2019-03-29 07:27:45 +03:00
|
|
|
QA output created by 241
|
|
|
|
|
|
|
|
=== Exporting unaligned raw image, natural alignment ===
|
|
|
|
|
2022-03-04 22:36:06 +03:00
|
|
|
exports available: 1
|
|
|
|
export: ''
|
2019-03-29 07:27:45 +03:00
|
|
|
size: 1024
|
nbd/server: Advertise actual minimum block size
Both NBD_CMD_BLOCK_STATUS and structured NBD_CMD_READ will split their
reply according to bdrv_block_status() boundaries. If the block device
has a request_alignment smaller than 512, but we advertise a block
alignment of 512 to the client, then this can result in the server
reply violating client expectations by reporting a smaller region of
the export than what the client is permitted to address (although this
is less of an issue for qemu 4.0 clients, given recent client patches
to overlook our non-compliance at EOF). Since it's always better to
be strict in what we send, it is worth advertising the actual minimum
block limit rather than blindly rounding it up to 512.
Note that this patch is not foolproof - it is still possible to
provoke non-compliant server behavior using:
$ qemu-nbd --image-opts driver=blkdebug,align=512,image.driver=file,image.filename=/path/to/non-aligned-file
That is arguably a bug in the blkdebug driver (it should never pass
back block status smaller than its alignment, even if it has to make
multiple bdrv_get_status calls and determine the
least-common-denominator status among the group to return). It may
also be possible to observe issues with a backing layer with smaller
alignment than the active layer, although so far I have been unable to
write a reliable iotest for that scenario (but again, an issue like
that could be argued to be a bug in the block layer, or something
where we need a flag to bdrv_block_status() to state whether the
result must be aligned to the current layer's limits or can be
subdivided for accuracy when chasing backing files).
Anyways, as blkdebug is not normally used, and as this patch makes our
server more interoperable with qemu 3.1 clients, it is worth applying
now, even while we still work on a larger patch series for the 4.1
timeframe to have byte-accurate file lengths.
Note that the iotests output changes - for 223 and 233, we can see the
server's better granularity advertisement; and for 241, the three test
cases have the following effects:
- natural alignment: the server's smaller alignment is now advertised,
and the hole reported at EOF is now the right result; we've gotten rid
of the server's non-compliance
- forced server alignment: the server still advertises 512 bytes, but
still sends a mid-sector hole. This is still a server compliance bug,
which needs to be fixed in the block layer in a later patch; output
does not change because the client is already being tolerant of the
non-compliance
- forced client alignment: the server's smaller alignment means that
the client now sees the server's status change mid-sector without any
protocol violations, but the fact that the map shows an unaligned
mid-sector hole is evidence of the block layer problems with aligned
block status, to be fixed in a later patch
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20190329042750.14704-7-eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: rebase to enhanced iotest 241 coverage]
2019-03-31 04:36:36 +03:00
|
|
|
min block: 1
|
qemu-img: Make unallocated part of backing chain obvious in map
The recently-added NBD context qemu:allocation-depth is able to
distinguish between locally-present data (even when that data is
sparse) [shown as depth 1 over NBD], and data that could not be found
anywhere in the backing chain [shown as depth 0]; and the libnbd
project was recently patched to give the human-readable name "absent"
to an allocation-depth of 0. But qemu-img map --output=json predates
that addition, and has the unfortunate behavior that all portions of
the backing chain that resolve without finding a hit in any backing
layer report the same depth as the final backing layer. This makes it
harder to reconstruct a qcow2 backing chain using just 'qemu-img map'
output, especially when using "backing":null to artificially limit a
backing chain, because it is impossible to distinguish between a
QCOW2_CLUSTER_UNALLOCATED (which defers to a [missing] backing file)
and a QCOW2_CLUSTER_ZERO_PLAIN cluster (which would override any
backing file), since both types of clusters otherwise show as
"data":false,"zero":true" (but note that we can distinguish a
QCOW2_CLUSTER_ZERO_ALLOCATED, which would also have an "offset":
listing).
The task of reconstructing a qcow2 chain was made harder in commit
0da9856851 (nbd: server: Report holes for raw images), because prior
to that point, it was possible to abuse NBD's block status command to
see which portions of a qcow2 file resulted in BDRV_BLOCK_ALLOCATED
(showing up as NBD_STATE_ZERO in isolation) vs. missing from the chain
(showing up as NBD_STATE_ZERO|NBD_STATE_HOLE); but now qemu reports
more accurate sparseness information over NBD.
An obvious solution is to make 'qemu-img map --output=json' add an
additional "present":false designation to any cluster lacking an
allocation anywhere in the chain, without any change to the "depth"
parameter to avoid breaking existing clients. The iotests have
several examples where this distinction demonstrates the additional
accuracy.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20210701190655.2131223-3-eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: fix more iotest fallout]
Signed-off-by: Eric Blake <eblake@redhat.com>
2021-07-01 22:06:55 +03:00
|
|
|
[{ "start": 0, "length": 1000, "depth": 0, "present": true, "zero": false, "data": true, "offset": OFFSET},
|
|
|
|
{ "start": 1000, "length": 24, "depth": 0, "present": true, "zero": true, "data": false, "offset": OFFSET}]
|
2019-03-29 07:27:45 +03:00
|
|
|
1 KiB (0x400) bytes allocated at offset 0 bytes (0x0)
|
|
|
|
|
|
|
|
=== Exporting unaligned raw image, forced server sector alignment ===
|
|
|
|
|
2022-03-04 22:36:06 +03:00
|
|
|
exports available: 1
|
|
|
|
export: ''
|
2019-03-29 07:27:45 +03:00
|
|
|
size: 1024
|
|
|
|
min block: 512
|
qemu-img: Make unallocated part of backing chain obvious in map
The recently-added NBD context qemu:allocation-depth is able to
distinguish between locally-present data (even when that data is
sparse) [shown as depth 1 over NBD], and data that could not be found
anywhere in the backing chain [shown as depth 0]; and the libnbd
project was recently patched to give the human-readable name "absent"
to an allocation-depth of 0. But qemu-img map --output=json predates
that addition, and has the unfortunate behavior that all portions of
the backing chain that resolve without finding a hit in any backing
layer report the same depth as the final backing layer. This makes it
harder to reconstruct a qcow2 backing chain using just 'qemu-img map'
output, especially when using "backing":null to artificially limit a
backing chain, because it is impossible to distinguish between a
QCOW2_CLUSTER_UNALLOCATED (which defers to a [missing] backing file)
and a QCOW2_CLUSTER_ZERO_PLAIN cluster (which would override any
backing file), since both types of clusters otherwise show as
"data":false,"zero":true" (but note that we can distinguish a
QCOW2_CLUSTER_ZERO_ALLOCATED, which would also have an "offset":
listing).
The task of reconstructing a qcow2 chain was made harder in commit
0da9856851 (nbd: server: Report holes for raw images), because prior
to that point, it was possible to abuse NBD's block status command to
see which portions of a qcow2 file resulted in BDRV_BLOCK_ALLOCATED
(showing up as NBD_STATE_ZERO in isolation) vs. missing from the chain
(showing up as NBD_STATE_ZERO|NBD_STATE_HOLE); but now qemu reports
more accurate sparseness information over NBD.
An obvious solution is to make 'qemu-img map --output=json' add an
additional "present":false designation to any cluster lacking an
allocation anywhere in the chain, without any change to the "depth"
parameter to avoid breaking existing clients. The iotests have
several examples where this distinction demonstrates the additional
accuracy.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20210701190655.2131223-3-eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: fix more iotest fallout]
Signed-off-by: Eric Blake <eblake@redhat.com>
2021-07-01 22:06:55 +03:00
|
|
|
[{ "start": 0, "length": 1024, "depth": 0, "present": true, "zero": false, "data": true, "offset": OFFSET}]
|
2019-03-29 07:27:45 +03:00
|
|
|
1 KiB (0x400) bytes allocated at offset 0 bytes (0x0)
|
2019-04-10 23:42:17 +03:00
|
|
|
WARNING: Image format was not specified for 'TEST_DIR/t.raw' and probing guessed raw.
|
|
|
|
Automatically detecting the format is dangerous for raw images, write operations on block 0 will be restricted.
|
|
|
|
Specify the 'raw' format explicitly to remove the restrictions.
|
2019-03-29 07:27:45 +03:00
|
|
|
|
|
|
|
=== Exporting unaligned raw image, forced client sector alignment ===
|
|
|
|
|
2022-03-04 22:36:06 +03:00
|
|
|
exports available: 1
|
|
|
|
export: ''
|
2019-03-29 07:27:45 +03:00
|
|
|
size: 1024
|
nbd/server: Advertise actual minimum block size
Both NBD_CMD_BLOCK_STATUS and structured NBD_CMD_READ will split their
reply according to bdrv_block_status() boundaries. If the block device
has a request_alignment smaller than 512, but we advertise a block
alignment of 512 to the client, then this can result in the server
reply violating client expectations by reporting a smaller region of
the export than what the client is permitted to address (although this
is less of an issue for qemu 4.0 clients, given recent client patches
to overlook our non-compliance at EOF). Since it's always better to
be strict in what we send, it is worth advertising the actual minimum
block limit rather than blindly rounding it up to 512.
Note that this patch is not foolproof - it is still possible to
provoke non-compliant server behavior using:
$ qemu-nbd --image-opts driver=blkdebug,align=512,image.driver=file,image.filename=/path/to/non-aligned-file
That is arguably a bug in the blkdebug driver (it should never pass
back block status smaller than its alignment, even if it has to make
multiple bdrv_get_status calls and determine the
least-common-denominator status among the group to return). It may
also be possible to observe issues with a backing layer with smaller
alignment than the active layer, although so far I have been unable to
write a reliable iotest for that scenario (but again, an issue like
that could be argued to be a bug in the block layer, or something
where we need a flag to bdrv_block_status() to state whether the
result must be aligned to the current layer's limits or can be
subdivided for accuracy when chasing backing files).
Anyways, as blkdebug is not normally used, and as this patch makes our
server more interoperable with qemu 3.1 clients, it is worth applying
now, even while we still work on a larger patch series for the 4.1
timeframe to have byte-accurate file lengths.
Note that the iotests output changes - for 223 and 233, we can see the
server's better granularity advertisement; and for 241, the three test
cases have the following effects:
- natural alignment: the server's smaller alignment is now advertised,
and the hole reported at EOF is now the right result; we've gotten rid
of the server's non-compliance
- forced server alignment: the server still advertises 512 bytes, but
still sends a mid-sector hole. This is still a server compliance bug,
which needs to be fixed in the block layer in a later patch; output
does not change because the client is already being tolerant of the
non-compliance
- forced client alignment: the server's smaller alignment means that
the client now sees the server's status change mid-sector without any
protocol violations, but the fact that the map shows an unaligned
mid-sector hole is evidence of the block layer problems with aligned
block status, to be fixed in a later patch
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20190329042750.14704-7-eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: rebase to enhanced iotest 241 coverage]
2019-03-31 04:36:36 +03:00
|
|
|
min block: 1
|
qemu-img: Make unallocated part of backing chain obvious in map
The recently-added NBD context qemu:allocation-depth is able to
distinguish between locally-present data (even when that data is
sparse) [shown as depth 1 over NBD], and data that could not be found
anywhere in the backing chain [shown as depth 0]; and the libnbd
project was recently patched to give the human-readable name "absent"
to an allocation-depth of 0. But qemu-img map --output=json predates
that addition, and has the unfortunate behavior that all portions of
the backing chain that resolve without finding a hit in any backing
layer report the same depth as the final backing layer. This makes it
harder to reconstruct a qcow2 backing chain using just 'qemu-img map'
output, especially when using "backing":null to artificially limit a
backing chain, because it is impossible to distinguish between a
QCOW2_CLUSTER_UNALLOCATED (which defers to a [missing] backing file)
and a QCOW2_CLUSTER_ZERO_PLAIN cluster (which would override any
backing file), since both types of clusters otherwise show as
"data":false,"zero":true" (but note that we can distinguish a
QCOW2_CLUSTER_ZERO_ALLOCATED, which would also have an "offset":
listing).
The task of reconstructing a qcow2 chain was made harder in commit
0da9856851 (nbd: server: Report holes for raw images), because prior
to that point, it was possible to abuse NBD's block status command to
see which portions of a qcow2 file resulted in BDRV_BLOCK_ALLOCATED
(showing up as NBD_STATE_ZERO in isolation) vs. missing from the chain
(showing up as NBD_STATE_ZERO|NBD_STATE_HOLE); but now qemu reports
more accurate sparseness information over NBD.
An obvious solution is to make 'qemu-img map --output=json' add an
additional "present":false designation to any cluster lacking an
allocation anywhere in the chain, without any change to the "depth"
parameter to avoid breaking existing clients. The iotests have
several examples where this distinction demonstrates the additional
accuracy.
Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20210701190655.2131223-3-eblake@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com>
[eblake: fix more iotest fallout]
Signed-off-by: Eric Blake <eblake@redhat.com>
2021-07-01 22:06:55 +03:00
|
|
|
[{ "start": 0, "length": 1000, "depth": 0, "present": true, "zero": false, "data": true, "offset": OFFSET},
|
|
|
|
{ "start": 1000, "length": 24, "depth": 0, "present": true, "zero": true, "data": false, "offset": OFFSET}]
|
2019-03-29 07:27:45 +03:00
|
|
|
1 KiB (0x400) bytes allocated at offset 0 bytes (0x0)
|
|
|
|
*** done
|