qemu/target/ppc/mem_helper.c

624 lines
21 KiB
C
Raw Normal View History

/*
* PowerPC memory access emulation helpers for QEMU.
*
Great PowerPC emulation code resynchronisation and improvments: - Add status file to make regression tracking easier - Move all micro-operations helpers definitions into a separate header: should never be seen outside of op.c - Update copyrights - Add new / missing PowerPC CPU definitions - Add definitions for PowerPC BookE - Add support for PowerPC 6xx/7xx software driven TLBs Allow use of PowerPC 603 as an example - Add preliminary code for POWER, POWER2, PowerPC 403, 405, 440, 601, 602 and BookE support - Avoid compiling priviledged only resources support for user-mode emulation - Remove unused helpers / micro-ops / dead code - Add instructions usage statistics dump: useful to figure which instructions need strong optimizations. - Micro-operation fixes: * add missing RETURN in some micro-ops * fix prototypes * use softfloat routines for all floating-point operations * fix tlbie instruction * move some huge micro-operations into helpers - emulation fixes: * fix inverted opcodes for fcmpo / fcmpu * condition register update is always to be done after the whole instruction has completed * add missing NIP updates when calling helpers that may generate an exception - optimizations and improvments: * optimize very often used instructions (li, mr, rlwixx...) * remove specific micro-ops for rarely used instructions * add routines for addresses computations to avoid bugs due to multiple different implementations * fix TB linking: do not reset T0 at the end of every TB. git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@2473 c046a42c-6fe2-441c-8c8c-71466251a162
2007-03-07 11:32:30 +03:00
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "exec/helper-proto.h"
#include "helper_regs.h"
#include "exec/cpu_ldst.h"
#include "tcg/tcg.h"
#include "internal.h"
#include "qemu/atomic128.h"
/* #define DEBUG_OP */
static inline bool needs_byteswap(const CPUPPCState *env)
{
#if defined(TARGET_WORDS_BIGENDIAN)
return msr_le;
#else
return !msr_le;
#endif
}
/*****************************************************************************/
/* Memory load and stores */
static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
target_long arg)
{
#if defined(TARGET_PPC64)
if (!msr_is_64bit(env, env->msr)) {
return (uint32_t)(addr + arg);
} else
#endif
{
return addr + arg;
}
}
static void *probe_contiguous(CPUPPCState *env, target_ulong addr, uint32_t nb,
MMUAccessType access_type, int mmu_idx,
uintptr_t raddr)
{
void *host1, *host2;
uint32_t nb_pg1, nb_pg2;
nb_pg1 = -(addr | TARGET_PAGE_MASK);
if (likely(nb <= nb_pg1)) {
/* The entire operation is on a single page. */
return probe_access(env, addr, nb, access_type, mmu_idx, raddr);
}
/* The operation spans two pages. */
nb_pg2 = nb - nb_pg1;
host1 = probe_access(env, addr, nb_pg1, access_type, mmu_idx, raddr);
addr = addr_add(env, addr, nb_pg1);
host2 = probe_access(env, addr, nb_pg2, access_type, mmu_idx, raddr);
/* If the two host pages are contiguous, optimize. */
if (host2 == host1 + nb_pg1) {
return host1;
}
return NULL;
}
void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
uintptr_t raddr = GETPC();
int mmu_idx = cpu_mmu_index(env, false);
void *host = probe_contiguous(env, addr, (32 - reg) * 4,
MMU_DATA_LOAD, mmu_idx, raddr);
if (likely(host)) {
/* Fast path -- the entire operation is in RAM at host. */
for (; reg < 32; reg++) {
env->gpr[reg] = (uint32_t)ldl_be_p(host);
host += 4;
}
} else {
/* Slow path -- at least some of the operation requires i/o. */
for (; reg < 32; reg++) {
env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
addr = addr_add(env, addr, 4);
}
}
}
void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
uintptr_t raddr = GETPC();
int mmu_idx = cpu_mmu_index(env, false);
void *host = probe_contiguous(env, addr, (32 - reg) * 4,
MMU_DATA_STORE, mmu_idx, raddr);
if (likely(host)) {
/* Fast path -- the entire operation is in RAM at host. */
for (; reg < 32; reg++) {
stl_be_p(host, env->gpr[reg]);
host += 4;
}
} else {
/* Slow path -- at least some of the operation requires i/o. */
for (; reg < 32; reg++) {
cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
addr = addr_add(env, addr, 4);
}
}
}
static void do_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
uint32_t reg, uintptr_t raddr)
{
int mmu_idx;
void *host;
uint32_t val;
if (unlikely(nb == 0)) {
return;
}
mmu_idx = cpu_mmu_index(env, false);
host = probe_contiguous(env, addr, nb, MMU_DATA_LOAD, mmu_idx, raddr);
if (likely(host)) {
/* Fast path -- the entire operation is in RAM at host. */
for (; nb > 3; nb -= 4) {
env->gpr[reg] = (uint32_t)ldl_be_p(host);
reg = (reg + 1) % 32;
host += 4;
}
switch (nb) {
default:
return;
case 1:
val = ldub_p(host) << 24;
break;
case 2:
val = lduw_be_p(host) << 16;
break;
case 3:
val = (lduw_be_p(host) << 16) | (ldub_p(host + 2) << 8);
break;
}
} else {
/* Slow path -- at least some of the operation requires i/o. */
for (; nb > 3; nb -= 4) {
env->gpr[reg] = cpu_ldl_mmuidx_ra(env, addr, mmu_idx, raddr);
reg = (reg + 1) % 32;
addr = addr_add(env, addr, 4);
}
switch (nb) {
default:
return;
case 1:
val = cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 24;
break;
case 2:
val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
break;
case 3:
val = cpu_lduw_mmuidx_ra(env, addr, mmu_idx, raddr) << 16;
addr = addr_add(env, addr, 2);
val |= cpu_ldub_mmuidx_ra(env, addr, mmu_idx, raddr) << 8;
break;
}
}
env->gpr[reg] = val;
}
void helper_lsw(CPUPPCState *env, target_ulong addr,
uint32_t nb, uint32_t reg)
{
do_lsw(env, addr, nb, reg, GETPC());
}
/*
* PPC32 specification says we must generate an exception if rA is in
* the range of registers to be loaded. In an other hand, IBM says
* this is valid, but rA won't be loaded. For now, I'll follow the
* spec...
*/
void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
uint32_t ra, uint32_t rb)
{
if (likely(xer_bc != 0)) {
int num_used_regs = DIV_ROUND_UP(xer_bc, 4);
if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
lsw_reg_in_range(reg, num_used_regs, rb))) {
raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL |
POWERPC_EXCP_INVAL_LSWX, GETPC());
} else {
do_lsw(env, addr, xer_bc, reg, GETPC());
}
}
}
void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
uint32_t reg)
{
uintptr_t raddr = GETPC();
int mmu_idx;
void *host;
uint32_t val;
if (unlikely(nb == 0)) {
return;
}
mmu_idx = cpu_mmu_index(env, false);
host = probe_contiguous(env, addr, nb, MMU_DATA_STORE, mmu_idx, raddr);
if (likely(host)) {
/* Fast path -- the entire operation is in RAM at host. */
for (; nb > 3; nb -= 4) {
stl_be_p(host, env->gpr[reg]);
reg = (reg + 1) % 32;
host += 4;
}
val = env->gpr[reg];
switch (nb) {
case 1:
stb_p(host, val >> 24);
break;
case 2:
stw_be_p(host, val >> 16);
break;
case 3:
stw_be_p(host, val >> 16);
stb_p(host + 2, val >> 8);
break;
}
} else {
for (; nb > 3; nb -= 4) {
cpu_stl_mmuidx_ra(env, addr, env->gpr[reg], mmu_idx, raddr);
reg = (reg + 1) % 32;
addr = addr_add(env, addr, 4);
}
val = env->gpr[reg];
switch (nb) {
case 1:
cpu_stb_mmuidx_ra(env, addr, val >> 24, mmu_idx, raddr);
break;
case 2:
cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
break;
case 3:
cpu_stw_mmuidx_ra(env, addr, val >> 16, mmu_idx, raddr);
addr = addr_add(env, addr, 2);
cpu_stb_mmuidx_ra(env, addr, val >> 8, mmu_idx, raddr);
break;
}
}
}
static void dcbz_common(CPUPPCState *env, target_ulong addr,
uint32_t opcode, bool epid, uintptr_t retaddr)
{
target_ulong mask, dcbz_size = env->dcache_line_size;
uint32_t i;
void *haddr;
int mmu_idx = epid ? PPC_TLB_EPID_STORE : env->dmmu_idx;
#if defined(TARGET_PPC64)
/* Check for dcbz vs dcbzl on 970 */
if (env->excp_model == POWERPC_EXCP_970 &&
!(opcode & 0x00200000) && ((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
dcbz_size = 32;
}
#endif
/* Align address */
mask = ~(dcbz_size - 1);
addr &= mask;
/* Check reservation */
if ((env->reserve_addr & mask) == addr) {
env->reserve_addr = (target_ulong)-1ULL;
}
/* Try fast path translate */
haddr = probe_write(env, addr, dcbz_size, mmu_idx, retaddr);
if (haddr) {
memset(haddr, 0, dcbz_size);
} else {
/* Slow path */
for (i = 0; i < dcbz_size; i += 8) {
cpu_stq_mmuidx_ra(env, addr + i, 0, mmu_idx, retaddr);
}
}
}
void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t opcode)
{
dcbz_common(env, addr, opcode, false, GETPC());
}
void helper_dcbzep(CPUPPCState *env, target_ulong addr, uint32_t opcode)
{
dcbz_common(env, addr, opcode, true, GETPC());
}
void helper_icbi(CPUPPCState *env, target_ulong addr)
{
addr &= ~(env->dcache_line_size - 1);
/*
* Invalidate one cache line :
* PowerPC specification says this is to be treated like a load
* (not a fetch) by the MMU. To be sure it will be so,
* do the load "by hand".
*/
cpu_ldl_data_ra(env, addr, GETPC());
}
void helper_icbiep(CPUPPCState *env, target_ulong addr)
{
#if !defined(CONFIG_USER_ONLY)
/* See comments above */
addr &= ~(env->dcache_line_size - 1);
cpu_ldl_mmuidx_ra(env, addr, PPC_TLB_EPID_LOAD, GETPC());
#endif
}
/* XXX: to be tested */
target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
uint32_t ra, uint32_t rb)
{
int i, c, d;
d = 24;
for (i = 0; i < xer_bc; i++) {
c = cpu_ldub_data_ra(env, addr, GETPC());
addr = addr_add(env, addr, 1);
/* ra (if not 0) and rb are never modified */
if (likely(reg != rb && (ra == 0 || reg != ra))) {
env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
}
if (unlikely(c == xer_cmp)) {
break;
}
if (likely(d != 0)) {
d -= 8;
} else {
d = 24;
reg++;
reg = reg & 0x1F;
}
}
return i;
}
#ifdef TARGET_PPC64
uint64_t helper_lq_le_parallel(CPUPPCState *env, target_ulong addr,
uint32_t opidx)
{
Int128 ret;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_ATOMIC128);
ret = helper_atomic_ldo_le_mmu(env, addr, opidx, GETPC());
env->retxh = int128_gethi(ret);
return int128_getlo(ret);
}
uint64_t helper_lq_be_parallel(CPUPPCState *env, target_ulong addr,
uint32_t opidx)
{
Int128 ret;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_ATOMIC128);
ret = helper_atomic_ldo_be_mmu(env, addr, opidx, GETPC());
env->retxh = int128_gethi(ret);
return int128_getlo(ret);
}
void helper_stq_le_parallel(CPUPPCState *env, target_ulong addr,
uint64_t lo, uint64_t hi, uint32_t opidx)
{
Int128 val;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_ATOMIC128);
val = int128_make128(lo, hi);
helper_atomic_sto_le_mmu(env, addr, val, opidx, GETPC());
}
void helper_stq_be_parallel(CPUPPCState *env, target_ulong addr,
uint64_t lo, uint64_t hi, uint32_t opidx)
{
Int128 val;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_ATOMIC128);
val = int128_make128(lo, hi);
helper_atomic_sto_be_mmu(env, addr, val, opidx, GETPC());
}
uint32_t helper_stqcx_le_parallel(CPUPPCState *env, target_ulong addr,
uint64_t new_lo, uint64_t new_hi,
uint32_t opidx)
{
bool success = false;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_CMPXCHG128);
if (likely(addr == env->reserve_addr)) {
Int128 oldv, cmpv, newv;
cmpv = int128_make128(env->reserve_val2, env->reserve_val);
newv = int128_make128(new_lo, new_hi);
oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv,
opidx, GETPC());
success = int128_eq(oldv, cmpv);
}
env->reserve_addr = -1;
return env->so + success * CRF_EQ_BIT;
}
uint32_t helper_stqcx_be_parallel(CPUPPCState *env, target_ulong addr,
uint64_t new_lo, uint64_t new_hi,
uint32_t opidx)
{
bool success = false;
/* We will have raised EXCP_ATOMIC from the translator. */
assert(HAVE_CMPXCHG128);
if (likely(addr == env->reserve_addr)) {
Int128 oldv, cmpv, newv;
cmpv = int128_make128(env->reserve_val2, env->reserve_val);
newv = int128_make128(new_lo, new_hi);
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv,
opidx, GETPC());
success = int128_eq(oldv, cmpv);
}
env->reserve_addr = -1;
return env->so + success * CRF_EQ_BIT;
}
#endif
/*****************************************************************************/
/* Altivec extension helpers */
#if defined(HOST_WORDS_BIGENDIAN)
#define HI_IDX 0
#define LO_IDX 1
#else
#define HI_IDX 1
#define LO_IDX 0
#endif
/*
* We use msr_le to determine index ordering in a vector. However,
* byteswapping is not simply controlled by msr_le. We also need to
* take into account endianness of the target. This is done for the
* little-endian PPC64 user-mode target.
*/
#define LVE(name, access, swap, element) \
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
target_ulong addr) \
{ \
size_t n_elems = ARRAY_SIZE(r->element); \
int adjust = HI_IDX * (n_elems - 1); \
int sh = sizeof(r->element[0]) >> 1; \
int index = (addr & 0xf) >> sh; \
if (msr_le) { \
index = n_elems - index - 1; \
} \
\
if (needs_byteswap(env)) { \
r->element[LO_IDX ? index : (adjust - index)] = \
swap(access(env, addr, GETPC())); \
} else { \
r->element[LO_IDX ? index : (adjust - index)] = \
access(env, addr, GETPC()); \
} \
}
#define I(x) (x)
LVE(lvebx, cpu_ldub_data_ra, I, u8)
LVE(lvehx, cpu_lduw_data_ra, bswap16, u16)
LVE(lvewx, cpu_ldl_data_ra, bswap32, u32)
#undef I
#undef LVE
#define STVE(name, access, swap, element) \
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
target_ulong addr) \
{ \
size_t n_elems = ARRAY_SIZE(r->element); \
int adjust = HI_IDX * (n_elems - 1); \
int sh = sizeof(r->element[0]) >> 1; \
int index = (addr & 0xf) >> sh; \
if (msr_le) { \
index = n_elems - index - 1; \
} \
\
if (needs_byteswap(env)) { \
access(env, addr, swap(r->element[LO_IDX ? index : \
(adjust - index)]), \
GETPC()); \
} else { \
access(env, addr, r->element[LO_IDX ? index : \
(adjust - index)], GETPC()); \
} \
}
#define I(x) (x)
STVE(stvebx, cpu_stb_data_ra, I, u8)
STVE(stvehx, cpu_stw_data_ra, bswap16, u16)
STVE(stvewx, cpu_stl_data_ra, bswap32, u32)
#undef I
#undef LVE
#ifdef TARGET_PPC64
#define GET_NB(rb) ((rb >> 56) & 0xFF)
#define VSX_LXVL(name, lj) \
void helper_##name(CPUPPCState *env, target_ulong addr, \
ppc_vsr_t *xt, target_ulong rb) \
{ \
ppc_vsr_t t; \
uint64_t nb = GET_NB(rb); \
int i; \
\
t.s128 = int128_zero(); \
if (nb) { \
nb = (nb >= 16) ? 16 : nb; \
if (msr_le && !lj) { \
for (i = 16; i > 16 - nb; i--) { \
t.VsrB(i - 1) = cpu_ldub_data_ra(env, addr, GETPC()); \
addr = addr_add(env, addr, 1); \
} \
} else { \
for (i = 0; i < nb; i++) { \
t.VsrB(i) = cpu_ldub_data_ra(env, addr, GETPC()); \
addr = addr_add(env, addr, 1); \
} \
} \
} \
*xt = t; \
}
VSX_LXVL(lxvl, 0)
VSX_LXVL(lxvll, 1)
#undef VSX_LXVL
#define VSX_STXVL(name, lj) \
void helper_##name(CPUPPCState *env, target_ulong addr, \
ppc_vsr_t *xt, target_ulong rb) \
{ \
target_ulong nb = GET_NB(rb); \
int i; \
\
if (!nb) { \
return; \
} \
\
nb = (nb >= 16) ? 16 : nb; \
if (msr_le && !lj) { \
for (i = 16; i > 16 - nb; i--) { \
cpu_stb_data_ra(env, addr, xt->VsrB(i - 1), GETPC()); \
addr = addr_add(env, addr, 1); \
} \
} else { \
for (i = 0; i < nb; i++) { \
cpu_stb_data_ra(env, addr, xt->VsrB(i), GETPC()); \
addr = addr_add(env, addr, 1); \
} \
} \
}
VSX_STXVL(stxvl, 0)
VSX_STXVL(stxvll, 1)
#undef VSX_STXVL
#undef GET_NB
#endif /* TARGET_PPC64 */
#undef HI_IDX
#undef LO_IDX
void helper_tbegin(CPUPPCState *env)
{
/*
* As a degenerate implementation, always fail tbegin. The reason
* given is "Nesting overflow". The "persistent" bit is set,
* providing a hint to the error handler to not retry. The TFIAR
* captures the address of the failure, which is this tbegin
* instruction. Instruction execution will continue with the next
* instruction in memory, which is precisely what we want.
*/
env->spr[SPR_TEXASR] =
(1ULL << TEXASR_FAILURE_PERSISTENT) |
(1ULL << TEXASR_NESTING_OVERFLOW) |
(msr_hv << TEXASR_PRIVILEGE_HV) |
(msr_pr << TEXASR_PRIVILEGE_PR) |
(1ULL << TEXASR_FAILURE_SUMMARY) |
(1ULL << TEXASR_TFIAR_EXACT);
env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
env->spr[SPR_TFHAR] = env->nip + 4;
env->crf[0] = 0xB; /* 0b1010 = transaction failure */
}