qemu/accel/tcg/tb-maint.c

705 lines
20 KiB
C
Raw Normal View History

/*
* Translation Block Maintaince
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/cputlb.h"
#include "exec/log.h"
#include "exec/exec-all.h"
#include "exec/translate-all.h"
#include "sysemu/tcg.h"
#include "tcg/tcg.h"
#include "tb-hash.h"
#include "tb-context.h"
#include "internal.h"
static bool tb_cmp(const void *ap, const void *bp)
{
const TranslationBlock *a = ap;
const TranslationBlock *b = bp;
return ((TARGET_TB_PCREL || tb_pc(a) == tb_pc(b)) &&
a->cs_base == b->cs_base &&
a->flags == b->flags &&
(tb_cflags(a) & ~CF_INVALID) == (tb_cflags(b) & ~CF_INVALID) &&
a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
tb_page_addr0(a) == tb_page_addr0(b) &&
tb_page_addr1(a) == tb_page_addr1(b));
}
void tb_htable_init(void)
{
unsigned int mode = QHT_MODE_AUTO_RESIZE;
qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
}
/* Set to NULL all the 'first_tb' fields in all PageDescs. */
static void page_flush_tb_1(int level, void **lp)
{
int i;
if (*lp == NULL) {
return;
}
if (level == 0) {
PageDesc *pd = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
page_lock(&pd[i]);
pd[i].first_tb = (uintptr_t)NULL;
page_unlock(&pd[i]);
}
} else {
void **pp = *lp;
for (i = 0; i < V_L2_SIZE; ++i) {
page_flush_tb_1(level - 1, pp + i);
}
}
}
static void page_flush_tb(void)
{
int i, l1_sz = v_l1_size;
for (i = 0; i < l1_sz; i++) {
page_flush_tb_1(v_l2_levels, l1_map + i);
}
}
/* flush all the translation blocks */
static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
{
bool did_flush = false;
mmap_lock();
/* If it is already been done on request of another CPU, just retry. */
if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
goto done;
}
did_flush = true;
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
page_flush_tb();
tcg_region_reset_all();
/* XXX: flush processor icache at this point if cache flush is expensive */
qatomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
done:
mmap_unlock();
if (did_flush) {
qemu_plugin_flush_cb();
}
}
void tb_flush(CPUState *cpu)
{
if (tcg_enabled()) {
unsigned tb_flush_count = qatomic_mb_read(&tb_ctx.tb_flush_count);
if (cpu_in_exclusive_context(cpu)) {
do_tb_flush(cpu, RUN_ON_CPU_HOST_INT(tb_flush_count));
} else {
async_safe_run_on_cpu(cpu, do_tb_flush,
RUN_ON_CPU_HOST_INT(tb_flush_count));
}
}
}
/*
* user-mode: call with mmap_lock held
* !user-mode: call with @pd->lock held
*/
static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
{
TranslationBlock *tb1;
uintptr_t *pprev;
unsigned int n1;
assert_page_locked(pd);
pprev = &pd->first_tb;
PAGE_FOR_EACH_TB(pd, tb1, n1) {
if (tb1 == tb) {
*pprev = tb1->page_next[n1];
return;
}
pprev = &tb1->page_next[n1];
}
g_assert_not_reached();
}
/* remove @orig from its @n_orig-th jump list */
static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
{
uintptr_t ptr, ptr_locked;
TranslationBlock *dest;
TranslationBlock *tb;
uintptr_t *pprev;
int n;
/* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
ptr = qatomic_or_fetch(&orig->jmp_dest[n_orig], 1);
dest = (TranslationBlock *)(ptr & ~1);
if (dest == NULL) {
return;
}
qemu_spin_lock(&dest->jmp_lock);
/*
* While acquiring the lock, the jump might have been removed if the
* destination TB was invalidated; check again.
*/
ptr_locked = qatomic_read(&orig->jmp_dest[n_orig]);
if (ptr_locked != ptr) {
qemu_spin_unlock(&dest->jmp_lock);
/*
* The only possibility is that the jump was unlinked via
* tb_jump_unlink(dest). Seeing here another destination would be a bug,
* because we set the LSB above.
*/
g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
return;
}
/*
* We first acquired the lock, and since the destination pointer matches,
* we know for sure that @orig is in the jmp list.
*/
pprev = &dest->jmp_list_head;
TB_FOR_EACH_JMP(dest, tb, n) {
if (tb == orig && n == n_orig) {
*pprev = tb->jmp_list_next[n];
/* no need to set orig->jmp_dest[n]; setting the LSB was enough */
qemu_spin_unlock(&dest->jmp_lock);
return;
}
pprev = &tb->jmp_list_next[n];
}
g_assert_not_reached();
}
/*
* Reset the jump entry 'n' of a TB so that it is not chained to another TB.
*/
void tb_reset_jump(TranslationBlock *tb, int n)
{
uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
tb_set_jmp_target(tb, n, addr);
}
/* remove any jumps to the TB */
static inline void tb_jmp_unlink(TranslationBlock *dest)
{
TranslationBlock *tb;
int n;
qemu_spin_lock(&dest->jmp_lock);
TB_FOR_EACH_JMP(dest, tb, n) {
tb_reset_jump(tb, n);
qatomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
/* No need to clear the list entry; setting the dest ptr is enough */
}
dest->jmp_list_head = (uintptr_t)NULL;
qemu_spin_unlock(&dest->jmp_lock);
}
static void tb_jmp_cache_inval_tb(TranslationBlock *tb)
{
CPUState *cpu;
if (TARGET_TB_PCREL) {
/* A TB may be at any virtual address */
CPU_FOREACH(cpu) {
tcg_flush_jmp_cache(cpu);
}
} else {
uint32_t h = tb_jmp_cache_hash_func(tb_pc(tb));
CPU_FOREACH(cpu) {
CPUJumpCache *jc = cpu->tb_jmp_cache;
if (qatomic_read(&jc->array[h].tb) == tb) {
qatomic_set(&jc->array[h].tb, NULL);
}
}
}
}
/*
* In user-mode, call with mmap_lock held.
* In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
* locks held.
*/
static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
{
PageDesc *p;
uint32_t h;
tb_page_addr_t phys_pc;
uint32_t orig_cflags = tb_cflags(tb);
assert_memory_lock();
/* make sure no further incoming jumps will be chained to this TB */
qemu_spin_lock(&tb->jmp_lock);
qatomic_set(&tb->cflags, tb->cflags | CF_INVALID);
qemu_spin_unlock(&tb->jmp_lock);
/* remove the TB from the hash list */
phys_pc = tb_page_addr0(tb);
h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : tb_pc(tb)),
tb->flags, orig_cflags, tb->trace_vcpu_dstate);
if (!qht_remove(&tb_ctx.htable, tb, h)) {
return;
}
/* remove the TB from the page list */
if (rm_from_page_list) {
p = page_find(phys_pc >> TARGET_PAGE_BITS);
tb_page_remove(p, tb);
phys_pc = tb_page_addr1(tb);
if (phys_pc != -1) {
p = page_find(phys_pc >> TARGET_PAGE_BITS);
tb_page_remove(p, tb);
}
}
/* remove the TB from the hash list */
tb_jmp_cache_inval_tb(tb);
/* suppress this TB from the two jump lists */
tb_remove_from_jmp_list(tb, 0);
tb_remove_from_jmp_list(tb, 1);
/* suppress any remaining jumps to this TB */
tb_jmp_unlink(tb);
qatomic_set(&tb_ctx.tb_phys_invalidate_count,
tb_ctx.tb_phys_invalidate_count + 1);
}
static void tb_phys_invalidate__locked(TranslationBlock *tb)
{
qemu_thread_jit_write();
do_tb_phys_invalidate(tb, true);
qemu_thread_jit_execute();
}
static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
PageDesc **ret_p2, tb_page_addr_t phys2, bool alloc)
{
PageDesc *p1, *p2;
tb_page_addr_t page1;
tb_page_addr_t page2;
assert_memory_lock();
g_assert(phys1 != -1);
page1 = phys1 >> TARGET_PAGE_BITS;
page2 = phys2 >> TARGET_PAGE_BITS;
p1 = page_find_alloc(page1, alloc);
if (ret_p1) {
*ret_p1 = p1;
}
if (likely(phys2 == -1)) {
page_lock(p1);
return;
} else if (page1 == page2) {
page_lock(p1);
if (ret_p2) {
*ret_p2 = p1;
}
return;
}
p2 = page_find_alloc(page2, alloc);
if (ret_p2) {
*ret_p2 = p2;
}
if (page1 < page2) {
page_lock(p1);
page_lock(p2);
} else {
page_lock(p2);
page_lock(p1);
}
}
#ifdef CONFIG_USER_ONLY
static inline void page_lock_tb(const TranslationBlock *tb) { }
static inline void page_unlock_tb(const TranslationBlock *tb) { }
#else
/* lock the page(s) of a TB in the correct acquisition order */
static void page_lock_tb(const TranslationBlock *tb)
{
page_lock_pair(NULL, tb_page_addr0(tb), NULL, tb_page_addr1(tb), false);
}
static void page_unlock_tb(const TranslationBlock *tb)
{
PageDesc *p1 = page_find(tb_page_addr0(tb) >> TARGET_PAGE_BITS);
page_unlock(p1);
if (unlikely(tb_page_addr1(tb) != -1)) {
PageDesc *p2 = page_find(tb_page_addr1(tb) >> TARGET_PAGE_BITS);
if (p2 != p1) {
page_unlock(p2);
}
}
}
#endif
/*
* Invalidate one TB.
* Called with mmap_lock held in user-mode.
*/
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
if (page_addr == -1 && tb_page_addr0(tb) != -1) {
page_lock_tb(tb);
do_tb_phys_invalidate(tb, true);
page_unlock_tb(tb);
} else {
do_tb_phys_invalidate(tb, false);
}
}
/*
* Add the tb in the target page and protect it if necessary.
* Called with mmap_lock held for user-mode emulation.
* Called with @p->lock held in !user-mode.
*/
static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
unsigned int n, tb_page_addr_t page_addr)
{
#ifndef CONFIG_USER_ONLY
bool page_already_protected;
#endif
assert_page_locked(p);
tb->page_next[n] = p->first_tb;
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != (uintptr_t)NULL;
#endif
p->first_tb = (uintptr_t)tb | n;
#if defined(CONFIG_USER_ONLY)
/* translator_loop() must have made all TB pages non-writable */
assert(!(p->flags & PAGE_WRITE));
#else
/*
* If some code is already present, then the pages are already
* protected. So we handle the case where only the first TB is
* allocated in a physical page.
*/
if (!page_already_protected) {
tlb_protect_code(page_addr);
}
#endif
}
/*
* Add a new TB and link it to the physical page tables. phys_page2 is
* (-1) to indicate that only one page contains the TB.
*
* Called with mmap_lock held for user-mode emulation.
*
* Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
* Note that in !user-mode, another thread might have already added a TB
* for the same block of guest code that @tb corresponds to. In that case,
* the caller should discard the original @tb, and use instead the returned TB.
*/
TranslationBlock *tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
tb_page_addr_t phys_page2)
{
PageDesc *p;
PageDesc *p2 = NULL;
void *existing_tb = NULL;
uint32_t h;
assert_memory_lock();
tcg_debug_assert(!(tb->cflags & CF_INVALID));
/*
* Add the TB to the page list, acquiring first the pages's locks.
* We keep the locks held until after inserting the TB in the hash table,
* so that if the insertion fails we know for sure that the TBs are still
* in the page descriptors.
* Note that inserting into the hash table first isn't an option, since
* we can only insert TBs that are fully initialized.
*/
page_lock_pair(&p, phys_pc, &p2, phys_page2, true);
tb_page_add(p, tb, 0, phys_pc);
if (p2) {
tb_page_add(p2, tb, 1, phys_page2);
}
/* add in the hash table */
h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : tb_pc(tb)),
tb->flags, tb->cflags, tb->trace_vcpu_dstate);
qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
/* remove TB from the page(s) if we couldn't insert it */
if (unlikely(existing_tb)) {
tb_page_remove(p, tb);
if (p2) {
tb_page_remove(p2, tb);
}
tb = existing_tb;
}
if (p2 && p2 != p) {
page_unlock(p2);
}
page_unlock(p);
return tb;
}
/*
* @p must be non-NULL.
* user-mode: call with mmap_lock held.
* !user-mode: call with all @pages locked.
*/
static void
tb_invalidate_phys_page_range__locked(struct page_collection *pages,
PageDesc *p, tb_page_addr_t start,
tb_page_addr_t end,
uintptr_t retaddr)
{
TranslationBlock *tb;
tb_page_addr_t tb_start, tb_end;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
CPUState *cpu = current_cpu;
bool current_tb_not_found = retaddr != 0;
bool current_tb_modified = false;
TranslationBlock *current_tb = NULL;
#endif /* TARGET_HAS_PRECISE_SMC */
assert_page_locked(p);
/*
* We remove all the TBs in the range [start, end[.
* XXX: see if in some cases it could be faster to invalidate all the code
*/
PAGE_FOR_EACH_TB(p, tb, n) {
assert_page_locked(p);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
it is not a problem */
tb_start = tb_page_addr0(tb);
tb_end = tb_start + tb->size;
} else {
tb_start = tb_page_addr1(tb);
tb_end = tb_start + ((tb_page_addr0(tb) + tb->size)
& ~TARGET_PAGE_MASK);
}
if (!(tb_end <= start || tb_start >= end)) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_not_found) {
current_tb_not_found = false;
/* now we have a real cpu fault */
current_tb = tcg_tb_lookup(retaddr);
}
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop
* its execution. We could be more precise by checking
* that the modification is after the current PC, but it
* would require a specialized function to partially
* restore the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(cpu, current_tb, retaddr);
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate__locked(tb);
}
}
#if !defined(CONFIG_USER_ONLY)
/* if no code remaining, no need to continue to use slow writes */
if (!p->first_tb) {
tlb_unprotect_code(start);
}
#endif
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
page_collection_unlock(pages);
/* Force execution of one insn next time. */
cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
mmap_unlock();
cpu_loop_exit_noexc(cpu);
}
#endif
}
/*
* Invalidate all TBs which intersect with the target physical
* address page @addr.
*
* Called with mmap_lock held for user-mode emulation
*/
void tb_invalidate_phys_page(tb_page_addr_t addr)
{
struct page_collection *pages;
tb_page_addr_t start, end;
PageDesc *p;
assert_memory_lock();
p = page_find(addr >> TARGET_PAGE_BITS);
if (p == NULL) {
return;
}
start = addr & TARGET_PAGE_MASK;
end = start + TARGET_PAGE_SIZE;
pages = page_collection_lock(start, end);
tb_invalidate_phys_page_range__locked(pages, p, start, end, 0);
page_collection_unlock(pages);
}
/*
* Invalidate all TBs which intersect with the target physical address range
* [start;end[. NOTE: start and end may refer to *different* physical pages.
* 'is_cpu_write_access' should be true if called from a real cpu write
* access: the virtual CPU will exit the current TB if code is modified inside
* this TB.
*
* Called with mmap_lock held for user-mode emulation.
*/
void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
{
struct page_collection *pages;
tb_page_addr_t next;
assert_memory_lock();
pages = page_collection_lock(start, end);
for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
start < end;
start = next, next += TARGET_PAGE_SIZE) {
PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
tb_page_addr_t bound = MIN(next, end);
if (pd == NULL) {
continue;
}
tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
}
page_collection_unlock(pages);
}
#ifdef CONFIG_SOFTMMU
/*
* len must be <= 8 and start must be a multiple of len.
* Called via softmmu_template.h when code areas are written to with
* iothread mutex not held.
*
* Call with all @pages in the range [@start, @start + len[ locked.
*/
void tb_invalidate_phys_page_fast(struct page_collection *pages,
tb_page_addr_t start, int len,
uintptr_t retaddr)
{
PageDesc *p;
assert_memory_lock();
p = page_find(start >> TARGET_PAGE_BITS);
if (!p) {
return;
}
assert_page_locked(p);
tb_invalidate_phys_page_range__locked(pages, p, start, start + len,
retaddr);
}
#else
/*
* Called with mmap_lock held. If pc is not 0 then it indicates the
* host PC of the faulting store instruction that caused this invalidate.
* Returns true if the caller needs to abort execution of the current
* TB (because it was modified by this store and the guest CPU has
* precise-SMC semantics).
*/
bool tb_invalidate_phys_page_unwind(tb_page_addr_t addr, uintptr_t pc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
CPUState *cpu = current_cpu;
bool current_tb_modified = false;
#endif
assert_memory_lock();
addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS);
if (!p) {
return false;
}
#ifdef TARGET_HAS_PRECISE_SMC
if (p->first_tb && pc != 0) {
current_tb = tcg_tb_lookup(pc);
}
#endif
assert_page_locked(p);
PAGE_FOR_EACH_TB(p, tb, n) {
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
/*
* If we are modifying the current TB, we must stop its execution.
* We could be more precise by checking that the modification is
* after the current PC, but it would require a specialized
* function to partially restore the CPU state.
*/
current_tb_modified = true;
cpu_restore_state_from_tb(cpu, current_tb, pc);
}
#endif /* TARGET_HAS_PRECISE_SMC */
tb_phys_invalidate(tb, addr);
}
p->first_tb = (uintptr_t)NULL;
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb_modified) {
/* Force execution of one insn next time. */
cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
return true;
}
#endif
return false;
}
#endif