qemu/hw/usb/dev-uas.c

995 lines
29 KiB
C
Raw Normal View History

/*
* UAS (USB Attached SCSI) emulation
*
* Copyright Red Hat, Inc. 2012
*
* Author: Gerd Hoffmann <kraxel@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
#include "trace.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "qemu/module.h"
#include "qemu/log.h"
#include "hw/usb.h"
#include "migration/vmstate.h"
#include "desc.h"
#include "hw/qdev-properties.h"
#include "hw/scsi/scsi.h"
#include "scsi/constants.h"
#include "qom/object.h"
/* --------------------------------------------------------------------- */
#define UAS_UI_COMMAND 0x01
#define UAS_UI_SENSE 0x03
#define UAS_UI_RESPONSE 0x04
#define UAS_UI_TASK_MGMT 0x05
#define UAS_UI_READ_READY 0x06
#define UAS_UI_WRITE_READY 0x07
#define UAS_RC_TMF_COMPLETE 0x00
#define UAS_RC_INVALID_INFO_UNIT 0x02
#define UAS_RC_TMF_NOT_SUPPORTED 0x04
#define UAS_RC_TMF_FAILED 0x05
#define UAS_RC_TMF_SUCCEEDED 0x08
#define UAS_RC_INCORRECT_LUN 0x09
#define UAS_RC_OVERLAPPED_TAG 0x0a
#define UAS_TMF_ABORT_TASK 0x01
#define UAS_TMF_ABORT_TASK_SET 0x02
#define UAS_TMF_CLEAR_TASK_SET 0x04
#define UAS_TMF_LOGICAL_UNIT_RESET 0x08
#define UAS_TMF_I_T_NEXUS_RESET 0x10
#define UAS_TMF_CLEAR_ACA 0x40
#define UAS_TMF_QUERY_TASK 0x80
#define UAS_TMF_QUERY_TASK_SET 0x81
#define UAS_TMF_QUERY_ASYNC_EVENT 0x82
#define UAS_PIPE_ID_COMMAND 0x01
#define UAS_PIPE_ID_STATUS 0x02
#define UAS_PIPE_ID_DATA_IN 0x03
#define UAS_PIPE_ID_DATA_OUT 0x04
typedef struct {
uint8_t id;
uint8_t reserved;
uint16_t tag;
} QEMU_PACKED uas_iu_header;
typedef struct {
uint8_t prio_taskattr; /* 6:3 priority, 2:0 task attribute */
uint8_t reserved_1;
uint8_t add_cdb_length; /* 7:2 additional adb length (dwords) */
uint8_t reserved_2;
uint64_t lun;
uint8_t cdb[16];
uint8_t add_cdb[1];
} QEMU_PACKED uas_iu_command;
typedef struct {
uint16_t status_qualifier;
uint8_t status;
uint8_t reserved[7];
uint16_t sense_length;
uint8_t sense_data[18];
} QEMU_PACKED uas_iu_sense;
typedef struct {
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
uint8_t add_response_info[3];
uint8_t response_code;
} QEMU_PACKED uas_iu_response;
typedef struct {
uint8_t function;
uint8_t reserved;
uint16_t task_tag;
uint64_t lun;
} QEMU_PACKED uas_iu_task_mgmt;
typedef struct {
uas_iu_header hdr;
union {
uas_iu_command command;
uas_iu_sense sense;
uas_iu_task_mgmt task;
uas_iu_response response;
};
} QEMU_PACKED uas_iu;
/* --------------------------------------------------------------------- */
#define UAS_STREAM_BM_ATTR 4
#define UAS_MAX_STREAMS (1 << UAS_STREAM_BM_ATTR)
typedef struct UASDevice UASDevice;
typedef struct UASRequest UASRequest;
typedef struct UASStatus UASStatus;
struct UASDevice {
USBDevice dev;
SCSIBus bus;
QEMUBH *status_bh;
QTAILQ_HEAD(, UASStatus) results;
QTAILQ_HEAD(, UASRequest) requests;
/* properties */
uint32_t requestlog;
/* usb 2.0 only */
USBPacket *status2;
UASRequest *datain2;
UASRequest *dataout2;
/* usb 3.0 only */
USBPacket *data3[UAS_MAX_STREAMS + 1];
USBPacket *status3[UAS_MAX_STREAMS + 1];
};
#define TYPE_USB_UAS "usb-uas"
OBJECT_DECLARE_SIMPLE_TYPE(UASDevice, USB_UAS)
struct UASRequest {
uint16_t tag;
uint64_t lun;
UASDevice *uas;
SCSIDevice *dev;
SCSIRequest *req;
USBPacket *data;
bool data_async;
bool active;
bool complete;
uint32_t buf_off;
uint32_t buf_size;
uint32_t data_off;
uint32_t data_size;
QTAILQ_ENTRY(UASRequest) next;
};
struct UASStatus {
uint32_t stream;
uas_iu status;
uint32_t length;
QTAILQ_ENTRY(UASStatus) next;
};
/* --------------------------------------------------------------------- */
enum {
STR_MANUFACTURER = 1,
STR_PRODUCT,
STR_SERIALNUMBER,
STR_CONFIG_HIGH,
STR_CONFIG_SUPER,
};
static const USBDescStrings desc_strings = {
[STR_MANUFACTURER] = "QEMU",
[STR_PRODUCT] = "USB Attached SCSI HBA",
[STR_SERIALNUMBER] = "27842",
[STR_CONFIG_HIGH] = "High speed config (usb 2.0)",
[STR_CONFIG_SUPER] = "Super speed config (usb 3.0)",
};
static const USBDescIface desc_iface_high = {
.bInterfaceNumber = 0,
.bNumEndpoints = 4,
.bInterfaceClass = USB_CLASS_MASS_STORAGE,
.bInterfaceSubClass = 0x06, /* SCSI */
.bInterfaceProtocol = 0x62, /* UAS */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | UAS_PIPE_ID_COMMAND,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 512,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_COMMAND,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_IN | UAS_PIPE_ID_STATUS,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 512,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_STATUS,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_IN | UAS_PIPE_ID_DATA_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 512,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_DATA_IN,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_OUT | UAS_PIPE_ID_DATA_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 512,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_DATA_OUT,
0x00, /* u8 bReserved */
},
},
}
};
static const USBDescIface desc_iface_super = {
.bInterfaceNumber = 0,
.bNumEndpoints = 4,
.bInterfaceClass = USB_CLASS_MASS_STORAGE,
.bInterfaceSubClass = 0x06, /* SCSI */
.bInterfaceProtocol = 0x62, /* UAS */
.eps = (USBDescEndpoint[]) {
{
.bEndpointAddress = USB_DIR_OUT | UAS_PIPE_ID_COMMAND,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 1024,
.bMaxBurst = 15,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_COMMAND,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_IN | UAS_PIPE_ID_STATUS,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 1024,
.bMaxBurst = 15,
.bmAttributes_super = UAS_STREAM_BM_ATTR,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_STATUS,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_IN | UAS_PIPE_ID_DATA_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 1024,
.bMaxBurst = 15,
.bmAttributes_super = UAS_STREAM_BM_ATTR,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_DATA_IN,
0x00, /* u8 bReserved */
},
},{
.bEndpointAddress = USB_DIR_OUT | UAS_PIPE_ID_DATA_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = 1024,
.bMaxBurst = 15,
.bmAttributes_super = UAS_STREAM_BM_ATTR,
.extra = (uint8_t[]) {
0x04, /* u8 bLength */
0x24, /* u8 bDescriptorType */
UAS_PIPE_ID_DATA_OUT,
0x00, /* u8 bReserved */
},
},
}
};
static const USBDescDevice desc_device_high = {
.bcdUSB = 0x0200,
.bMaxPacketSize0 = 64,
.bNumConfigurations = 1,
.confs = (USBDescConfig[]) {
{
.bNumInterfaces = 1,
.bConfigurationValue = 1,
.iConfiguration = STR_CONFIG_HIGH,
.bmAttributes = USB_CFG_ATT_ONE | USB_CFG_ATT_SELFPOWER,
.nif = 1,
.ifs = &desc_iface_high,
},
},
};
static const USBDescDevice desc_device_super = {
.bcdUSB = 0x0300,
.bMaxPacketSize0 = 9,
.bNumConfigurations = 1,
.confs = (USBDescConfig[]) {
{
.bNumInterfaces = 1,
.bConfigurationValue = 1,
.iConfiguration = STR_CONFIG_SUPER,
.bmAttributes = USB_CFG_ATT_ONE | USB_CFG_ATT_SELFPOWER,
.nif = 1,
.ifs = &desc_iface_super,
},
},
};
static const USBDesc desc = {
.id = {
.idVendor = 0x46f4, /* CRC16() of "QEMU" */
.idProduct = 0x0003,
.bcdDevice = 0,
.iManufacturer = STR_MANUFACTURER,
.iProduct = STR_PRODUCT,
.iSerialNumber = STR_SERIALNUMBER,
},
.high = &desc_device_high,
.super = &desc_device_super,
.str = desc_strings,
};
/* --------------------------------------------------------------------- */
static bool uas_using_streams(UASDevice *uas)
{
return uas->dev.speed == USB_SPEED_SUPER;
}
/* --------------------------------------------------------------------- */
static UASStatus *usb_uas_alloc_status(UASDevice *uas, uint8_t id, uint16_t tag)
{
UASStatus *st = g_new0(UASStatus, 1);
st->status.hdr.id = id;
st->status.hdr.tag = cpu_to_be16(tag);
st->length = sizeof(uas_iu_header);
if (uas_using_streams(uas)) {
st->stream = tag;
}
return st;
}
static void usb_uas_send_status_bh(void *opaque)
{
UASDevice *uas = opaque;
UASStatus *st;
USBPacket *p;
while ((st = QTAILQ_FIRST(&uas->results)) != NULL) {
if (uas_using_streams(uas)) {
p = uas->status3[st->stream];
uas->status3[st->stream] = NULL;
} else {
p = uas->status2;
uas->status2 = NULL;
}
if (p == NULL) {
break;
}
usb_packet_copy(p, &st->status, st->length);
QTAILQ_REMOVE(&uas->results, st, next);
g_free(st);
p->status = USB_RET_SUCCESS; /* Clear previous ASYNC status */
usb_packet_complete(&uas->dev, p);
}
}
static void usb_uas_queue_status(UASDevice *uas, UASStatus *st, int length)
{
USBPacket *p = uas_using_streams(uas) ?
uas->status3[st->stream] : uas->status2;
st->length += length;
QTAILQ_INSERT_TAIL(&uas->results, st, next);
if (p) {
/*
* Just schedule bh make sure any in-flight data transaction
* is finished before completing (sending) the status packet.
*/
qemu_bh_schedule(uas->status_bh);
} else {
USBEndpoint *ep = usb_ep_get(&uas->dev, USB_TOKEN_IN,
UAS_PIPE_ID_STATUS);
usb_wakeup(ep, st->stream);
}
}
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
static void usb_uas_queue_response(UASDevice *uas, uint16_t tag, uint8_t code)
{
UASStatus *st = usb_uas_alloc_status(uas, UAS_UI_RESPONSE, tag);
trace_usb_uas_response(uas->dev.addr, tag, code);
st->status.response.response_code = code;
usb_uas_queue_status(uas, st, sizeof(uas_iu_response));
}
static void usb_uas_queue_sense(UASRequest *req, uint8_t status)
{
UASStatus *st = usb_uas_alloc_status(req->uas, UAS_UI_SENSE, req->tag);
int len, slen = 0;
trace_usb_uas_sense(req->uas->dev.addr, req->tag, status);
st->status.sense.status = status;
st->status.sense.status_qualifier = cpu_to_be16(0);
if (status != GOOD) {
slen = scsi_req_get_sense(req->req, st->status.sense.sense_data,
sizeof(st->status.sense.sense_data));
st->status.sense.sense_length = cpu_to_be16(slen);
}
len = sizeof(uas_iu_sense) - sizeof(st->status.sense.sense_data) + slen;
usb_uas_queue_status(req->uas, st, len);
}
static void usb_uas_queue_fake_sense(UASDevice *uas, uint16_t tag,
struct SCSISense sense)
{
UASStatus *st = usb_uas_alloc_status(uas, UAS_UI_SENSE, tag);
int len, slen = 0;
st->status.sense.status = CHECK_CONDITION;
st->status.sense.status_qualifier = cpu_to_be16(0);
st->status.sense.sense_data[0] = 0x70;
st->status.sense.sense_data[2] = sense.key;
st->status.sense.sense_data[7] = 10;
st->status.sense.sense_data[12] = sense.asc;
st->status.sense.sense_data[13] = sense.ascq;
slen = 18;
len = sizeof(uas_iu_sense) - sizeof(st->status.sense.sense_data) + slen;
usb_uas_queue_status(uas, st, len);
}
static void usb_uas_queue_read_ready(UASRequest *req)
{
UASStatus *st = usb_uas_alloc_status(req->uas, UAS_UI_READ_READY,
req->tag);
trace_usb_uas_read_ready(req->uas->dev.addr, req->tag);
usb_uas_queue_status(req->uas, st, 0);
}
static void usb_uas_queue_write_ready(UASRequest *req)
{
UASStatus *st = usb_uas_alloc_status(req->uas, UAS_UI_WRITE_READY,
req->tag);
trace_usb_uas_write_ready(req->uas->dev.addr, req->tag);
usb_uas_queue_status(req->uas, st, 0);
}
/* --------------------------------------------------------------------- */
static int usb_uas_get_lun(uint64_t lun64)
{
return (lun64 >> 48) & 0xff;
}
static SCSIDevice *usb_uas_get_dev(UASDevice *uas, uint64_t lun64)
{
if ((lun64 >> 56) != 0x00) {
return NULL;
}
return scsi_device_find(&uas->bus, 0, 0, usb_uas_get_lun(lun64));
}
static void usb_uas_complete_data_packet(UASRequest *req)
{
USBPacket *p;
if (!req->data_async) {
return;
}
p = req->data;
req->data = NULL;
req->data_async = false;
p->status = USB_RET_SUCCESS; /* Clear previous ASYNC status */
usb_packet_complete(&req->uas->dev, p);
}
static void usb_uas_copy_data(UASRequest *req)
{
uint32_t length;
length = MIN(req->buf_size - req->buf_off,
req->data->iov.size - req->data->actual_length);
trace_usb_uas_xfer_data(req->uas->dev.addr, req->tag, length,
req->data->actual_length, req->data->iov.size,
req->buf_off, req->buf_size);
usb_packet_copy(req->data, scsi_req_get_buf(req->req) + req->buf_off,
length);
req->buf_off += length;
req->data_off += length;
if (req->data->actual_length == req->data->iov.size) {
usb_uas_complete_data_packet(req);
}
if (req->buf_size && req->buf_off == req->buf_size) {
req->buf_off = 0;
req->buf_size = 0;
scsi_req_continue(req->req);
}
}
static void usb_uas_start_next_transfer(UASDevice *uas)
{
UASRequest *req;
if (uas_using_streams(uas)) {
return;
}
QTAILQ_FOREACH(req, &uas->requests, next) {
if (req->active || req->complete) {
continue;
}
if (req->req->cmd.mode == SCSI_XFER_FROM_DEV && uas->datain2 == NULL) {
uas->datain2 = req;
usb_uas_queue_read_ready(req);
req->active = true;
return;
}
if (req->req->cmd.mode == SCSI_XFER_TO_DEV && uas->dataout2 == NULL) {
uas->dataout2 = req;
usb_uas_queue_write_ready(req);
req->active = true;
return;
}
}
}
static UASRequest *usb_uas_alloc_request(UASDevice *uas, uas_iu *iu)
{
UASRequest *req;
req = g_new0(UASRequest, 1);
req->uas = uas;
req->tag = be16_to_cpu(iu->hdr.tag);
req->lun = be64_to_cpu(iu->command.lun);
req->dev = usb_uas_get_dev(req->uas, req->lun);
return req;
}
static void usb_uas_scsi_free_request(SCSIBus *bus, void *priv)
{
UASRequest *req = priv;
UASDevice *uas = req->uas;
if (req == uas->datain2) {
uas->datain2 = NULL;
}
if (req == uas->dataout2) {
uas->dataout2 = NULL;
}
QTAILQ_REMOVE(&uas->requests, req, next);
g_free(req);
usb_uas_start_next_transfer(uas);
}
static UASRequest *usb_uas_find_request(UASDevice *uas, uint16_t tag)
{
UASRequest *req;
QTAILQ_FOREACH(req, &uas->requests, next) {
if (req->tag == tag) {
return req;
}
}
return NULL;
}
static void usb_uas_scsi_transfer_data(SCSIRequest *r, uint32_t len)
{
UASRequest *req = r->hba_private;
trace_usb_uas_scsi_data(req->uas->dev.addr, req->tag, len);
req->buf_off = 0;
req->buf_size = len;
if (req->data) {
usb_uas_copy_data(req);
} else {
usb_uas_start_next_transfer(req->uas);
}
}
static void usb_uas_scsi_command_complete(SCSIRequest *r, size_t resid)
{
UASRequest *req = r->hba_private;
trace_usb_uas_scsi_complete(req->uas->dev.addr, req->tag, r->status, resid);
req->complete = true;
if (req->data) {
usb_uas_complete_data_packet(req);
}
usb_uas_queue_sense(req, r->status);
scsi_req_unref(req->req);
}
static void usb_uas_scsi_request_cancelled(SCSIRequest *r)
{
UASRequest *req = r->hba_private;
/* FIXME: queue notification to status pipe? */
scsi_req_unref(req->req);
}
static const struct SCSIBusInfo usb_uas_scsi_info = {
.tcq = true,
.max_target = 0,
.max_lun = 255,
.transfer_data = usb_uas_scsi_transfer_data,
.complete = usb_uas_scsi_command_complete,
.cancel = usb_uas_scsi_request_cancelled,
.free_request = usb_uas_scsi_free_request,
};
/* --------------------------------------------------------------------- */
static void usb_uas_handle_reset(USBDevice *dev)
{
UASDevice *uas = USB_UAS(dev);
UASRequest *req, *nreq;
UASStatus *st, *nst;
trace_usb_uas_reset(dev->addr);
QTAILQ_FOREACH_SAFE(req, &uas->requests, next, nreq) {
scsi_req_cancel(req->req);
}
QTAILQ_FOREACH_SAFE(st, &uas->results, next, nst) {
QTAILQ_REMOVE(&uas->results, st, next);
g_free(st);
}
}
static void usb_uas_handle_control(USBDevice *dev, USBPacket *p,
int request, int value, int index, int length, uint8_t *data)
{
int ret;
ret = usb_desc_handle_control(dev, p, request, value, index, length, data);
if (ret >= 0) {
return;
}
error_report("%s: unhandled control request (req 0x%x, val 0x%x, idx 0x%x",
__func__, request, value, index);
p->status = USB_RET_STALL;
}
static void usb_uas_cancel_io(USBDevice *dev, USBPacket *p)
{
UASDevice *uas = USB_UAS(dev);
UASRequest *req, *nreq;
int i;
if (uas->status2 == p) {
uas->status2 = NULL;
qemu_bh_cancel(uas->status_bh);
return;
}
if (uas_using_streams(uas)) {
for (i = 0; i <= UAS_MAX_STREAMS; i++) {
if (uas->status3[i] == p) {
uas->status3[i] = NULL;
return;
}
if (uas->data3[i] == p) {
uas->data3[i] = NULL;
return;
}
}
}
QTAILQ_FOREACH_SAFE(req, &uas->requests, next, nreq) {
if (req->data == p) {
req->data = NULL;
return;
}
}
assert(!"canceled usb packet not found");
}
static void usb_uas_command(UASDevice *uas, uas_iu *iu)
{
UASRequest *req;
uint32_t len;
uint16_t tag = be16_to_cpu(iu->hdr.tag);
size_t cdb_len = sizeof(iu->command.cdb) + iu->command.add_cdb_length;
if (iu->command.add_cdb_length > 0) {
qemu_log_mask(LOG_UNIMP, "additional adb length not yet supported\n");
goto unsupported_len;
}
if (uas_using_streams(uas) && tag > UAS_MAX_STREAMS) {
goto invalid_tag;
}
req = usb_uas_find_request(uas, tag);
if (req) {
goto overlapped_tag;
}
req = usb_uas_alloc_request(uas, iu);
if (req->dev == NULL) {
goto bad_target;
}
trace_usb_uas_command(uas->dev.addr, req->tag,
usb_uas_get_lun(req->lun),
req->lun >> 32, req->lun & 0xffffffff);
QTAILQ_INSERT_TAIL(&uas->requests, req, next);
if (uas_using_streams(uas) && uas->data3[req->tag] != NULL) {
req->data = uas->data3[req->tag];
req->data_async = true;
uas->data3[req->tag] = NULL;
}
req->req = scsi_req_new(req->dev, req->tag,
usb_uas_get_lun(req->lun),
iu->command.cdb, cdb_len, req);
if (uas->requestlog) {
scsi_req_print(req->req);
}
len = scsi_req_enqueue(req->req);
if (len) {
req->data_size = len;
scsi_req_continue(req->req);
}
return;
unsupported_len:
usb_uas_queue_fake_sense(uas, tag, sense_code_INVALID_PARAM_VALUE);
return;
invalid_tag:
usb_uas_queue_fake_sense(uas, tag, sense_code_INVALID_TAG);
return;
overlapped_tag:
usb_uas_queue_fake_sense(uas, tag, sense_code_OVERLAPPED_COMMANDS);
return;
bad_target:
usb_uas_queue_fake_sense(uas, tag, sense_code_LUN_NOT_SUPPORTED);
g_free(req);
}
static void usb_uas_task(UASDevice *uas, uas_iu *iu)
{
uint16_t tag = be16_to_cpu(iu->hdr.tag);
uint64_t lun64 = be64_to_cpu(iu->task.lun);
SCSIDevice *dev = usb_uas_get_dev(uas, lun64);
int lun = usb_uas_get_lun(lun64);
UASRequest *req;
uint16_t task_tag;
if (uas_using_streams(uas) && tag > UAS_MAX_STREAMS) {
goto invalid_tag;
}
req = usb_uas_find_request(uas, be16_to_cpu(iu->hdr.tag));
if (req) {
goto overlapped_tag;
}
if (dev == NULL) {
goto incorrect_lun;
}
switch (iu->task.function) {
case UAS_TMF_ABORT_TASK:
task_tag = be16_to_cpu(iu->task.task_tag);
trace_usb_uas_tmf_abort_task(uas->dev.addr, tag, task_tag);
req = usb_uas_find_request(uas, task_tag);
if (req && req->dev == dev) {
scsi_req_cancel(req->req);
}
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, tag, UAS_RC_TMF_COMPLETE);
break;
case UAS_TMF_LOGICAL_UNIT_RESET:
trace_usb_uas_tmf_logical_unit_reset(uas->dev.addr, tag, lun);
device_cold_reset(&dev->qdev);
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, tag, UAS_RC_TMF_COMPLETE);
break;
default:
trace_usb_uas_tmf_unsupported(uas->dev.addr, tag, iu->task.function);
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, tag, UAS_RC_TMF_NOT_SUPPORTED);
break;
}
return;
invalid_tag:
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, tag, UAS_RC_INVALID_INFO_UNIT);
return;
overlapped_tag:
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, req->tag, UAS_RC_OVERLAPPED_TAG);
return;
incorrect_lun:
uas: Fix response iu struct definition This patch mirrors a patch to the Linux uas kernel driver which I've just submitted. It looks like the qemu uas struct definitions were taken from the Linux kernel driver, and have inherited the same mistake. Besides fixing the response iu struct, the patch also drops the add_info parameter from the usb_uas_queue_response() function, it is always 0 anyways, and expressing 3 zero-bytes as a function argument is a bit hard. Below is the long explanation for this change taken from the kernel commit: The response iu struct before this patch has a size of 7 bytes, which is weird since all other iu-s are explictly padded to a multiple of 4 bytes. Submitting a 7 byte bulk transfer to the status endpoint of a real uasp device when expecting a response iu results in an USB babble error, as the device actually sends 8 bytes. Up on closer reading of the UAS spec: http://www.t10.org/cgi-bin/ac.pl?t=f&f=uas2r00.pdf The reason for this becomes clear, the 2 entries in "Table 17 — RESPONSE IU" are numbered 4 and 6, looking at other iu definitions in the spec, esp. multi-byte fields, this indicates that the ADDITIONAL RESPONSE INFORMATION field is not a 2 byte field as one might assume at a first look, but is a multi-byte field containing 3 bytes. This also aligns with the SCSI Architecture Model 4 spec, which UAS is based on which states in paragraph "7.1 Task management function procedure calls" that the "Additional Response Information" output argument for a Task management function procedure call is 3 bytes. Last but not least I've verified this by sending a logical unit reset task management call with an invalid lun to an actual uasp device, and received back a response-iu with byte 6 being 0, and byte 7 being 9, which is the responce code for an invalid iu, which confirms that the response code is being reported in byte 7 of the response iu rather then in byte 6. Signed-off-by: Hans de Goede <hdegoede@redhat.com> Signed-off-by: Gerd Hoffmann <kraxel@redhat.com>
2013-10-31 13:35:31 +04:00
usb_uas_queue_response(uas, tag, UAS_RC_INCORRECT_LUN);
}
static void usb_uas_handle_data(USBDevice *dev, USBPacket *p)
{
UASDevice *uas = USB_UAS(dev);
uas_iu iu;
UASStatus *st;
UASRequest *req;
int length;
switch (p->ep->nr) {
case UAS_PIPE_ID_COMMAND:
length = MIN(sizeof(iu), p->iov.size);
usb_packet_copy(p, &iu, length);
switch (iu.hdr.id) {
case UAS_UI_COMMAND:
usb_uas_command(uas, &iu);
break;
case UAS_UI_TASK_MGMT:
usb_uas_task(uas, &iu);
break;
default:
error_report("%s: unknown command iu: id 0x%x",
__func__, iu.hdr.id);
p->status = USB_RET_STALL;
break;
}
break;
case UAS_PIPE_ID_STATUS:
if (p->stream > UAS_MAX_STREAMS) {
goto err_stream;
}
if (p->stream) {
QTAILQ_FOREACH(st, &uas->results, next) {
if (st->stream == p->stream) {
break;
}
}
if (st == NULL) {
assert(uas->status3[p->stream] == NULL);
uas->status3[p->stream] = p;
p->status = USB_RET_ASYNC;
break;
}
} else {
st = QTAILQ_FIRST(&uas->results);
if (st == NULL) {
assert(uas->status2 == NULL);
uas->status2 = p;
p->status = USB_RET_ASYNC;
break;
}
}
usb_packet_copy(p, &st->status, st->length);
QTAILQ_REMOVE(&uas->results, st, next);
g_free(st);
break;
case UAS_PIPE_ID_DATA_IN:
case UAS_PIPE_ID_DATA_OUT:
if (p->stream > UAS_MAX_STREAMS) {
goto err_stream;
}
if (p->stream) {
req = usb_uas_find_request(uas, p->stream);
} else {
req = (p->ep->nr == UAS_PIPE_ID_DATA_IN)
? uas->datain2 : uas->dataout2;
}
if (req == NULL) {
if (p->stream) {
assert(uas->data3[p->stream] == NULL);
uas->data3[p->stream] = p;
p->status = USB_RET_ASYNC;
break;
} else {
error_report("%s: no inflight request", __func__);
p->status = USB_RET_STALL;
break;
}
}
scsi_req_ref(req->req);
req->data = p;
usb_uas_copy_data(req);
if (p->actual_length == p->iov.size || req->complete) {
req->data = NULL;
} else {
req->data_async = true;
p->status = USB_RET_ASYNC;
}
scsi_req_unref(req->req);
usb_uas_start_next_transfer(uas);
break;
default:
error_report("%s: invalid endpoint %d", __func__, p->ep->nr);
p->status = USB_RET_STALL;
break;
}
return;
err_stream:
error_report("%s: invalid stream %d", __func__, p->stream);
p->status = USB_RET_STALL;
return;
}
qdev: Unrealize must not fail Devices may have component devices and buses. Device realization may fail. Realization is recursive: a device's realize() method realizes its components, and device_set_realized() realizes its buses (which should in turn realize the devices on that bus, except bus_set_realized() doesn't implement that, yet). When realization of a component or bus fails, we need to roll back: unrealize everything we realized so far. If any of these unrealizes failed, the device would be left in an inconsistent state. Must not happen. device_set_realized() lets it happen: it ignores errors in the roll back code starting at label child_realize_fail. Since realization is recursive, unrealization must be recursive, too. But how could a partly failed unrealize be rolled back? We'd have to re-realize, which can fail. This design is fundamentally broken. device_set_realized() does not roll back at all. Instead, it keeps unrealizing, ignoring further errors. It can screw up even for a device with no buses: if the lone dc->unrealize() fails, it still unregisters vmstate, and calls listeners' unrealize() callback. bus_set_realized() does not roll back either. Instead, it stops unrealizing. Fortunately, no unrealize method can fail, as we'll see below. To fix the design error, drop parameter @errp from all the unrealize methods. Any unrealize method that uses @errp now needs an update. This leads us to unrealize() methods that can fail. Merely passing it to another unrealize method cannot cause failure, though. Here are the ones that do other things with @errp: * virtio_serial_device_unrealize() Fails when qbus_set_hotplug_handler() fails, but still does all the other work. On failure, the device would stay realized with its resources completely gone. Oops. Can't happen, because qbus_set_hotplug_handler() can't actually fail here. Pass &error_abort to qbus_set_hotplug_handler() instead. * hw/ppc/spapr_drc.c's unrealize() Fails when object_property_del() fails, but all the other work is already done. On failure, the device would stay realized with its vmstate registration gone. Oops. Can't happen, because object_property_del() can't actually fail here. Pass &error_abort to object_property_del() instead. * spapr_phb_unrealize() Fails and bails out when remove_drcs() fails, but other work is already done. On failure, the device would stay realized with some of its resources gone. Oops. remove_drcs() fails only when chassis_from_bus()'s object_property_get_uint() fails, and it can't here. Pass &error_abort to remove_drcs() instead. Therefore, no unrealize method can fail before this patch. device_set_realized()'s recursive unrealization via bus uses object_property_set_bool(). Can't drop @errp there, so pass &error_abort. We similarly unrealize with object_property_set_bool() elsewhere, always ignoring errors. Pass &error_abort instead. Several unrealize methods no longer handle errors from other unrealize methods: virtio_9p_device_unrealize(), virtio_input_device_unrealize(), scsi_qdev_unrealize(), ... Much of the deleted error handling looks wrong anyway. One unrealize methods no longer ignore such errors: usb_ehci_pci_exit(). Several realize methods no longer ignore errors when rolling back: v9fs_device_realize_common(), pci_qdev_unrealize(), spapr_phb_realize(), usb_qdev_realize(), vfio_ccw_realize(), virtio_device_realize(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-17-armbru@redhat.com>
2020-05-05 18:29:24 +03:00
static void usb_uas_unrealize(USBDevice *dev)
{
UASDevice *uas = USB_UAS(dev);
qemu_bh_delete(uas->status_bh);
}
static void usb_uas_realize(USBDevice *dev, Error **errp)
{
UASDevice *uas = USB_UAS(dev);
DeviceState *d = DEVICE(dev);
usb_desc_create_serial(dev);
usb_desc_init(dev);
if (d->hotplugged) {
uas->dev.auto_attach = 0;
}
QTAILQ_INIT(&uas->results);
QTAILQ_INIT(&uas->requests);
uas->status_bh = qemu_bh_new_guarded(usb_uas_send_status_bh, uas,
&d->mem_reentrancy_guard);
dev->flags |= (1 << USB_DEV_FLAG_IS_SCSI_STORAGE);
scsi: Replace scsi_bus_new() with scsi_bus_init(), scsi_bus_init_named() The function scsi_bus_new() creates a new SCSI bus; callers can either pass in a name argument to specify the name of the new bus, or they can pass in NULL to allow the bus to be given an automatically generated unique name. Almost all callers want to use the autogenerated name; the only exception is the virtio-scsi device. Taking a name argument that should almost always be NULL is an easy-to-misuse API design -- it encourages callers to think perhaps they should pass in some standard name like "scsi" or "scsi-bus". We don't do this anywhere for SCSI, but we do (incorrectly) do it for other bus types such as i2c. The function name also implies that it will return a newly allocated object, when it in fact does in-place allocation. We more commonly name such functions foo_init(), with foo_new() being the allocate-and-return variant. Replace all the scsi_bus_new() callsites with either: * scsi_bus_init() for the usual case where the caller wants an autogenerated bus name * scsi_bus_init_named() for the rare case where the caller needs to specify the bus name and document that for the _named() version it's then the caller's responsibility to think about uniqueness of bus names. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Paolo Bonzini <pbonzini@redhat.com> Message-id: 20210923121153.23754-2-peter.maydell@linaro.org
2021-09-23 15:11:48 +03:00
scsi_bus_init(&uas->bus, sizeof(uas->bus), DEVICE(dev), &usb_uas_scsi_info);
}
static const VMStateDescription vmstate_usb_uas = {
.name = "usb-uas",
.unmigratable = 1,
.fields = (VMStateField[]) {
VMSTATE_USB_DEVICE(dev, UASDevice),
VMSTATE_END_OF_LIST()
}
};
static Property uas_properties[] = {
DEFINE_PROP_UINT32("log-scsi-req", UASDevice, requestlog, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void usb_uas_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
USBDeviceClass *uc = USB_DEVICE_CLASS(klass);
uc->realize = usb_uas_realize;
uc->product_desc = desc_strings[STR_PRODUCT];
uc->usb_desc = &desc;
uc->cancel_packet = usb_uas_cancel_io;
uc->handle_attach = usb_desc_attach;
uc->handle_reset = usb_uas_handle_reset;
uc->handle_control = usb_uas_handle_control;
uc->handle_data = usb_uas_handle_data;
uc->unrealize = usb_uas_unrealize;
uc->attached_settable = true;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
dc->fw_name = "storage";
dc->vmsd = &vmstate_usb_uas;
device_class_set_props(dc, uas_properties);
}
static const TypeInfo uas_info = {
.name = TYPE_USB_UAS,
.parent = TYPE_USB_DEVICE,
.instance_size = sizeof(UASDevice),
.class_init = usb_uas_class_initfn,
};
static void usb_uas_register_types(void)
{
type_register_static(&uas_info);
}
type_init(usb_uas_register_types)