qemu/hw/usb-ehci.c

2038 lines
60 KiB
C
Raw Normal View History

/*
* QEMU USB EHCI Emulation
*
* Copyright(c) 2008 Emutex Ltd. (address@hidden)
*
* EHCI project was started by Mark Burkley, with contributions by
* Niels de Vos. David S. Ahern continued working on it. Kevin Wolf,
* Jan Kiszka and Vincent Palatin contributed bugfixes.
*
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or(at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
* TODO:
* o Downstream port handoff
*/
#include "hw.h"
#include "qemu-timer.h"
#include "usb.h"
#include "pci.h"
#include "monitor.h"
#define EHCI_DEBUG 0
#define STATE_DEBUG 0 /* state transitions */
#if EHCI_DEBUG || STATE_DEBUG
#define DPRINTF printf
#else
#define DPRINTF(...)
#endif
#if STATE_DEBUG
#define DPRINTF_ST DPRINTF
#else
#define DPRINTF_ST(...)
#endif
/* internal processing - reset HC to try and recover */
#define USB_RET_PROCERR (-99)
#define MMIO_SIZE 0x1000
/* Capability Registers Base Address - section 2.2 */
#define CAPREGBASE 0x0000
#define CAPLENGTH CAPREGBASE + 0x0000 // 1-byte, 0x0001 reserved
#define HCIVERSION CAPREGBASE + 0x0002 // 2-bytes, i/f version #
#define HCSPARAMS CAPREGBASE + 0x0004 // 4-bytes, structural params
#define HCCPARAMS CAPREGBASE + 0x0008 // 4-bytes, capability params
#define EECP HCCPARAMS + 1
#define HCSPPORTROUTE1 CAPREGBASE + 0x000c
#define HCSPPORTROUTE2 CAPREGBASE + 0x0010
#define OPREGBASE 0x0020 // Operational Registers Base Address
#define USBCMD OPREGBASE + 0x0000
#define USBCMD_RUNSTOP (1 << 0) // run / Stop
#define USBCMD_HCRESET (1 << 1) // HC Reset
#define USBCMD_FLS (3 << 2) // Frame List Size
#define USBCMD_FLS_SH 2 // Frame List Size Shift
#define USBCMD_PSE (1 << 4) // Periodic Schedule Enable
#define USBCMD_ASE (1 << 5) // Asynch Schedule Enable
#define USBCMD_IAAD (1 << 6) // Int Asynch Advance Doorbell
#define USBCMD_LHCR (1 << 7) // Light Host Controller Reset
#define USBCMD_ASPMC (3 << 8) // Async Sched Park Mode Count
#define USBCMD_ASPME (1 << 11) // Async Sched Park Mode Enable
#define USBCMD_ITC (0x7f << 16) // Int Threshold Control
#define USBCMD_ITC_SH 16 // Int Threshold Control Shift
#define USBSTS OPREGBASE + 0x0004
#define USBSTS_RO_MASK 0x0000003f
#define USBSTS_INT (1 << 0) // USB Interrupt
#define USBSTS_ERRINT (1 << 1) // Error Interrupt
#define USBSTS_PCD (1 << 2) // Port Change Detect
#define USBSTS_FLR (1 << 3) // Frame List Rollover
#define USBSTS_HSE (1 << 4) // Host System Error
#define USBSTS_IAA (1 << 5) // Interrupt on Async Advance
#define USBSTS_HALT (1 << 12) // HC Halted
#define USBSTS_REC (1 << 13) // Reclamation
#define USBSTS_PSS (1 << 14) // Periodic Schedule Status
#define USBSTS_ASS (1 << 15) // Asynchronous Schedule Status
/*
* Interrupt enable bits correspond to the interrupt active bits in USBSTS
* so no need to redefine here.
*/
#define USBINTR OPREGBASE + 0x0008
#define USBINTR_MASK 0x0000003f
#define FRINDEX OPREGBASE + 0x000c
#define CTRLDSSEGMENT OPREGBASE + 0x0010
#define PERIODICLISTBASE OPREGBASE + 0x0014
#define ASYNCLISTADDR OPREGBASE + 0x0018
#define ASYNCLISTADDR_MASK 0xffffffe0
#define CONFIGFLAG OPREGBASE + 0x0040
#define PORTSC (OPREGBASE + 0x0044)
#define PORTSC_BEGIN PORTSC
#define PORTSC_END (PORTSC + 4 * NB_PORTS)
/*
* Bits that are reserverd or are read-only are masked out of values
* written to us by software
*/
#define PORTSC_RO_MASK 0x007021c5
#define PORTSC_RWC_MASK 0x0000002a
#define PORTSC_WKOC_E (1 << 22) // Wake on Over Current Enable
#define PORTSC_WKDS_E (1 << 21) // Wake on Disconnect Enable
#define PORTSC_WKCN_E (1 << 20) // Wake on Connect Enable
#define PORTSC_PTC (15 << 16) // Port Test Control
#define PORTSC_PTC_SH 16 // Port Test Control shift
#define PORTSC_PIC (3 << 14) // Port Indicator Control
#define PORTSC_PIC_SH 14 // Port Indicator Control Shift
#define PORTSC_POWNER (1 << 13) // Port Owner
#define PORTSC_PPOWER (1 << 12) // Port Power
#define PORTSC_LINESTAT (3 << 10) // Port Line Status
#define PORTSC_LINESTAT_SH 10 // Port Line Status Shift
#define PORTSC_PRESET (1 << 8) // Port Reset
#define PORTSC_SUSPEND (1 << 7) // Port Suspend
#define PORTSC_FPRES (1 << 6) // Force Port Resume
#define PORTSC_OCC (1 << 5) // Over Current Change
#define PORTSC_OCA (1 << 4) // Over Current Active
#define PORTSC_PEDC (1 << 3) // Port Enable/Disable Change
#define PORTSC_PED (1 << 2) // Port Enable/Disable
#define PORTSC_CSC (1 << 1) // Connect Status Change
#define PORTSC_CONNECT (1 << 0) // Current Connect Status
#define FRAME_TIMER_FREQ 1000
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
#define NB_MAXINTRATE 8 // Max rate at which controller issues ints
#define NB_PORTS 4 // Number of downstream ports
#define BUFF_SIZE 5*4096 // Max bytes to transfer per transaction
#define MAX_ITERATIONS 20 // Max number of QH before we break the loop
#define MAX_QH 100 // Max allowable queue heads in a chain
/* Internal periodic / asynchronous schedule state machine states
*/
typedef enum {
EST_INACTIVE = 1000,
EST_ACTIVE,
EST_EXECUTING,
EST_SLEEPING,
/* The following states are internal to the state machine function
*/
EST_WAITLISTHEAD,
EST_FETCHENTRY,
EST_FETCHQH,
EST_FETCHITD,
EST_ADVANCEQUEUE,
EST_FETCHQTD,
EST_EXECUTE,
EST_WRITEBACK,
EST_HORIZONTALQH
} EHCI_STATES;
/* macros for accessing fields within next link pointer entry */
#define NLPTR_GET(x) ((x) & 0xffffffe0)
#define NLPTR_TYPE_GET(x) (((x) >> 1) & 3)
#define NLPTR_TBIT(x) ((x) & 1) // 1=invalid, 0=valid
/* link pointer types */
#define NLPTR_TYPE_ITD 0 // isoc xfer descriptor
#define NLPTR_TYPE_QH 1 // queue head
#define NLPTR_TYPE_STITD 2 // split xaction, isoc xfer descriptor
#define NLPTR_TYPE_FSTN 3 // frame span traversal node
/* EHCI spec version 1.0 Section 3.3
*/
typedef struct EHCIitd {
uint32_t next;
uint32_t transact[8];
#define ITD_XACT_ACTIVE (1 << 31)
#define ITD_XACT_DBERROR (1 << 30)
#define ITD_XACT_BABBLE (1 << 29)
#define ITD_XACT_XACTERR (1 << 28)
#define ITD_XACT_LENGTH_MASK 0x0fff0000
#define ITD_XACT_LENGTH_SH 16
#define ITD_XACT_IOC (1 << 15)
#define ITD_XACT_PGSEL_MASK 0x00007000
#define ITD_XACT_PGSEL_SH 12
#define ITD_XACT_OFFSET_MASK 0x00000fff
uint32_t bufptr[7];
#define ITD_BUFPTR_MASK 0xfffff000
#define ITD_BUFPTR_SH 12
#define ITD_BUFPTR_EP_MASK 0x00000f00
#define ITD_BUFPTR_EP_SH 8
#define ITD_BUFPTR_DEVADDR_MASK 0x0000007f
#define ITD_BUFPTR_DEVADDR_SH 0
#define ITD_BUFPTR_DIRECTION (1 << 11)
#define ITD_BUFPTR_MAXPKT_MASK 0x000007ff
#define ITD_BUFPTR_MAXPKT_SH 0
#define ITD_BUFPTR_MULT_MASK 0x00000003
} EHCIitd;
/* EHCI spec version 1.0 Section 3.4
*/
typedef struct EHCIsitd {
uint32_t next; // Standard next link pointer
uint32_t epchar;
#define SITD_EPCHAR_IO (1 << 31)
#define SITD_EPCHAR_PORTNUM_MASK 0x7f000000
#define SITD_EPCHAR_PORTNUM_SH 24
#define SITD_EPCHAR_HUBADD_MASK 0x007f0000
#define SITD_EPCHAR_HUBADDR_SH 16
#define SITD_EPCHAR_EPNUM_MASK 0x00000f00
#define SITD_EPCHAR_EPNUM_SH 8
#define SITD_EPCHAR_DEVADDR_MASK 0x0000007f
uint32_t uframe;
#define SITD_UFRAME_CMASK_MASK 0x0000ff00
#define SITD_UFRAME_CMASK_SH 8
#define SITD_UFRAME_SMASK_MASK 0x000000ff
uint32_t results;
#define SITD_RESULTS_IOC (1 << 31)
#define SITD_RESULTS_PGSEL (1 << 30)
#define SITD_RESULTS_TBYTES_MASK 0x03ff0000
#define SITD_RESULTS_TYBYTES_SH 16
#define SITD_RESULTS_CPROGMASK_MASK 0x0000ff00
#define SITD_RESULTS_CPROGMASK_SH 8
#define SITD_RESULTS_ACTIVE (1 << 7)
#define SITD_RESULTS_ERR (1 << 6)
#define SITD_RESULTS_DBERR (1 << 5)
#define SITD_RESULTS_BABBLE (1 << 4)
#define SITD_RESULTS_XACTERR (1 << 3)
#define SITD_RESULTS_MISSEDUF (1 << 2)
#define SITD_RESULTS_SPLITXSTATE (1 << 1)
uint32_t bufptr[2];
#define SITD_BUFPTR_MASK 0xfffff000
#define SITD_BUFPTR_CURROFF_MASK 0x00000fff
#define SITD_BUFPTR_TPOS_MASK 0x00000018
#define SITD_BUFPTR_TPOS_SH 3
#define SITD_BUFPTR_TCNT_MASK 0x00000007
uint32_t backptr; // Standard next link pointer
} EHCIsitd;
/* EHCI spec version 1.0 Section 3.5
*/
typedef struct EHCIqtd {
uint32_t next; // Standard next link pointer
uint32_t altnext; // Standard next link pointer
uint32_t token;
#define QTD_TOKEN_DTOGGLE (1 << 31)
#define QTD_TOKEN_TBYTES_MASK 0x7fff0000
#define QTD_TOKEN_TBYTES_SH 16
#define QTD_TOKEN_IOC (1 << 15)
#define QTD_TOKEN_CPAGE_MASK 0x00007000
#define QTD_TOKEN_CPAGE_SH 12
#define QTD_TOKEN_CERR_MASK 0x00000c00
#define QTD_TOKEN_CERR_SH 10
#define QTD_TOKEN_PID_MASK 0x00000300
#define QTD_TOKEN_PID_SH 8
#define QTD_TOKEN_ACTIVE (1 << 7)
#define QTD_TOKEN_HALT (1 << 6)
#define QTD_TOKEN_DBERR (1 << 5)
#define QTD_TOKEN_BABBLE (1 << 4)
#define QTD_TOKEN_XACTERR (1 << 3)
#define QTD_TOKEN_MISSEDUF (1 << 2)
#define QTD_TOKEN_SPLITXSTATE (1 << 1)
#define QTD_TOKEN_PING (1 << 0)
uint32_t bufptr[5]; // Standard buffer pointer
#define QTD_BUFPTR_MASK 0xfffff000
} EHCIqtd;
/* EHCI spec version 1.0 Section 3.6
*/
typedef struct EHCIqh {
uint32_t next; // Standard next link pointer
/* endpoint characteristics */
uint32_t epchar;
#define QH_EPCHAR_RL_MASK 0xf0000000
#define QH_EPCHAR_RL_SH 28
#define QH_EPCHAR_C (1 << 27)
#define QH_EPCHAR_MPLEN_MASK 0x07FF0000
#define QH_EPCHAR_MPLEN_SH 16
#define QH_EPCHAR_H (1 << 15)
#define QH_EPCHAR_DTC (1 << 14)
#define QH_EPCHAR_EPS_MASK 0x00003000
#define QH_EPCHAR_EPS_SH 12
#define EHCI_QH_EPS_FULL 0
#define EHCI_QH_EPS_LOW 1
#define EHCI_QH_EPS_HIGH 2
#define EHCI_QH_EPS_RESERVED 3
#define QH_EPCHAR_EP_MASK 0x00000f00
#define QH_EPCHAR_EP_SH 8
#define QH_EPCHAR_I (1 << 7)
#define QH_EPCHAR_DEVADDR_MASK 0x0000007f
#define QH_EPCHAR_DEVADDR_SH 0
/* endpoint capabilities */
uint32_t epcap;
#define QH_EPCAP_MULT_MASK 0xc0000000
#define QH_EPCAP_MULT_SH 30
#define QH_EPCAP_PORTNUM_MASK 0x3f800000
#define QH_EPCAP_PORTNUM_SH 23
#define QH_EPCAP_HUBADDR_MASK 0x007f0000
#define QH_EPCAP_HUBADDR_SH 16
#define QH_EPCAP_CMASK_MASK 0x0000ff00
#define QH_EPCAP_CMASK_SH 8
#define QH_EPCAP_SMASK_MASK 0x000000ff
#define QH_EPCAP_SMASK_SH 0
uint32_t current_qtd; // Standard next link pointer
uint32_t next_qtd; // Standard next link pointer
uint32_t altnext_qtd;
#define QH_ALTNEXT_NAKCNT_MASK 0x0000001e
#define QH_ALTNEXT_NAKCNT_SH 1
uint32_t token; // Same as QTD token
uint32_t bufptr[5]; // Standard buffer pointer
#define BUFPTR_CPROGMASK_MASK 0x000000ff
#define BUFPTR_FRAMETAG_MASK 0x0000001f
#define BUFPTR_SBYTES_MASK 0x00000fe0
#define BUFPTR_SBYTES_SH 5
} EHCIqh;
/* EHCI spec version 1.0 Section 3.7
*/
typedef struct EHCIfstn {
uint32_t next; // Standard next link pointer
uint32_t backptr; // Standard next link pointer
} EHCIfstn;
typedef struct {
PCIDevice dev;
qemu_irq irq;
target_phys_addr_t mem_base;
int mem;
int num_ports;
/*
* EHCI spec version 1.0 Section 2.3
* Host Controller Operational Registers
*/
union {
uint8_t mmio[MMIO_SIZE];
struct {
uint8_t cap[OPREGBASE];
uint32_t usbcmd;
uint32_t usbsts;
uint32_t usbintr;
uint32_t frindex;
uint32_t ctrldssegment;
uint32_t periodiclistbase;
uint32_t asynclistaddr;
uint32_t notused[9];
uint32_t configflag;
uint32_t portsc[NB_PORTS];
};
};
/*
* Internal states, shadow registers, etc
*/
uint32_t sofv;
QEMUTimer *frame_timer;
int attach_poll_counter;
int astate; // Current state in asynchronous schedule
int pstate; // Current state in periodic schedule
USBPort ports[NB_PORTS];
uint8_t buffer[BUFF_SIZE];
uint32_t usbsts_pending;
/* cached data from guest - needs to be flushed
* when guest removes an entry (doorbell, handshake sequence)
*/
EHCIqh qh; // copy of current QH (being worked on)
uint32_t qhaddr; // address QH read from
EHCIqtd qtd; // copy of current QTD (being worked on)
uint32_t qtdaddr; // address QTD read from
uint32_t itdaddr; // current ITD
uint32_t fetch_addr; // which address to look at next
USBBus bus;
USBPacket usb_packet;
int async_complete;
uint32_t tbytes;
int pid;
int exec_status;
int isoch_pause;
uint32_t last_run_usec;
uint32_t frame_end_usec;
} EHCIState;
#define SET_LAST_RUN_CLOCK(s) \
(s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
/* nifty macros from Arnon's EHCI version */
#define get_field(data, field) \
(((data) & field##_MASK) >> field##_SH)
#define set_field(data, newval, field) do { \
uint32_t val = *data; \
val &= ~ field##_MASK; \
val |= ((newval) << field##_SH) & field##_MASK; \
*data = val; \
} while(0)
#if EHCI_DEBUG
static const char *addr2str(unsigned addr)
{
const char *r = " unknown";
const char *n[] = {
[ CAPLENGTH ] = " CAPLENGTH",
[ HCIVERSION ] = "HCIVERSION",
[ HCSPARAMS ] = " HCSPARAMS",
[ HCCPARAMS ] = " HCCPARAMS",
[ USBCMD ] = " COMMAND",
[ USBSTS ] = " STATUS",
[ USBINTR ] = " INTERRUPT",
[ FRINDEX ] = " FRAME IDX",
[ PERIODICLISTBASE ] = "P-LIST BASE",
[ ASYNCLISTADDR ] = "A-LIST ADDR",
[ PORTSC_BEGIN ...
PORTSC_END ] = "PORT STATUS",
[ CONFIGFLAG ] = "CONFIG FLAG",
};
if (addr < ARRAY_SIZE(n) && n[addr] != NULL) {
return n[addr];
} else {
return r;
}
}
#endif
static inline void ehci_set_interrupt(EHCIState *s, int intr)
{
int level = 0;
// TODO honour interrupt threshold requests
s->usbsts |= intr;
if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
level = 1;
}
qemu_set_irq(s->irq, level);
}
static inline void ehci_record_interrupt(EHCIState *s, int intr)
{
s->usbsts_pending |= intr;
}
static inline void ehci_commit_interrupt(EHCIState *s)
{
if (!s->usbsts_pending) {
return;
}
ehci_set_interrupt(s, s->usbsts_pending);
s->usbsts_pending = 0;
}
/* Attach or detach a device on root hub */
static void ehci_attach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
DPRINTF("ehci_attach invoked for index %d, portsc 0x%x, desc %s\n",
port->index, *portsc, port->dev->product_desc);
*portsc |= PORTSC_CONNECT;
*portsc |= PORTSC_CSC;
/*
* If a high speed device is attached then we own this port(indicated
* by zero in the PORTSC_POWNER bit field) so set the status bit
* and set an interrupt if enabled.
*/
if ( !(*portsc & PORTSC_POWNER)) {
ehci_set_interrupt(s, USBSTS_PCD);
}
}
static void ehci_detach(USBPort *port)
{
EHCIState *s = port->opaque;
uint32_t *portsc = &s->portsc[port->index];
DPRINTF("ehci_attach invoked for index %d, portsc 0x%x\n",
port->index, *portsc);
*portsc &= ~PORTSC_CONNECT;
*portsc |= PORTSC_CSC;
/*
* If a high speed device is attached then we own this port(indicated
* by zero in the PORTSC_POWNER bit field) so set the status bit
* and set an interrupt if enabled.
*/
if ( !(*portsc & PORTSC_POWNER)) {
ehci_set_interrupt(s, USBSTS_PCD);
}
}
/* 4.1 host controller initialization */
static void ehci_reset(void *opaque)
{
EHCIState *s = opaque;
uint8_t *pci_conf;
int i;
pci_conf = s->dev.config;
memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
s->usbsts = USBSTS_HALT;
s->astate = EST_INACTIVE;
s->pstate = EST_INACTIVE;
s->async_complete = 0;
s->isoch_pause = -1;
s->attach_poll_counter = 0;
for(i = 0; i < NB_PORTS; i++) {
s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
if (s->ports[i].dev) {
usb_attach(&s->ports[i], s->ports[i].dev);
}
}
}
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr];
return val;
}
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr] | (s->mmio[addr+1] << 8);
return val;
}
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
{
EHCIState *s = ptr;
uint32_t val;
val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
(s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
return val;
}
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
{
fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
exit(1);
}
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
{
fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
exit(1);
}
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
{
uint32_t *portsc = &s->portsc[port];
int rwc;
USBDevice *dev = s->ports[port].dev;
DPRINTF("port_status_write: "
"PORTSC (port %d) curr %08X new %08X rw-clear %08X rw %08X\n",
port, *portsc, val, (val & PORTSC_RWC_MASK), val & PORTSC_RO_MASK);
rwc = val & PORTSC_RWC_MASK;
val &= PORTSC_RO_MASK;
// handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
*portsc &= ~rwc;
if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
DPRINTF("port_status_write: USBTRAN Port %d reset begin\n", port);
}
if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
DPRINTF("port_status_write: USBTRAN Port %d reset done\n", port);
usb_attach(&s->ports[port], dev);
// TODO how to handle reset of ports with no device
if (dev) {
usb_send_msg(dev, USB_MSG_RESET);
}
if (s->ports[port].dev) {
DPRINTF("port_status_write: "
"Device was connected before reset, clearing CSC bit\n");
*portsc &= ~PORTSC_CSC;
}
/* Table 2.16 Set the enable bit(and enable bit change) to indicate
* to SW that this port has a high speed device attached
*
* TODO - when to disable?
*/
val |= PORTSC_PED;
val |= PORTSC_PEDC;
}
*portsc &= ~PORTSC_RO_MASK;
*portsc |= val;
DPRINTF("port_status_write: Port %d status set to 0x%08x\n", port, *portsc);
}
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
{
EHCIState *s = ptr;
int i;
#if EHCI_DEBUG
const char *str;
#endif
/* Only aligned reads are allowed on OHCI */
if (addr & 3) {
fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
TARGET_FMT_plx "\n", addr);
return;
}
if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
handle_port_status_write(s, (addr-PORTSC)/4, val);
return;
}
if (addr < OPREGBASE) {
fprintf(stderr, "usb-ehci: write attempt to read-only register"
TARGET_FMT_plx "\n", addr);
return;
}
/* Do any register specific pre-write processing here. */
#if EHCI_DEBUG
str = addr2str((unsigned) addr);
#endif
switch(addr) {
case USBCMD:
DPRINTF("ehci_mem_writel: USBCMD val=0x%08X, current cmd=0x%08X\n",
val, s->usbcmd);
if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
DPRINTF("ehci_mem_writel: %s run, clear halt\n", str);
qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
SET_LAST_RUN_CLOCK(s);
s->usbsts &= ~USBSTS_HALT;
}
if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
DPRINTF(" ** STOP **\n");
qemu_del_timer(s->frame_timer);
// TODO - should finish out some stuff before setting halt
s->usbsts |= USBSTS_HALT;
}
if (val & USBCMD_HCRESET) {
DPRINTF("ehci_mem_writel: %s run, resetting\n", str);
ehci_reset(s);
val &= ~USBCMD_HCRESET;
}
/* not supporting dynamic frame list size at the moment */
if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
fprintf(stderr, "attempt to set frame list size -- value %d\n",
val & USBCMD_FLS);
val &= ~USBCMD_FLS;
}
#if EHCI_DEBUG
if ((val & USBCMD_PSE) && !(s->usbcmd & USBCMD_PSE)) {
DPRINTF("periodic scheduling enabled\n");
}
if (!(val & USBCMD_PSE) && (s->usbcmd & USBCMD_PSE)) {
DPRINTF("periodic scheduling disabled\n");
}
if ((val & USBCMD_ASE) && !(s->usbcmd & USBCMD_ASE)) {
DPRINTF("asynchronous scheduling enabled\n");
}
if (!(val & USBCMD_ASE) && (s->usbcmd & USBCMD_ASE)) {
DPRINTF("asynchronous scheduling disabled\n");
}
if ((val & USBCMD_IAAD) && !(s->usbcmd & USBCMD_IAAD)) {
DPRINTF("doorbell request received\n");
}
if ((val & USBCMD_LHCR) && !(s->usbcmd & USBCMD_LHCR)) {
DPRINTF("light host controller reset received\n");
}
if ((val & USBCMD_ITC) != (s->usbcmd & USBCMD_ITC)) {
DPRINTF("interrupt threshold control set to %x\n",
(val & USBCMD_ITC)>>USBCMD_ITC_SH);
}
#endif
break;
case USBSTS:
val &= USBSTS_RO_MASK; // bits 6 thru 31 are RO
DPRINTF("ehci_mem_writel: %s RWC set to 0x%08X\n", str, val);
val = (s->usbsts &= ~val); // bits 0 thru 5 are R/WC
DPRINTF("ehci_mem_writel: %s updating interrupt condition\n", str);
ehci_set_interrupt(s, 0);
break;
case USBINTR:
val &= USBINTR_MASK;
DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val);
break;
case FRINDEX:
s->sofv = val >> 3;
DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val);
break;
case CONFIGFLAG:
DPRINTF("ehci_mem_writel: %s set to 0x%08X\n", str, val);
val &= 0x1;
if (val) {
for(i = 0; i < NB_PORTS; i++)
s->portsc[i] &= ~PORTSC_POWNER;
}
break;
case PERIODICLISTBASE:
if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
fprintf(stderr,
"ehci: PERIODIC list base register set while periodic schedule\n"
" is enabled and HC is enabled\n");
}
DPRINTF("ehci_mem_writel: P-LIST BASE set to 0x%08X\n", val);
break;
case ASYNCLISTADDR:
if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
fprintf(stderr,
"ehci: ASYNC list address register set while async schedule\n"
" is enabled and HC is enabled\n");
}
DPRINTF("ehci_mem_writel: A-LIST ADDR set to 0x%08X\n", val);
break;
}
*(uint32_t *)(&s->mmio[addr]) = val;
}
// TODO : Put in common header file, duplication from usb-ohci.c
/* Get an array of dwords from main memory */
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
{
int i;
for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
*buf = le32_to_cpu(*buf);
}
return 1;
}
/* Put an array of dwords in to main memory */
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
{
int i;
for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
uint32_t tmp = cpu_to_le32(*buf);
cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
}
return 1;
}
// 4.10.2
static int ehci_qh_do_overlay(EHCIState *ehci, EHCIqh *qh, EHCIqtd *qtd)
{
int i;
int dtoggle;
int ping;
int eps;
int reload;
// remember values in fields to preserve in qh after overlay
dtoggle = qh->token & QTD_TOKEN_DTOGGLE;
ping = qh->token & QTD_TOKEN_PING;
DPRINTF("setting qh.current from %08X to 0x%08X\n", qh->current_qtd,
ehci->qtdaddr);
qh->current_qtd = ehci->qtdaddr;
qh->next_qtd = qtd->next;
qh->altnext_qtd = qtd->altnext;
qh->token = qtd->token;
eps = get_field(qh->epchar, QH_EPCHAR_EPS);
if (eps == EHCI_QH_EPS_HIGH) {
qh->token &= ~QTD_TOKEN_PING;
qh->token |= ping;
}
reload = get_field(qh->epchar, QH_EPCHAR_RL);
set_field(&qh->altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
for (i = 0; i < 5; i++) {
qh->bufptr[i] = qtd->bufptr[i];
}
if (!(qh->epchar & QH_EPCHAR_DTC)) {
// preserve QH DT bit
qh->token &= ~QTD_TOKEN_DTOGGLE;
qh->token |= dtoggle;
}
qh->bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
qh->bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
put_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2);
return 0;
}
static int ehci_buffer_rw(uint8_t *buffer, EHCIqh *qh, int bytes, int rw)
{
int bufpos = 0;
int cpage, offset;
uint32_t head;
uint32_t tail;
if (!bytes) {
return 0;
}
cpage = get_field(qh->token, QTD_TOKEN_CPAGE);
if (cpage > 4) {
fprintf(stderr, "cpage out of range (%d)\n", cpage);
return USB_RET_PROCERR;
}
offset = qh->bufptr[0] & ~QTD_BUFPTR_MASK;
DPRINTF("ehci_buffer_rw: %sing %d bytes %08x cpage %d offset %d\n",
rw ? "writ" : "read", bytes, qh->bufptr[0], cpage, offset);
do {
/* start and end of this page */
head = qh->bufptr[cpage] & QTD_BUFPTR_MASK;
tail = head + ~QTD_BUFPTR_MASK + 1;
/* add offset into page */
head |= offset;
if (bytes <= (tail - head)) {
tail = head + bytes;
}
DPRINTF("DATA %s cpage:%d head:%08X tail:%08X target:%08X\n",
rw ? "WRITE" : "READ ", cpage, head, tail, bufpos);
cpu_physical_memory_rw(head, &buffer[bufpos], tail - head, rw);
bufpos += (tail - head);
bytes -= (tail - head);
if (bytes > 0) {
cpage++;
offset = 0;
}
} while (bytes > 0);
/* save cpage */
set_field(&qh->token, cpage, QTD_TOKEN_CPAGE);
/* save offset into cpage */
offset = tail - head;
qh->bufptr[0] &= ~QTD_BUFPTR_MASK;
qh->bufptr[0] |= offset;
return 0;
}
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
{
EHCIState *ehci = container_of(packet, EHCIState, usb_packet);
DPRINTF("Async packet complete\n");
ehci->async_complete = 1;
ehci->exec_status = packet->len;
}
static int ehci_execute_complete(EHCIState *ehci, EHCIqh *qh, int ret)
{
int c_err, reload;
if (ret == USB_RET_ASYNC && !ehci->async_complete) {
DPRINTF("not done yet\n");
return ret;
}
ehci->async_complete = 0;
DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
ehci->qhaddr, qh->next, ehci->qtdaddr, ret);
if (ret < 0) {
err:
/* TO-DO: put this is in a function that can be invoked below as well */
c_err = get_field(qh->token, QTD_TOKEN_CERR);
c_err--;
set_field(&qh->token, c_err, QTD_TOKEN_CERR);
switch(ret) {
case USB_RET_NODEV:
fprintf(stderr, "USB no device\n");
break;
case USB_RET_STALL:
fprintf(stderr, "USB stall\n");
qh->token |= QTD_TOKEN_HALT;
ehci_record_interrupt(ehci, USBSTS_ERRINT);
break;
case USB_RET_NAK:
/* 4.10.3 */
reload = get_field(qh->epchar, QH_EPCHAR_RL);
if ((ehci->pid == USB_TOKEN_IN) && reload) {
int nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT);
nakcnt--;
set_field(&qh->altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
} else if (!reload) {
return USB_RET_NAK;
}
break;
case USB_RET_BABBLE:
fprintf(stderr, "USB babble TODO\n");
qh->token |= QTD_TOKEN_BABBLE;
ehci_record_interrupt(ehci, USBSTS_ERRINT);
break;
default:
fprintf(stderr, "USB invalid response %d to handle\n", ret);
/* TO-DO: transaction error */
ret = USB_RET_PROCERR;
break;
}
} else {
// DPRINTF("Short packet condition\n");
// TODO check 4.12 for splits
if ((ret > ehci->tbytes) && (ehci->pid == USB_TOKEN_IN)) {
ret = USB_RET_BABBLE;
goto err;
}
if (ehci->tbytes && ehci->pid == USB_TOKEN_IN) {
if (ehci_buffer_rw(ehci->buffer, qh, ret, 1) != 0) {
return USB_RET_PROCERR;
}
ehci->tbytes -= ret;
} else {
ehci->tbytes = 0;
}
DPRINTF("updating tbytes to %d\n", ehci->tbytes);
set_field(&qh->token, ehci->tbytes, QTD_TOKEN_TBYTES);
}
qh->token ^= QTD_TOKEN_DTOGGLE;
qh->token &= ~QTD_TOKEN_ACTIVE;
if ((ret >= 0) && (qh->token & QTD_TOKEN_IOC)) {
ehci_record_interrupt(ehci, USBSTS_INT);
}
return ret;
}
// 4.10.3
static int ehci_execute(EHCIState *ehci, EHCIqh *qh)
{
USBPort *port;
USBDevice *dev;
int ret;
int i;
int endp;
int devadr;
if ( !(qh->token & QTD_TOKEN_ACTIVE)) {
fprintf(stderr, "Attempting to execute inactive QH\n");
return USB_RET_PROCERR;
}
ehci->tbytes = (qh->token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
if (ehci->tbytes > BUFF_SIZE) {
fprintf(stderr, "Request for more bytes than allowed\n");
return USB_RET_PROCERR;
}
ehci->pid = (qh->token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
switch(ehci->pid) {
case 0: ehci->pid = USB_TOKEN_OUT; break;
case 1: ehci->pid = USB_TOKEN_IN; break;
case 2: ehci->pid = USB_TOKEN_SETUP; break;
default: fprintf(stderr, "bad token\n"); break;
}
if ((ehci->tbytes && ehci->pid != USB_TOKEN_IN) &&
(ehci_buffer_rw(ehci->buffer, qh, ehci->tbytes, 0) != 0)) {
return USB_RET_PROCERR;
}
endp = get_field(qh->epchar, QH_EPCHAR_EP);
devadr = get_field(qh->epchar, QH_EPCHAR_DEVADDR);
ret = USB_RET_NODEV;
// TO-DO: associating device with ehci port
for(i = 0; i < NB_PORTS; i++) {
port = &ehci->ports[i];
dev = port->dev;
// TODO sometime we will also need to check if we are the port owner
if (!(ehci->portsc[i] &(PORTSC_CONNECT))) {
DPRINTF("Port %d, no exec, not connected(%08X)\n",
i, ehci->portsc[i]);
continue;
}
ehci->usb_packet.pid = ehci->pid;
ehci->usb_packet.devaddr = devadr;
ehci->usb_packet.devep = endp;
ehci->usb_packet.data = ehci->buffer;
ehci->usb_packet.len = ehci->tbytes;
ret = usb_handle_packet(dev, &ehci->usb_packet);
DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
ehci->qhaddr, qh->next, ehci->qtdaddr, ehci->pid,
ehci->usb_packet.len, ehci->tbytes, endp, ret);
if (ret != USB_RET_NODEV) {
break;
}
}
if (ret > BUFF_SIZE) {
fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
return USB_RET_PROCERR;
}
if (ret == USB_RET_ASYNC) {
ehci->async_complete = 0;
}
return ret;
}
/* 4.7.2
*/
static int ehci_process_itd(EHCIState *ehci,
EHCIitd *itd)
{
USBPort *port;
USBDevice *dev;
int ret;
int i, j;
int ptr;
int pid;
int pg;
int len;
int dir;
int devadr;
int endp;
int maxpkt;
dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
for(i = 0; i < 8; i++) {
if (itd->transact[i] & ITD_XACT_ACTIVE) {
DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n",
ehci->frindex >> 3, i);
pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) |
(itd->transact[i] & ITD_XACT_OFFSET_MASK);
len = get_field(itd->transact[i], ITD_XACT_LENGTH);
if (len > BUFF_SIZE) {
return USB_RET_PROCERR;
}
DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len);
if (!dir) {
cpu_physical_memory_rw(ptr, &ehci->buffer[0], len, 0);
pid = USB_TOKEN_OUT;
} else
pid = USB_TOKEN_IN;
ret = USB_RET_NODEV;
for (j = 0; j < NB_PORTS; j++) {
port = &ehci->ports[j];
dev = port->dev;
// TODO sometime we will also need to check if we are the port owner
if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
DPRINTF("Port %d, no exec, not connected(%08X)\n",
j, ehci->portsc[j]);
continue;
}
ehci->usb_packet.pid = ehci->pid;
ehci->usb_packet.devaddr = devadr;
ehci->usb_packet.devep = endp;
ehci->usb_packet.data = ehci->buffer;
ehci->usb_packet.len = len;
DPRINTF("calling usb_handle_packet\n");
ret = usb_handle_packet(dev, &ehci->usb_packet);
if (ret != USB_RET_NODEV) {
break;
}
}
/* In isoch, there is no facility to indicate a NAK so let's
* instead just complete a zero-byte transaction. Setting
* DBERR seems too draconian.
*/
if (ret == USB_RET_NAK) {
if (ehci->isoch_pause > 0) {
DPRINTF("ISOCH: received a NAK but paused so returning\n");
ehci->isoch_pause--;
return 0;
} else if (ehci->isoch_pause == -1) {
DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
// Pause frindex for up to 50 msec waiting for data from
// remote
ehci->isoch_pause = 50;
return 0;
} else {
DPRINTF("ISOCH: isoch pause timeout! return 0\n");
ret = 0;
}
} else {
DPRINTF("ISOCH: received ACK, clearing pause\n");
ehci->isoch_pause = -1;
}
if (ret >= 0) {
itd->transact[i] &= ~ITD_XACT_ACTIVE;
if (itd->transact[i] & ITD_XACT_IOC) {
ehci_record_interrupt(ehci, USBSTS_INT);
}
}
if (ret >= 0 && dir) {
cpu_physical_memory_rw(ptr, &ehci->buffer[0], len, 1);
if (ret != len) {
DPRINTF("ISOCH IN expected %d, got %d\n",
len, ret);
set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
}
}
}
}
return 0;
}
/* This state is the entry point for asynchronous schedule
* processing. Entry here consitutes a EHCI start event state (4.8.5)
*/
static int ehci_state_waitlisthead(EHCIState *ehci, int async, int *state)
{
EHCIqh *qh = &ehci->qh;
int i = 0;
int again = 0;
uint32_t entry = ehci->asynclistaddr;
/* set reclamation flag at start event (4.8.6) */
if (async) {
ehci->usbsts |= USBSTS_REC;
}
/* Find the head of the list (4.9.1.1) */
for(i = 0; i < MAX_QH; i++) {
get_dwords(NLPTR_GET(entry), (uint32_t *) qh, sizeof(EHCIqh) >> 2);
if (qh->epchar & QH_EPCHAR_H) {
DPRINTF_ST("WAITLISTHEAD: QH %08X is the HEAD of the list\n",
entry);
if (async) {
entry |= (NLPTR_TYPE_QH << 1);
}
ehci->fetch_addr = entry;
*state = EST_FETCHENTRY;
again = 1;
goto out;
}
DPRINTF_ST("WAITLISTHEAD: QH %08X is NOT the HEAD of the list\n",
entry);
entry = qh->next;
if (entry == ehci->asynclistaddr) {
DPRINTF("WAITLISTHEAD: reached beginning of QH list\n");
break;
}
}
/* no head found for list. */
*state = EST_ACTIVE;
out:
return again;
}
/* This state is the entry point for periodic schedule processing as
* well as being a continuation state for async processing.
*/
static int ehci_state_fetchentry(EHCIState *ehci, int async, int *state)
{
int again = 0;
uint32_t entry = ehci->fetch_addr;
#if EHCI_DEBUG == 0
if (qemu_get_clock_ns(vm_clock) / 1000 >= ehci->frame_end_usec) {
if (async) {
DPRINTF("FETCHENTRY: FRAME timer elapsed, exit state machine\n");
goto out;
} else {
DPRINTF("FETCHENTRY: WARNING "
"- frame timer elapsed during periodic\n");
}
}
#endif
if (entry < 0x1000) {
DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
*state = EST_ACTIVE;
goto out;
}
/* section 4.8, only QH in async schedule */
if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
fprintf(stderr, "non queue head request in async schedule\n");
return -1;
}
switch (NLPTR_TYPE_GET(entry)) {
case NLPTR_TYPE_QH:
DPRINTF_ST("FETCHENTRY: entry %X is a Queue Head\n", entry);
*state = EST_FETCHQH;
ehci->qhaddr = entry;
again = 1;
break;
case NLPTR_TYPE_ITD:
DPRINTF_ST("FETCHENTRY: entry %X is an ITD\n", entry);
*state = EST_FETCHITD;
ehci->itdaddr = entry;
again = 1;
break;
default:
// TODO: handle siTD and FSTN types
fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
"which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
return -1;
}
out:
return again;
}
static int ehci_state_fetchqh(EHCIState *ehci, int async, int *state)
{
EHCIqh *qh = &ehci->qh;
int reload;
int again = 0;
get_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2);
if (async && (qh->epchar & QH_EPCHAR_H)) {
/* EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
if (ehci->usbsts & USBSTS_REC) {
ehci->usbsts &= ~USBSTS_REC;
} else {
DPRINTF("FETCHQH: QH 0x%08x. H-bit set, reclamation status reset"
" - done processing\n", ehci->qhaddr);
*state = EST_ACTIVE;
goto out;
}
}
#if EHCI_DEBUG
if (ehci->qhaddr != qh->next) {
DPRINTF("FETCHQH: QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
ehci->qhaddr,
qh->epchar & QH_EPCHAR_H,
qh->token & QTD_TOKEN_HALT,
qh->token & QTD_TOKEN_ACTIVE,
qh->next);
}
#endif
reload = get_field(qh->epchar, QH_EPCHAR_RL);
if (reload) {
DPRINTF_ST("FETCHQH: reloading nakcnt to %d\n", reload);
set_field(&qh->altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
}
if (qh->token & QTD_TOKEN_HALT) {
DPRINTF_ST("FETCHQH: QH Halted, go horizontal\n");
*state = EST_HORIZONTALQH;
again = 1;
} else if ((qh->token & QTD_TOKEN_ACTIVE) && (qh->current_qtd > 0x1000)) {
DPRINTF_ST("FETCHQH: Active, !Halt, execute - fetch qTD\n");
ehci->qtdaddr = qh->current_qtd;
*state = EST_FETCHQTD;
again = 1;
} else {
/* EHCI spec version 1.0 Section 4.10.2 */
DPRINTF_ST("FETCHQH: !Active, !Halt, advance queue\n");
*state = EST_ADVANCEQUEUE;
again = 1;
}
out:
return again;
}
static int ehci_state_fetchitd(EHCIState *ehci, int async, int *state)
{
EHCIitd itd;
get_dwords(NLPTR_GET(ehci->itdaddr),(uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
DPRINTF_ST("FETCHITD: Fetched ITD at address %08X " "(next is %08X)\n",
ehci->itdaddr, itd.next);
if (ehci_process_itd(ehci, &itd) != 0) {
return -1;
}
put_dwords(NLPTR_GET(ehci->itdaddr), (uint32_t *) &itd,
sizeof(EHCIitd) >> 2);
ehci->fetch_addr = itd.next;
*state = EST_FETCHENTRY;
return 1;
}
/* Section 4.10.2 - paragraph 3 */
static int ehci_state_advqueue(EHCIState *ehci, int async, int *state)
{
#if 0
/* TO-DO: 4.10.2 - paragraph 2
* if I-bit is set to 1 and QH is not active
* go to horizontal QH
*/
if (I-bit set) {
*state = EST_HORIZONTALQH;
goto out;
}
#endif
/*
* want data and alt-next qTD is valid
*/
if (((ehci->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
(ehci->qh.altnext_qtd > 0x1000) &&
(NLPTR_TBIT(ehci->qh.altnext_qtd) == 0)) {
DPRINTF_ST("ADVQUEUE: goto alt next qTD. "
"curr 0x%08x next 0x%08x alt 0x%08x (next qh %x)\n",
ehci->qh.current_qtd, ehci->qh.altnext_qtd,
ehci->qh.next_qtd, ehci->qh.next);
ehci->qtdaddr = ehci->qh.altnext_qtd;
*state = EST_FETCHQTD;
/*
* next qTD is valid
*/
} else if ((ehci->qh.next_qtd > 0x1000) &&
(NLPTR_TBIT(ehci->qh.next_qtd) == 0)) {
DPRINTF_ST("ADVQUEUE: next qTD. "
"curr 0x%08x next 0x%08x alt 0x%08x (next qh %x)\n",
ehci->qh.current_qtd, ehci->qh.altnext_qtd,
ehci->qh.next_qtd, ehci->qh.next);
ehci->qtdaddr = ehci->qh.next_qtd;
*state = EST_FETCHQTD;
/*
* no valid qTD, try next QH
*/
} else {
DPRINTF_ST("ADVQUEUE: go to horizontal QH\n");
*state = EST_HORIZONTALQH;
}
return 1;
}
/* Section 4.10.2 - paragraph 4 */
static int ehci_state_fetchqtd(EHCIState *ehci, int async, int *state)
{
EHCIqtd *qtd = &ehci->qtd;
int again = 0;
get_dwords(NLPTR_GET(ehci->qtdaddr),(uint32_t *) qtd, sizeof(EHCIqtd) >> 2);
if (qtd->token & QTD_TOKEN_ACTIVE) {
*state = EST_EXECUTE;
again = 1;
} else {
*state = EST_HORIZONTALQH;
again = 1;
}
return again;
}
static int ehci_state_horizqh(EHCIState *ehci, int async, int *state)
{
int again = 0;
if (ehci->fetch_addr != ehci->qh.next) {
ehci->fetch_addr = ehci->qh.next;
*state = EST_FETCHENTRY;
again = 1;
} else {
*state = EST_ACTIVE;
}
return again;
}
static int ehci_state_execute(EHCIState *ehci, int async, int *state)
{
EHCIqh *qh = &ehci->qh;
EHCIqtd *qtd = &ehci->qtd;
int again = 0;
int reload, nakcnt;
int smask;
if (async) {
DPRINTF_ST(">>>>> ASYNC STATE MACHINE execute QH 0x%08x, QTD 0x%08x\n",
ehci->qhaddr, ehci->qtdaddr);
} else {
DPRINTF_ST(">>>>> PERIODIC STATE MACHINE execute\n");
}
if (ehci_qh_do_overlay(ehci, qh, qtd) != 0) {
return -1;
}
smask = get_field(qh->epcap, QH_EPCAP_SMASK);
if (!smask) {
reload = get_field(qh->epchar, QH_EPCHAR_RL);
nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT);
if (reload && !nakcnt) {
DPRINTF_ST("EXECUTE: RL != 0 but NakCnt == 0 -- no execute\n");
*state = EST_HORIZONTALQH;
again = 1;
goto out;
}
}
// TODO verify enough time remains in the uframe as in 4.4.1.1
// TODO write back ptr to async list when done or out of time
// TODO Windows does not seem to ever set the MULT field
if (!async) {
int transactCtr = get_field(qh->epcap, QH_EPCAP_MULT);
if (!transactCtr) {
DPRINTF("ZERO transactctr for int qh, go HORIZ\n");
*state = EST_HORIZONTALQH;
again = 1;
goto out;
}
}
if (async) {
ehci->usbsts |= USBSTS_REC;
}
ehci->exec_status = ehci_execute(ehci, qh);
if (ehci->exec_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
*state = EST_EXECUTING;
if (ehci->exec_status != USB_RET_ASYNC) {
again = 1;
}
out:
return again;
}
static int ehci_state_executing(EHCIState *ehci, int async, int *state)
{
EHCIqh *qh = &ehci->qh;
int again = 0;
int reload, nakcnt;
ehci->exec_status = ehci_execute_complete(ehci, qh, ehci->exec_status);
if (ehci->exec_status == USB_RET_ASYNC) {
goto out;
}
if (ehci->exec_status == USB_RET_PROCERR) {
again = -1;
goto out;
}
// 4.10.3
if (!async) {
int transactCtr = get_field(qh->epcap, QH_EPCAP_MULT);
transactCtr--;
set_field(&qh->epcap, transactCtr, QH_EPCAP_MULT);
// 4.10.3, bottom of page 82, should exit this state when transaction
// counter decrements to 0
}
reload = get_field(qh->epchar, QH_EPCHAR_RL);
if (reload) {
nakcnt = get_field(qh->altnext_qtd, QH_ALTNEXT_NAKCNT);
if (ehci->exec_status == USB_RET_NAK) {
if (nakcnt) {
nakcnt--;
}
DPRINTF_ST("EXECUTING: Nak occured and RL != 0, dec NakCnt to %d\n",
nakcnt);
} else {
nakcnt = reload;
DPRINTF_ST("EXECUTING: Nak didn't occur, reloading to %d\n",
nakcnt);
}
set_field(&qh->altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
}
/*
* Write the qh back to guest physical memory. This step isn't
* in the EHCI spec but we need to do it since we don't share
* physical memory with our guest VM.
*/
DPRINTF("EXECUTING: write QH to VM memory: qhaddr 0x%x, next 0x%x\n",
ehci->qhaddr, qh->next);
put_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) qh, sizeof(EHCIqh) >> 2);
/* 4.10.5 */
if ((ehci->exec_status == USB_RET_NAK) || (qh->token & QTD_TOKEN_ACTIVE)) {
*state = EST_HORIZONTALQH;
} else {
*state = EST_WRITEBACK;
}
again = 1;
out:
return again;
}
static int ehci_state_writeback(EHCIState *ehci, int async, int *state)
{
EHCIqh *qh = &ehci->qh;
int again = 0;
/* Write back the QTD from the QH area */
DPRINTF_ST("WRITEBACK: write QTD to VM memory\n");
put_dwords(NLPTR_GET(ehci->qtdaddr),(uint32_t *) &qh->next_qtd,
sizeof(EHCIqtd) >> 2);
/* TODO confirm next state. For now, keep going if async
* but stop after one qtd if periodic
*/
//if (async) {
*state = EST_ADVANCEQUEUE;
again = 1;
//} else {
// *state = EST_ACTIVE;
//}
return again;
}
/*
* This is the state machine that is common to both async and periodic
*/
static int ehci_advance_state(EHCIState *ehci,
int async,
int state)
{
int again;
int iter = 0;
do {
if (state == EST_FETCHQH) {
iter++;
/* if we are roaming a lot of QH without executing a qTD
* something is wrong with the linked list. TO-DO: why is
* this hack needed?
*/
if (iter > MAX_ITERATIONS) {
DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
state = EST_ACTIVE;
break;
}
}
switch(state) {
case EST_WAITLISTHEAD:
again = ehci_state_waitlisthead(ehci, async, &state);
break;
case EST_FETCHENTRY:
again = ehci_state_fetchentry(ehci, async, &state);
break;
case EST_FETCHQH:
again = ehci_state_fetchqh(ehci, async, &state);
break;
case EST_FETCHITD:
again = ehci_state_fetchitd(ehci, async, &state);
break;
case EST_ADVANCEQUEUE:
again = ehci_state_advqueue(ehci, async, &state);
break;
case EST_FETCHQTD:
again = ehci_state_fetchqtd(ehci, async, &state);
break;
case EST_HORIZONTALQH:
again = ehci_state_horizqh(ehci, async, &state);
break;
case EST_EXECUTE:
iter = 0;
again = ehci_state_execute(ehci, async, &state);
break;
case EST_EXECUTING:
again = ehci_state_executing(ehci, async, &state);
break;
case EST_WRITEBACK:
again = ehci_state_writeback(ehci, async, &state);
break;
default:
fprintf(stderr, "Bad state!\n");
again = -1;
break;
}
if (again < 0) {
fprintf(stderr, "processing error - resetting ehci HC\n");
ehci_reset(ehci);
again = 0;
}
}
while (again);
ehci_commit_interrupt(ehci);
return state;
}
static void ehci_advance_async_state(EHCIState *ehci)
{
EHCIqh qh;
int state = ehci->astate;
switch(state) {
case EST_INACTIVE:
if (!(ehci->usbcmd & USBCMD_ASE)) {
break;
}
ehci->usbsts |= USBSTS_ASS;
ehci->astate = EST_ACTIVE;
// No break, fall through to ACTIVE
case EST_ACTIVE:
if ( !(ehci->usbcmd & USBCMD_ASE)) {
ehci->usbsts &= ~USBSTS_ASS;
ehci->astate = EST_INACTIVE;
break;
}
/* If the doorbell is set, the guest wants to make a change to the
* schedule. The host controller needs to release cached data.
* (section 4.8.2)
*/
if (ehci->usbcmd & USBCMD_IAAD) {
DPRINTF("ASYNC: doorbell request acknowledged\n");
ehci->usbcmd &= ~USBCMD_IAAD;
ehci_set_interrupt(ehci, USBSTS_IAA);
break;
}
/* make sure guest has acknowledged */
/* TO-DO: is this really needed? */
if (ehci->usbsts & USBSTS_IAA) {
DPRINTF("IAA status bit still set.\n");
break;
}
DPRINTF_ST("ASYNC: waiting for listhead, starting at %08x\n",
ehci->asynclistaddr);
/* check that address register has been set */
if (ehci->asynclistaddr == 0) {
break;
}
state = EST_WAITLISTHEAD;
/* fall through */
case EST_FETCHENTRY:
/* fall through */
case EST_EXECUTING:
get_dwords(NLPTR_GET(ehci->qhaddr), (uint32_t *) &qh,
sizeof(EHCIqh) >> 2);
ehci->astate = ehci_advance_state(ehci, 1, state);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad asynchronous state %d. "
"Resetting to active\n", ehci->astate);
ehci->astate = EST_ACTIVE;
}
}
static void ehci_advance_periodic_state(EHCIState *ehci)
{
uint32_t entry;
uint32_t list;
// 4.6
switch(ehci->pstate) {
case EST_INACTIVE:
if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
DPRINTF("PERIODIC going active\n");
ehci->usbsts |= USBSTS_PSS;
ehci->pstate = EST_ACTIVE;
// No break, fall through to ACTIVE
} else
break;
case EST_ACTIVE:
if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
DPRINTF("PERIODIC going inactive\n");
ehci->usbsts &= ~USBSTS_PSS;
ehci->pstate = EST_INACTIVE;
break;
}
list = ehci->periodiclistbase & 0xfffff000;
/* check that register has been set */
if (list == 0) {
break;
}
list |= ((ehci->frindex & 0x1ff8) >> 1);
cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
entry = le32_to_cpu(entry);
DPRINTF("PERIODIC state adv fr=%d. [%08X] -> %08X\n",
ehci->frindex / 8, list, entry);
ehci->fetch_addr = entry;
ehci->pstate = ehci_advance_state(ehci, 0, EST_FETCHENTRY);
break;
case EST_EXECUTING:
DPRINTF("PERIODIC state adv for executing\n");
ehci->pstate = ehci_advance_state(ehci, 0, EST_EXECUTING);
break;
default:
/* this should only be due to a developer mistake */
fprintf(stderr, "ehci: Bad periodic state %d. "
"Resetting to active\n", ehci->pstate);
ehci->pstate = EST_ACTIVE;
}
}
static void ehci_frame_timer(void *opaque)
{
EHCIState *ehci = opaque;
int64_t expire_time, t_now;
int usec_elapsed;
int frames;
int usec_now;
int i;
int skipped_frames = 0;
t_now = qemu_get_clock_ns(vm_clock);
expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
if (expire_time == t_now) {
expire_time++;
}
usec_now = t_now / 1000;
usec_elapsed = usec_now - ehci->last_run_usec;
frames = usec_elapsed / FRAME_TIMER_USEC;
ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
for (i = 0; i < frames; i++) {
if ( !(ehci->usbsts & USBSTS_HALT)) {
if (ehci->isoch_pause <= 0) {
ehci->frindex += 8;
}
if (ehci->frindex > 0x00001fff) {
ehci->frindex = 0;
ehci_set_interrupt(ehci, USBSTS_FLR);
}
ehci->sofv = (ehci->frindex - 1) >> 3;
ehci->sofv &= 0x000003ff;
}
if (frames - i > 10) {
skipped_frames++;
} else {
// TODO could this cause periodic frames to get skipped if async
// active?
if (ehci->astate != EST_EXECUTING) {
ehci_advance_periodic_state(ehci);
}
}
ehci->last_run_usec += FRAME_TIMER_USEC;
}
#if 0
if (skipped_frames) {
DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
}
#endif
/* Async is not inside loop since it executes everything it can once
* called
*/
if (ehci->pstate != EST_EXECUTING) {
ehci_advance_async_state(ehci);
}
qemu_mod_timer(ehci->frame_timer, expire_time);
}
static CPUReadMemoryFunc *ehci_readfn[3]={
ehci_mem_readb,
ehci_mem_readw,
ehci_mem_readl
};
static CPUWriteMemoryFunc *ehci_writefn[3]={
ehci_mem_writeb,
ehci_mem_writew,
ehci_mem_writel
};
static void ehci_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
EHCIState *s =(EHCIState *)pci_dev;
DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
region_num, addr, size, s->mem);
s->mem_base = addr;
cpu_register_physical_memory(addr, size, s->mem);
}
static int usb_ehci_initfn(PCIDevice *dev);
static USBPortOps ehci_port_ops = {
.attach = ehci_attach,
.detach = ehci_detach,
.complete = ehci_async_complete_packet,
};
static PCIDeviceInfo ehci_info = {
.qdev.name = "usb-ehci",
.qdev.size = sizeof(EHCIState),
.init = usb_ehci_initfn,
};
static int usb_ehci_initfn(PCIDevice *dev)
{
EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
uint8_t *pci_conf = s->dev.config;
int i;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
/* capabilities pointer */
pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
//pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
// pci_conf[0x50] = 0x01; // power management caps
pci_set_byte(&pci_conf[0x60], 0x20); // spec release number (2.1.4)
pci_set_byte(&pci_conf[0x61], 0x20); // frame length adjustment (2.1.5)
pci_set_word(&pci_conf[0x62], 0x00); // port wake up capability (2.1.6)
pci_conf[0x64] = 0x00;
pci_conf[0x65] = 0x00;
pci_conf[0x66] = 0x00;
pci_conf[0x67] = 0x00;
pci_conf[0x68] = 0x01;
pci_conf[0x69] = 0x00;
pci_conf[0x6a] = 0x00;
pci_conf[0x6b] = 0x00; // USBLEGSUP
pci_conf[0x6c] = 0x00;
pci_conf[0x6d] = 0x00;
pci_conf[0x6e] = 0x00;
pci_conf[0x6f] = 0xc0; // USBLEFCTLSTS
// 2.2 host controller interface version
s->mmio[0x00] = (uint8_t) OPREGBASE;
s->mmio[0x01] = 0x00;
s->mmio[0x02] = 0x00;
s->mmio[0x03] = 0x01; // HC version
s->mmio[0x04] = NB_PORTS; // Number of downstream ports
s->mmio[0x05] = 0x00; // No companion ports at present
s->mmio[0x06] = 0x00;
s->mmio[0x07] = 0x00;
s->mmio[0x08] = 0x80; // We can cache whole frame, not 64-bit capable
s->mmio[0x09] = 0x68; // EECP
s->mmio[0x0a] = 0x00;
s->mmio[0x0b] = 0x00;
s->irq = s->dev.irq[3];
usb_bus_new(&s->bus, &s->dev.qdev);
for(i = 0; i < NB_PORTS; i++) {
usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
USB_SPEED_MASK_HIGH);
usb_port_location(&s->ports[i], NULL, i+1);
s->ports[i].dev = 0;
}
s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
qemu_register_reset(ehci_reset, s);
s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
DEVICE_LITTLE_ENDIAN);
pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
ehci_map);
fprintf(stderr, "*** EHCI support is under development ***\n");
return 0;
}
static void ehci_register(void)
{
pci_qdev_register(&ehci_info);
}
device_init(ehci_register);
/*
* vim: expandtab ts=4
*/