2017-10-01 23:11:45 +03:00
|
|
|
/*
|
|
|
|
* HPPA memory access helper routines
|
|
|
|
*
|
|
|
|
* Copyright (c) 2017 Helge Deller
|
|
|
|
*
|
|
|
|
* This library is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
|
|
* License as published by the Free Software Foundation; either
|
2020-10-23 15:33:53 +03:00
|
|
|
* version 2.1 of the License, or (at your option) any later version.
|
2017-10-01 23:11:45 +03:00
|
|
|
*
|
|
|
|
* This library is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
|
|
* Lesser General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "qemu/osdep.h"
|
2022-02-07 11:27:56 +03:00
|
|
|
#include "qemu/log.h"
|
2017-10-01 23:11:45 +03:00
|
|
|
#include "cpu.h"
|
|
|
|
#include "exec/exec-all.h"
|
|
|
|
#include "exec/helper-proto.h"
|
2019-07-09 18:20:52 +03:00
|
|
|
#include "hw/core/cpu.h"
|
2019-03-11 22:15:55 +03:00
|
|
|
#include "trace.h"
|
2017-10-01 23:11:45 +03:00
|
|
|
|
2017-10-27 11:17:12 +03:00
|
|
|
static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
|
|
|
|
hppa_tlb_entry *ent = &env->tlb[i];
|
2017-10-27 17:26:36 +03:00
|
|
|
if (ent->va_b <= addr && addr <= ent->va_e) {
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_find_entry(env, ent + i, ent->entry_valid,
|
|
|
|
ent->va_b, ent->va_e, ent->pa);
|
2017-10-27 11:17:12 +03:00
|
|
|
return ent;
|
|
|
|
}
|
|
|
|
}
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_find_entry_not_found(env, addr);
|
2017-10-27 11:17:12 +03:00
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
static void hppa_flush_tlb_ent(CPUHPPAState *env, hppa_tlb_entry *ent,
|
|
|
|
bool force_flush_btlb)
|
2017-10-27 17:26:36 +03:00
|
|
|
{
|
2019-03-23 03:51:33 +03:00
|
|
|
CPUState *cs = env_cpu(env);
|
2023-09-13 11:55:59 +03:00
|
|
|
|
|
|
|
if (!ent->entry_valid) {
|
|
|
|
return;
|
|
|
|
}
|
2017-10-27 17:26:36 +03:00
|
|
|
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_flush_ent(env, ent, ent->va_b, ent->va_e, ent->pa);
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
tlb_flush_range_by_mmuidx(cs, ent->va_b,
|
|
|
|
ent->va_e - ent->va_b + 1,
|
|
|
|
HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
|
|
|
|
|
|
|
|
/* never clear BTLBs, unless forced to do so. */
|
|
|
|
if (ent < &env->tlb[HPPA_BTLB_ENTRIES] && !force_flush_btlb) {
|
|
|
|
return;
|
2017-10-27 17:26:36 +03:00
|
|
|
}
|
|
|
|
|
|
|
|
memset(ent, 0, sizeof(*ent));
|
|
|
|
ent->va_b = -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static hppa_tlb_entry *hppa_alloc_tlb_ent(CPUHPPAState *env)
|
|
|
|
{
|
|
|
|
hppa_tlb_entry *ent;
|
2023-09-13 11:55:59 +03:00
|
|
|
uint32_t i;
|
|
|
|
|
|
|
|
if (env->tlb_last < HPPA_BTLB_ENTRIES || env->tlb_last >= ARRAY_SIZE(env->tlb)) {
|
|
|
|
i = HPPA_BTLB_ENTRIES;
|
|
|
|
env->tlb_last = HPPA_BTLB_ENTRIES + 1;
|
|
|
|
} else {
|
|
|
|
i = env->tlb_last;
|
|
|
|
env->tlb_last++;
|
|
|
|
}
|
2017-10-27 17:26:36 +03:00
|
|
|
|
|
|
|
ent = &env->tlb[i];
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
hppa_flush_tlb_ent(env, ent, false);
|
2017-10-27 17:26:36 +03:00
|
|
|
return ent;
|
|
|
|
}
|
|
|
|
|
2017-10-27 11:17:12 +03:00
|
|
|
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
|
2023-09-13 11:55:59 +03:00
|
|
|
int type, hwaddr *pphys, int *pprot,
|
|
|
|
hppa_tlb_entry **tlb_entry)
|
2017-10-27 11:17:12 +03:00
|
|
|
{
|
|
|
|
hwaddr phys;
|
2023-08-07 12:52:39 +03:00
|
|
|
int prot, r_prot, w_prot, x_prot, priv;
|
2017-10-27 11:17:12 +03:00
|
|
|
hppa_tlb_entry *ent;
|
|
|
|
int ret = -1;
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
if (tlb_entry) {
|
|
|
|
*tlb_entry = NULL;
|
|
|
|
}
|
|
|
|
|
2017-10-27 11:17:12 +03:00
|
|
|
/* Virtual translation disabled. Direct map virtual to physical. */
|
|
|
|
if (mmu_idx == MMU_PHYS_IDX) {
|
|
|
|
phys = addr;
|
|
|
|
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
|
|
goto egress;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Find a valid tlb entry that matches the virtual address. */
|
|
|
|
ent = hppa_find_tlb(env, addr);
|
2017-10-27 17:26:36 +03:00
|
|
|
if (ent == NULL || !ent->entry_valid) {
|
2017-10-27 11:17:12 +03:00
|
|
|
phys = 0;
|
|
|
|
prot = 0;
|
2019-03-11 22:15:54 +03:00
|
|
|
ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
|
2017-10-27 11:17:12 +03:00
|
|
|
goto egress;
|
|
|
|
}
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
if (tlb_entry) {
|
|
|
|
*tlb_entry = ent;
|
|
|
|
}
|
|
|
|
|
2017-10-27 11:17:12 +03:00
|
|
|
/* We now know the physical address. */
|
2023-09-13 11:55:59 +03:00
|
|
|
phys = ent->pa + (addr - ent->va_b);
|
2017-10-27 11:17:12 +03:00
|
|
|
|
|
|
|
/* Map TLB access_rights field to QEMU protection. */
|
2023-08-07 12:52:39 +03:00
|
|
|
priv = MMU_IDX_TO_PRIV(mmu_idx);
|
|
|
|
r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
|
|
|
|
w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
|
|
|
|
x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
|
2017-10-27 11:17:12 +03:00
|
|
|
switch (ent->ar_type) {
|
|
|
|
case 0: /* read-only: data page */
|
|
|
|
prot = r_prot;
|
|
|
|
break;
|
|
|
|
case 1: /* read/write: dynamic data page */
|
|
|
|
prot = r_prot | w_prot;
|
|
|
|
break;
|
|
|
|
case 2: /* read/execute: normal code page */
|
|
|
|
prot = r_prot | x_prot;
|
|
|
|
break;
|
|
|
|
case 3: /* read/write/execute: dynamic code page */
|
|
|
|
prot = r_prot | w_prot | x_prot;
|
|
|
|
break;
|
|
|
|
default: /* execute: promote to privilege level type & 3 */
|
|
|
|
prot = x_prot;
|
2017-12-15 23:37:26 +03:00
|
|
|
break;
|
2017-10-27 11:17:12 +03:00
|
|
|
}
|
|
|
|
|
2019-03-11 22:16:00 +03:00
|
|
|
/* access_id == 0 means public page and no check is performed */
|
|
|
|
if ((env->psw & PSW_P) && ent->access_id) {
|
|
|
|
/* If bits [31:1] match, and bit 0 is set, suppress write. */
|
|
|
|
int match = ent->access_id * 2 + 1;
|
|
|
|
|
|
|
|
if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
|
|
|
|
match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
|
|
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
|
|
if (type == PAGE_WRITE) {
|
|
|
|
ret = EXCP_DMPI;
|
|
|
|
goto egress;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
2017-10-27 11:17:12 +03:00
|
|
|
|
|
|
|
/* No guest access type indicates a non-architectural access from
|
|
|
|
within QEMU. Bypass checks for access, D, B and T bits. */
|
|
|
|
if (type == 0) {
|
|
|
|
goto egress;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (unlikely(!(prot & type))) {
|
|
|
|
/* The access isn't allowed -- Inst/Data Memory Protection Fault. */
|
2019-04-23 09:36:21 +03:00
|
|
|
ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
|
2017-10-27 11:17:12 +03:00
|
|
|
goto egress;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* In reverse priority order, check for conditions which raise faults.
|
|
|
|
As we go, remove PROT bits that cover the condition we want to check.
|
|
|
|
In this way, the resulting PROT will force a re-check of the
|
|
|
|
architectural TLB entry for the next access. */
|
|
|
|
if (unlikely(!ent->d)) {
|
|
|
|
if (type & PAGE_WRITE) {
|
|
|
|
/* The D bit is not set -- TLB Dirty Bit Fault. */
|
|
|
|
ret = EXCP_TLB_DIRTY;
|
|
|
|
}
|
|
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
|
|
}
|
|
|
|
if (unlikely(ent->b)) {
|
|
|
|
if (type & PAGE_WRITE) {
|
|
|
|
/* The B bit is set -- Data Memory Break Fault. */
|
|
|
|
ret = EXCP_DMB;
|
|
|
|
}
|
|
|
|
prot &= PAGE_READ | PAGE_EXEC;
|
|
|
|
}
|
|
|
|
if (unlikely(ent->t)) {
|
|
|
|
if (!(type & PAGE_EXEC)) {
|
|
|
|
/* The T bit is set -- Page Reference Fault. */
|
|
|
|
ret = EXCP_PAGE_REF;
|
|
|
|
}
|
|
|
|
prot &= PAGE_EXEC;
|
|
|
|
}
|
|
|
|
|
|
|
|
egress:
|
|
|
|
*pphys = phys;
|
|
|
|
*pprot = prot;
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
|
2017-10-27 11:17:12 +03:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2017-10-01 23:11:45 +03:00
|
|
|
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
|
|
{
|
2017-10-27 11:17:12 +03:00
|
|
|
HPPACPU *cpu = HPPA_CPU(cs);
|
|
|
|
hwaddr phys;
|
|
|
|
int prot, excp;
|
|
|
|
|
|
|
|
/* If the (data) mmu is disabled, bypass translation. */
|
|
|
|
/* ??? We really ought to know if the code mmu is disabled too,
|
|
|
|
in order to get the correct debugging dumps. */
|
|
|
|
if (!(cpu->env.psw & PSW_D)) {
|
|
|
|
return addr;
|
|
|
|
}
|
|
|
|
|
|
|
|
excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
|
2023-09-13 11:55:59 +03:00
|
|
|
&phys, &prot, NULL);
|
2017-10-27 11:17:12 +03:00
|
|
|
|
|
|
|
/* Since we're translating for debugging, the only error that is a
|
|
|
|
hard error is no translation at all. Otherwise, while a real cpu
|
|
|
|
access might not have permission, the debugger does. */
|
|
|
|
return excp == EXCP_DTLB_MISS ? -1 : phys;
|
2017-10-01 23:11:45 +03:00
|
|
|
}
|
|
|
|
|
2019-04-02 11:30:10 +03:00
|
|
|
bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
|
|
|
|
MMUAccessType type, int mmu_idx,
|
|
|
|
bool probe, uintptr_t retaddr)
|
2017-10-01 23:11:45 +03:00
|
|
|
{
|
2017-10-27 11:17:12 +03:00
|
|
|
HPPACPU *cpu = HPPA_CPU(cs);
|
2019-03-11 22:15:55 +03:00
|
|
|
CPUHPPAState *env = &cpu->env;
|
2023-09-13 11:55:59 +03:00
|
|
|
hppa_tlb_entry *ent;
|
2017-10-27 11:17:12 +03:00
|
|
|
int prot, excp, a_prot;
|
|
|
|
hwaddr phys;
|
|
|
|
|
|
|
|
switch (type) {
|
|
|
|
case MMU_INST_FETCH:
|
|
|
|
a_prot = PAGE_EXEC;
|
|
|
|
break;
|
|
|
|
case MMU_DATA_STORE:
|
|
|
|
a_prot = PAGE_WRITE;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
a_prot = PAGE_READ;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
2019-03-11 22:15:55 +03:00
|
|
|
excp = hppa_get_physical_address(env, addr, mmu_idx,
|
2023-09-13 11:55:59 +03:00
|
|
|
a_prot, &phys, &prot, &ent);
|
2017-10-27 11:17:12 +03:00
|
|
|
if (unlikely(excp >= 0)) {
|
2019-04-02 11:30:10 +03:00
|
|
|
if (probe) {
|
|
|
|
return false;
|
|
|
|
}
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
|
2017-10-27 11:17:12 +03:00
|
|
|
/* Failure. Raise the indicated exception. */
|
|
|
|
cs->exception_index = excp;
|
|
|
|
if (cpu->env.psw & PSW_Q) {
|
|
|
|
/* ??? Needs tweaking for hppa64. */
|
|
|
|
cpu->env.cr[CR_IOR] = addr;
|
|
|
|
cpu->env.cr[CR_ISR] = addr >> 32;
|
|
|
|
}
|
|
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
|
|
}
|
2017-10-01 23:11:45 +03:00
|
|
|
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
|
|
|
|
phys & TARGET_PAGE_MASK, size, type, mmu_idx);
|
2017-10-01 23:11:45 +03:00
|
|
|
/* Success! Store the translation into the QEMU TLB. */
|
|
|
|
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
|
2023-09-13 11:55:59 +03:00
|
|
|
prot, mmu_idx, TARGET_PAGE_SIZE << (ent ? 2 * ent->page_size : 0));
|
2019-04-02 11:30:10 +03:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2017-10-27 17:26:36 +03:00
|
|
|
/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
|
|
|
|
void HELPER(itlba)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
|
|
|
|
{
|
|
|
|
hppa_tlb_entry *empty = NULL;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* Zap any old entries covering ADDR; notice empty entries on the way. */
|
2023-09-13 11:55:59 +03:00
|
|
|
for (i = HPPA_BTLB_ENTRIES; i < ARRAY_SIZE(env->tlb); ++i) {
|
2017-10-27 17:26:36 +03:00
|
|
|
hppa_tlb_entry *ent = &env->tlb[i];
|
2019-03-11 22:15:53 +03:00
|
|
|
if (ent->va_b <= addr && addr <= ent->va_e) {
|
|
|
|
if (ent->entry_valid) {
|
2023-09-13 11:55:59 +03:00
|
|
|
hppa_flush_tlb_ent(env, ent, false);
|
2019-03-11 22:15:53 +03:00
|
|
|
}
|
|
|
|
if (!empty) {
|
|
|
|
empty = ent;
|
|
|
|
}
|
2017-10-27 17:26:36 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/* If we didn't see an empty entry, evict one. */
|
|
|
|
if (empty == NULL) {
|
|
|
|
empty = hppa_alloc_tlb_ent(env);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Note that empty->entry_valid == 0 already. */
|
|
|
|
empty->va_b = addr & TARGET_PAGE_MASK;
|
|
|
|
empty->va_e = empty->va_b + TARGET_PAGE_SIZE - 1;
|
|
|
|
empty->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_itlba(env, empty, empty->va_b, empty->va_e, empty->pa);
|
2017-10-27 17:26:36 +03:00
|
|
|
}
|
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
static void set_access_bits(CPUHPPAState *env, hppa_tlb_entry *ent, target_ureg reg)
|
2017-10-27 17:26:36 +03:00
|
|
|
{
|
|
|
|
ent->access_id = extract32(reg, 1, 18);
|
|
|
|
ent->u = extract32(reg, 19, 1);
|
|
|
|
ent->ar_pl2 = extract32(reg, 20, 2);
|
|
|
|
ent->ar_pl1 = extract32(reg, 22, 2);
|
|
|
|
ent->ar_type = extract32(reg, 24, 3);
|
|
|
|
ent->b = extract32(reg, 27, 1);
|
|
|
|
ent->d = extract32(reg, 28, 1);
|
|
|
|
ent->t = extract32(reg, 29, 1);
|
|
|
|
ent->entry_valid = 1;
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
|
|
|
|
ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
|
2017-10-27 17:26:36 +03:00
|
|
|
}
|
2017-10-27 19:33:23 +03:00
|
|
|
|
2023-09-13 11:55:59 +03:00
|
|
|
/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
|
|
|
|
void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
|
|
|
|
{
|
|
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
|
|
|
|
|
|
|
|
if (unlikely(ent == NULL)) {
|
|
|
|
qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
set_access_bits(env, ent, reg);
|
|
|
|
}
|
|
|
|
|
2017-10-27 19:33:23 +03:00
|
|
|
/* Purge (Insn/Data) TLB. This is explicitly page-based, and is
|
|
|
|
synchronous across all processors. */
|
|
|
|
static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
|
|
|
|
{
|
2023-09-14 03:22:49 +03:00
|
|
|
CPUHPPAState *env = cpu_env(cpu);
|
2017-10-27 19:33:23 +03:00
|
|
|
target_ulong addr = (target_ulong) data.target_ptr;
|
|
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
|
|
|
|
|
|
|
|
if (ent && ent->entry_valid) {
|
2023-09-13 11:55:59 +03:00
|
|
|
hppa_flush_tlb_ent(env, ent, false);
|
2017-10-27 19:33:23 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
|
|
|
|
{
|
2019-03-23 03:51:33 +03:00
|
|
|
CPUState *src = env_cpu(env);
|
2017-10-27 19:33:23 +03:00
|
|
|
CPUState *cpu;
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_ptlb(env);
|
2017-10-27 19:33:23 +03:00
|
|
|
run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
|
|
|
|
|
|
|
|
CPU_FOREACH(cpu) {
|
|
|
|
if (cpu != src) {
|
|
|
|
async_run_on_cpu(cpu, ptlb_work, data);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
async_safe_run_on_cpu(src, ptlb_work, data);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
|
|
|
|
number of pages/entries (we choose all), and is local to the cpu. */
|
|
|
|
void HELPER(ptlbe)(CPUHPPAState *env)
|
|
|
|
{
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_ptlbe(env);
|
2023-09-13 11:55:59 +03:00
|
|
|
qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
|
|
|
|
memset(&env->tlb[HPPA_BTLB_ENTRIES], 0,
|
|
|
|
sizeof(env->tlb) - HPPA_BTLB_ENTRIES * sizeof(env->tlb[0]));
|
|
|
|
env->tlb_last = HPPA_BTLB_ENTRIES;
|
2023-08-07 12:42:11 +03:00
|
|
|
tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
|
2017-10-27 19:33:23 +03:00
|
|
|
}
|
2017-11-05 12:50:47 +03:00
|
|
|
|
2019-03-11 22:16:00 +03:00
|
|
|
void cpu_hppa_change_prot_id(CPUHPPAState *env)
|
|
|
|
{
|
|
|
|
if (env->psw & PSW_P) {
|
2023-08-07 12:42:11 +03:00
|
|
|
tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
|
2019-03-11 22:16:00 +03:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void HELPER(change_prot_id)(CPUHPPAState *env)
|
|
|
|
{
|
|
|
|
cpu_hppa_change_prot_id(env);
|
|
|
|
}
|
|
|
|
|
2017-11-05 12:50:47 +03:00
|
|
|
target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
|
|
|
|
{
|
|
|
|
hwaddr phys;
|
|
|
|
int prot, excp;
|
|
|
|
|
|
|
|
excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
|
2023-09-13 11:55:59 +03:00
|
|
|
&phys, &prot, NULL);
|
2017-11-05 12:50:47 +03:00
|
|
|
if (excp >= 0) {
|
|
|
|
if (env->psw & PSW_Q) {
|
|
|
|
/* ??? Needs tweaking for hppa64. */
|
|
|
|
env->cr[CR_IOR] = addr;
|
|
|
|
env->cr[CR_ISR] = addr >> 32;
|
|
|
|
}
|
|
|
|
if (excp == EXCP_DTLB_MISS) {
|
|
|
|
excp = EXCP_NA_DTLB_MISS;
|
|
|
|
}
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_lpa_failed(env, addr);
|
2017-11-05 12:50:47 +03:00
|
|
|
hppa_dynamic_excp(env, excp, GETPC());
|
|
|
|
}
|
2019-03-11 22:15:55 +03:00
|
|
|
trace_hppa_tlb_lpa_success(env, addr, phys);
|
2017-11-05 12:50:47 +03:00
|
|
|
return phys;
|
|
|
|
}
|
2017-12-15 23:37:26 +03:00
|
|
|
|
|
|
|
/* Return the ar_type of the TLB at VADDR, or -1. */
|
|
|
|
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
|
|
|
|
{
|
|
|
|
hppa_tlb_entry *ent = hppa_find_tlb(env, vaddr);
|
|
|
|
return ent ? ent->ar_type : -1;
|
|
|
|
}
|
2023-09-13 12:25:09 +03:00
|
|
|
|
|
|
|
/*
|
|
|
|
* diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
|
|
|
|
* allow operating systems to modify the Block TLB (BTLB) entries.
|
|
|
|
* For implementation details see page 1-13 in
|
|
|
|
* https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
|
|
|
|
*/
|
|
|
|
void HELPER(diag_btlb)(CPUHPPAState *env)
|
|
|
|
{
|
|
|
|
unsigned int phys_page, len, slot;
|
|
|
|
int mmu_idx = cpu_mmu_index(env, 0);
|
|
|
|
uintptr_t ra = GETPC();
|
|
|
|
hppa_tlb_entry *btlb;
|
|
|
|
uint64_t virt_page;
|
|
|
|
uint32_t *vaddr;
|
|
|
|
|
|
|
|
#ifdef TARGET_HPPA64
|
|
|
|
/* BTLBs are not supported on 64-bit CPUs */
|
|
|
|
env->gr[28] = -1; /* nonexistent procedure */
|
|
|
|
return;
|
|
|
|
#endif
|
|
|
|
env->gr[28] = 0; /* PDC_OK */
|
|
|
|
|
|
|
|
switch (env->gr[25]) {
|
|
|
|
case 0:
|
|
|
|
/* return BTLB parameters */
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
|
|
|
|
vaddr = probe_access(env, env->gr[24], 4 * sizeof(target_ulong),
|
|
|
|
MMU_DATA_STORE, mmu_idx, ra);
|
|
|
|
if (vaddr == NULL) {
|
|
|
|
env->gr[28] = -10; /* invalid argument */
|
|
|
|
} else {
|
|
|
|
vaddr[0] = cpu_to_be32(1);
|
|
|
|
vaddr[1] = cpu_to_be32(16 * 1024);
|
|
|
|
vaddr[2] = cpu_to_be32(HPPA_BTLB_FIXED);
|
|
|
|
vaddr[3] = cpu_to_be32(HPPA_BTLB_VARIABLE);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 1:
|
|
|
|
/* insert BTLB entry */
|
|
|
|
virt_page = env->gr[24]; /* upper 32 bits */
|
|
|
|
virt_page <<= 32;
|
|
|
|
virt_page |= env->gr[23]; /* lower 32 bits */
|
|
|
|
phys_page = env->gr[22];
|
|
|
|
len = env->gr[21];
|
|
|
|
slot = env->gr[19];
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
|
|
|
|
"0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
|
|
|
|
"into slot %d\n",
|
|
|
|
(long long) virt_page << TARGET_PAGE_BITS,
|
|
|
|
(long long) (virt_page + len) << TARGET_PAGE_BITS,
|
|
|
|
(long long) virt_page, phys_page, len, slot);
|
|
|
|
if (slot < HPPA_BTLB_ENTRIES) {
|
|
|
|
btlb = &env->tlb[slot];
|
|
|
|
/* force flush of possibly existing BTLB entry */
|
|
|
|
hppa_flush_tlb_ent(env, btlb, true);
|
|
|
|
/* create new BTLB entry */
|
|
|
|
btlb->va_b = virt_page << TARGET_PAGE_BITS;
|
|
|
|
btlb->va_e = btlb->va_b + len * TARGET_PAGE_SIZE - 1;
|
|
|
|
btlb->pa = phys_page << TARGET_PAGE_BITS;
|
|
|
|
set_access_bits(env, btlb, env->gr[20]);
|
|
|
|
btlb->t = 0;
|
|
|
|
btlb->d = 1;
|
|
|
|
} else {
|
|
|
|
env->gr[28] = -10; /* invalid argument */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
/* Purge BTLB entry */
|
|
|
|
slot = env->gr[22];
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
|
|
|
|
slot);
|
|
|
|
if (slot < HPPA_BTLB_ENTRIES) {
|
|
|
|
btlb = &env->tlb[slot];
|
|
|
|
hppa_flush_tlb_ent(env, btlb, true);
|
|
|
|
} else {
|
|
|
|
env->gr[28] = -10; /* invalid argument */
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
/* Purge all BTLB entries */
|
|
|
|
qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
|
|
|
|
for (slot = 0; slot < HPPA_BTLB_ENTRIES; slot++) {
|
|
|
|
btlb = &env->tlb[slot];
|
|
|
|
hppa_flush_tlb_ent(env, btlb, true);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
env->gr[28] = -2; /* nonexistent option */
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|