
offset += (GIC_INTERNAL * 2) / 8;
for_each_dist_irq_reg(irq, s->num_irq, 2) {
reg = *gic_bmp_ptr32(bmp, irq);
if (irq % 32 != 0) {
reg = (reg & 0xffff0000) >> 16;
} else {
reg = reg & 0xffff;
}
reg = half_shuffle32(reg) << 1;
kvm_gicd_access(s, offset, &reg, true);
offset += 4;
}
}
static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
{
uint32_t reg;
int irq;
for_each_dist_irq_reg(irq, s->num_irq, 1) {
kvm_gic_line_level_access(s, irq, 0, &reg, false);
*gic_bmp_ptr32(bmp, irq) = reg;
}
}
static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
{
uint32_t reg;
int irq;
for_each_dist_irq_reg(irq, s->num_irq, 1) {
reg = *gic_bmp_ptr32(bmp, irq);
kvm_gic_line_level_access(s, irq, 0, &reg, true);
}
}
/* Read a bitmap register group from the kernel VGIC. */
static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
{
uint32_t reg;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the
* GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
* GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
* functionality is replaced by the GICR registers. It doesn't need to sync
* them. So it should increase the offset to skip GIC_INTERNAL irqs.
* This matches the for_each_dist_irq_reg() macro which also skips the
* first GIC_INTERNAL irqs.
*/
offset += (GIC_INTERNAL * 1) / 8;
for_each_dist_irq_reg(irq, s->num_irq, 1) {
kvm_gicd_access(s, offset, &reg, false);
*gic_bmp_ptr32(bmp, irq) = reg;
offset += 4;
}
}
static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
uint32_t clroffset, uint32_t *bmp)
{
uint32_t reg;
int irq;
/* For the KVM GICv3, affinity routing is always enabled, and the
* GICD_IGROUPR0/GICD_IGRPMODR0/GICD_ISENABLER0/GICD_ISPENDR0/
* GICD_ISACTIVER0 registers are always RAZ/WI. The corresponding
* functionality is replaced by the GICR registers. It doesn't need to sync
* them. So it should increase the offset and clroffset to skip GIC_INTERNAL
* irqs. This matches the for_each_dist_irq_reg() macro which also skips the
* first GIC_INTERNAL irqs.
*/
offset += (GIC_INTERNAL * 1) / 8;
if (clroffset != 0) {
clroffset += (GIC_INTERNAL * 1) / 8;
}
for_each_dist_irq_reg(irq, s->num_irq, 1) {
/* If this bitmap is a set/clear register pair, first write to the
* clear-reg to clear all bits before using the set-reg to write
* the 1 bits.
*/
if (clroffset != 0) {
reg = 0;
kvm_gicd_access(s, clroffset, &reg, true);
clroffset += 4;
}
reg = *gic_bmp_ptr32(bmp, irq);
kvm_gicd_access(s, offset, &reg, true);
offset += 4;
}
}
static void kvm_arm_gicv3_check(GICv3State *s)
{
uint32_t reg;
uint32_t num_irq;
/* Sanity checking s->num_irq */
kvm_gicd_access(s, GICD_TYPER, &reg, false);
num_irq = ((reg & 0x1f) + 1) * 32;
if (num_irq < s->num_irq) {
error_report("Model requests %u IRQs, but kernel supports max %u",
s->num_irq, num_irq);
abort();
}
}
static void kvm_arm_gicv3_put(GICv3State *s)
{
uint32_t regl, regh, reg;
uint64_t reg64, redist_typer;
int ncpu, i;
kvm_arm_gicv3_check(s);
kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
redist_typer = ((uint64_t)regh << 32) | regl;
reg = s->gicd_ctlr;
kvm_gicd_access(s, GICD_CTLR, &reg, true);
if (redist_typer & GICR_TYPER_PLPIS) {
/* Set base addresses before LPIs are enabled by GICR_CTLR write */
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
reg64 = c->gicr_propbaser;
regl = (uint32_t)reg64;
kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
regh = (uint32_t)(reg64 >> 32);
kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
reg64 = c->gicr_pendbaser;
if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
/* Setting PTZ is advised if LPIs are disabled, to reduce
* GIC initialization time.
*/
reg64 |= GICR_PENDBASER_PTZ;
}
regl = (uint32_t)reg64;
kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
regh = (uint32_t)(reg64 >> 32);
kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
}
}
/* Redistributor state (one per CPU) */
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
reg = c->gicr_ctlr;
kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
reg = c->gicr_statusr[GICV3_NS];
kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
reg = c->gicr_waker;
kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
reg = c->gicr_igroupr0;
kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
reg = ~0;
kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
reg = c->gicr_ienabler0;
kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
/* Restore config before pending so we treat level/edge correctly */
reg = half_shuffle32(c->edge_trigger >> 16) << 1;
kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
reg = c->level;
kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
reg = ~0;
kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
reg = c->gicr_ipendr0;
kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
reg = ~0;
kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
reg = c->gicr_iactiver0;
kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
for (i = 0; i < GIC_INTERNAL; i += 4) {
reg = c->gicr_ipriorityr[i] |
(c->gicr_ipriorityr[i + 1] << 8) |
(c->gicr_ipriorityr[i + 2] << 16) |
(c->gicr_ipriorityr[i + 3] << 24);
kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
}
}
/* Distributor state (shared between all CPUs */
reg = s->gicd_statusr[GICV3_NS];
kvm_gicd_access(s, GICD_STATUSR, &reg, true);
/* s->enable bitmap -> GICD_ISENABLERn */
kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
/* s->group bitmap -> GICD_IGROUPRn */
kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
/* Restore targets before pending to ensure the pending state is set on
* the appropriate CPU interfaces in the kernel
*/
/* s->gicd_irouter[irq] -> GICD_IROUTERn
* We can't use kvm_dist_put() here because the registers are 64-bit
*/
for (i = GIC_INTERNAL; i < s->num_irq; i++) {
uint32_t offset;
offset = GICD_IROUTER + (sizeof(uint32_t) * i);
reg = (uint32_t)s->gicd_irouter[i];
kvm_gicd_access(s, offset, &reg, true);
offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
reg = (uint32_t)(s->gicd_irouter[i] >> 32);
kvm_gicd_access(s, offset, &reg, true);
}
/* s->trigger bitmap -> GICD_ICFGRn
* (restore configuration registers before pending IRQs so we treat
* level/edge correctly)
*/
kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
/* s->level bitmap -> line_level */
kvm_gic_put_line_level_bmp(s, s->level);
/* s->pending bitmap -> GICD_ISPENDRn */
kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
/* s->active bitmap -> GICD_ISACTIVERn */
kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
/* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
/* CPU Interface state (one per CPU) */
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
int num_pri_bits;
kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
&c->icc_ctlr_el1[GICV3_NS], true);
kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
&c->icc_igrpen[GICV3_G0], true);
kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
&c->icc_igrpen[GICV3_G1NS], true);
kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
ICC_CTLR_EL1_PRIBITS_MASK) >>
ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
switch (num_pri_bits) {
case 7:
reg64 = c->icc_apr[GICV3_G0][3];
kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
reg64 = c->icc_apr[GICV3_G0][2];
kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
case 6:
reg64 = c->icc_apr[GICV3_G0][1];
kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
default:
reg64 = c->icc_apr[GICV3_G0][0];
kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
}
switch (num_pri_bits) {
case 7:
reg64 = c->icc_apr[GICV3_G1NS][3];
kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
reg64 = c->icc_apr[GICV3_G1NS][2];
kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
case 6:
reg64 = c->icc_apr[GICV3_G1NS][1];
kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
default:
reg64 = c->icc_apr[GICV3_G1NS][0];
kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
}
}
}
static void kvm_arm_gicv3_get(GICv3State *s)
{
uint32_t regl, regh, reg;
uint64_t reg64, redist_typer;
int ncpu, i;
kvm_arm_gicv3_check(s);
kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
redist_typer = ((uint64_t)regh << 32) | regl;
kvm_gicd_access(s, GICD_CTLR, &reg, false);
s->gicd_ctlr = reg;
/* Redistributor state (one per CPU) */
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
c->gicr_ctlr = reg;
kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
c->gicr_statusr[GICV3_NS] = reg;
kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
c->gicr_waker = reg;
kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
c->gicr_igroupr0 = reg;
kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
c->gicr_ienabler0 = reg;
kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
c->level = reg;
kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
c->gicr_ipendr0 = reg;
kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
c->gicr_iactiver0 = reg;
for (i = 0; i < GIC_INTERNAL; i += 4) {
kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
}
}
if (redist_typer & GICR_TYPER_PLPIS) {
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
}
}
/* Distributor state (shared between all CPUs */
kvm_gicd_access(s, GICD_STATUSR, &reg, false);
s->gicd_statusr[GICV3_NS] = reg;
/* GICD_IGROUPRn -> s->group bitmap */
kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
/* GICD_ISENABLERn -> s->enabled bitmap */
kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
/* Line level of irq */
kvm_gic_get_line_level_bmp(s, s->level);
/* GICD_ISPENDRn -> s->pending bitmap */
kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
/* GICD_ISACTIVERn -> s->active bitmap */
kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
/* GICD_ICFGRn -> s->trigger bitmap */
kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
/* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
/* GICD_IROUTERn -> s->gicd_irouter[irq] */
for (i = GIC_INTERNAL; i < s->num_irq; i++) {
uint32_t offset;
offset = GICD_IROUTER + (sizeof(uint32_t) * i);
kvm_gicd_access(s, offset, &regl, false);
offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
kvm_gicd_access(s, offset, &regh, false);
s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
}
/*****************************************************************
* CPU Interface(s) State
*/
for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
GICv3CPUState *c = &s->cpu[ncpu];
int num_pri_bits;
kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
&c->icc_ctlr_el1[GICV3_NS], false);
kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
&c->icc_igrpen[GICV3_G0], false);
kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
&c->icc_igrpen[GICV3_G1NS], false);
kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
ICC_CTLR_EL1_PRIBITS_MASK) >>
ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
switch (num_pri_bits) {
case 7:
kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
c->icc_apr[GICV3_G0][3] = reg64;
kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
c->icc_apr[GICV3_G0][2] = reg64;
case 6:
kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
c->icc_apr[GICV3_G0][1] = reg64;
default:
kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
c->icc_apr[GICV3_G0][0] = reg64;
}
switch (num_pri_bits) {
case 7:
kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
c->icc_apr[GICV3_G1NS][3] = reg64;
kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
c->icc_apr[GICV3_G1NS][2] = reg64;
case 6:
kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
c->icc_apr[GICV3_G1NS][1] = reg64;
default:
kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
c->icc_apr[GICV3_G1NS][0] = reg64;
}
}
}
static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
ARMCPU *cpu;
GICv3State *s;
GICv3CPUState *c;
c = (GICv3CPUState *)env->gicv3state;
s = c->gic;
cpu = ARM_CPU(c->cpu);
c->icc_pmr_el1 = 0;
c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
c->icc_sre_el1 = 0x7;
memset(c->icc_apr, 0, sizeof(c->icc_apr));
memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
if (s->migration_blocker) {
return;
}
/* Initialize to actual HW supported configuration */
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
&c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
}
static void kvm_arm_gicv3_reset(DeviceState *dev)
{
GICv3State *s = ARM_GICV3_COMMON(dev);
KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
DPRINTF("Reset\n");
kgc->parent_reset(dev);
if (s->migration_blocker) {
DPRINTF("Cannot put kernel gic state, no kernel interface\n");
return;
}
kvm_arm_gicv3_put(s);
}
/*
* CPU interface registers of GIC needs to be reset on CPU reset.
* For the calling arm_gicv3_icc_reset() on CPU reset, we register
* below ARMCPRegInfo. As we reset the whole cpu interface under single
* register reset, we define only one register of CPU interface instead
* of defining all the registers.
*/
static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
{ .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
.opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
/*
* If ARM_CP_NOP is used, resetfn is not called,
* So ARM_CP_NO_RAW is appropriate type.
*/
.type = ARM_CP_NO_RAW,
.access = PL1_RW,
.readfn = arm_cp_read_zero,
.writefn = arm_cp_write_ignore,
/*
* We hang the whole cpu interface reset routine off here
* rather than parcelling it out into one little function
* per register
*/
.resetfn = arm_gicv3_icc_reset,
},
REGINFO_SENTINEL
};
/**
* vm_change_state_handler - VM change state callback aiming at flushing
* RDIST pending tables into guest RAM
*
* The tables get flushed to guest RAM whenever the VM gets stopped.
*/
static void vm_change_state_handler(void *opaque, int running,
RunState state)
{
GICv3State *s = (GICv3State *)opaque;
Error *err = NULL;
int ret;
if (running) {
return;
}
ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
NULL, true, &err);
if (err) {
error_report_err(err);
}
if (ret < 0 && ret != -EFAULT) {
abort();
}
}
static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
{
GICv3State *s = KVM_ARM_GICV3(dev);
KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
bool multiple_redist_region_allowed;
Error *local_err = NULL;
int i;
DPRINTF("kvm_arm_gicv3_realize\n");
kgc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (s->security_extn) {
error_setg(errp, "the in-kernel VGICv3 does not implement the "
"security extensions");
return;
}
gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
for (i = 0; i < s->num_cpu; i++) {
ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
}
/* Try to create the device via the device control API */
s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
if (s->dev_fd < 0) {
error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
return;
}
multiple_redist_region_allowed =
kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION);
if (!multiple_redist_region_allowed && s->nb_redist_regions > 1) {
error_setg(errp, "Multiple VGICv3 redistributor regions are not "
"supported by this host kernel");
error_append_hint(errp, "A maximum of %d VCPUs can be used",
s->redist_region_count[0]);
return;
}
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
0, &s->num_irq, true, &error_abort);
/* Tell the kernel to complete VGIC initialization now */
kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd, 0);
if (!multiple_redist_region_allowed) {
kvm_arm_register_device(&s->iomem_redist[0], -1,
KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd, 0);
} else {
/* we register regions in reverse order as "devices" are inserted at
* the head of a QSLIST and the list is then popped from the head
* onwards by kvm_arm_machine_init_done()
*/
for (i = s->nb_redist_regions - 1; i >= 0; i--) {
/* Address mask made of the rdist region index and count */
uint64_t addr_ormask =
i | ((uint64_t)s->redist_region_count[i] << 52);
kvm_arm_register_device(&s->iomem_redist[i], -1,
KVM_DEV_ARM_VGIC_GRP_ADDR,
KVM_VGIC_V3_ADDR_TYPE_REDIST_REGION,
s->dev_fd, addr_ormask);
}
}
if (kvm_has_gsi_routing()) {
/* set up irq routing */
for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
}
kvm_gsi_routing_allowed = true;
kvm_irqchip_commit_routes(kvm_state);
}
if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
GICD_CTLR)) {
error_setg(&s->migration_blocker, "This operating system kernel does "
"not support vGICv3 migration");
migrate_add_blocker(s->migration_blocker, &local_err);
if (local_err) {
error_propagate(errp, local_err);
error_free(s->migration_blocker);
return;
}
}
if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
qemu_add_vm_change_state_handler(vm_change_state_handler, s);
}
}
static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
agcc->pre_save = kvm_arm_gicv3_get;
agcc->post_load = kvm_arm_gicv3_put;
device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
&kgc->parent_realize);
device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
}
static const TypeInfo kvm_arm_gicv3_info = {
.name = TYPE_KVM_ARM_GICV3,
.parent = TYPE_ARM_GICV3_COMMON,
.instance_size = sizeof(GICv3State),
.class_init = kvm_arm_gicv3_class_init,
.class_size = sizeof(KVMARMGICv3Class),
};
static void kvm_arm_gicv3_register_types(void)
{
type_register_static(&kvm_arm_gicv3_info);
}
type_init(kvm_arm_gicv3_register_types)