qemu/target/arm/tcg/cpu64.c

1172 lines
46 KiB
C
Raw Normal View History

/*
* QEMU AArch64 TCG CPUs
*
* Copyright (c) 2013 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "cpu.h"
#include "qemu/module.h"
#include "qapi/visitor.h"
#include "hw/qdev-properties.h"
#include "qemu/units.h"
#include "internals.h"
#include "cpregs.h"
static uint64_t make_ccsidr64(unsigned assoc, unsigned linesize,
unsigned cachesize)
{
unsigned lg_linesize = ctz32(linesize);
unsigned sets;
/*
* The 64-bit CCSIDR_EL1 format is:
* [55:32] number of sets - 1
* [23:3] associativity - 1
* [2:0] log2(linesize) - 4
* so 0 == 16 bytes, 1 == 32 bytes, 2 == 64 bytes, etc
*/
assert(assoc != 0);
assert(is_power_of_2(linesize));
assert(lg_linesize >= 4 && lg_linesize <= 7 + 4);
/* sets * associativity * linesize == cachesize. */
sets = cachesize / (assoc * linesize);
assert(cachesize % (assoc * linesize) == 0);
return ((uint64_t)(sets - 1) << 32)
| ((assoc - 1) << 3)
| (lg_linesize - 4);
}
static void aarch64_a35_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a35";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* From B2.2 AArch64 identification registers. */
cpu->midr = 0x411fd040;
cpu->revidr = 0;
cpu->ctr = 0x84448004;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64pfr1 = 0;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64dfr1 = 0;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64isar1 = 0;
cpu->isar.id_aa64mmfr0 = 0x00101122;
cpu->isar.id_aa64mmfr1 = 0;
cpu->clidr = 0x0a200023;
cpu->dcz_blocksize = 4;
/* From B2.4 AArch64 Virtual Memory control registers */
cpu->reset_sctlr = 0x00c50838;
/* From B2.10 AArch64 performance monitor registers */
cpu->isar.reset_pmcr_el0 = 0x410a3000;
/* From B2.29 Cache ID registers */
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe00a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x703fe03a; /* 512KB L2 cache */
/* From B3.5 VGIC Type register */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From C6.4 Debug ID Register */
cpu->isar.dbgdidr = 0x3516d000;
/* From C6.5 Debug Device ID Register */
cpu->isar.dbgdevid = 0x00110f13;
/* From C6.6 Debug Device ID Register 1 */
cpu->isar.dbgdevid1 = 0x2;
/* From Cortex-A35 SIMD and Floating-point Support r1p0 */
/* From 3.2 AArch32 register summary */
cpu->reset_fpsid = 0x41034043;
/* From 2.2 AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
/* These values are the same with A53/A57/A72. */
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
static void cpu_max_get_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value;
/* All vector lengths are disabled when SVE is off. */
if (!cpu_isar_feature(aa64_sve, cpu)) {
value = 0;
} else {
value = cpu->sve_max_vq;
}
visit_type_uint32(v, name, &value, errp);
}
static void cpu_max_set_sve_max_vq(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t max_vq;
if (!visit_type_uint32(v, name, &max_vq, errp)) {
return;
}
if (max_vq == 0 || max_vq > ARM_MAX_VQ) {
error_setg(errp, "unsupported SVE vector length");
error_append_hint(errp, "Valid sve-max-vq in range [1-%d]\n",
ARM_MAX_VQ);
return;
}
cpu->sve_max_vq = max_vq;
}
static bool cpu_arm_get_rme(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu_isar_feature(aa64_rme, cpu);
}
static void cpu_arm_set_rme(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, RME, value);
cpu->isar.id_aa64pfr0 = t;
}
static void cpu_max_set_l0gptsz(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value;
if (!visit_type_uint32(v, name, &value, errp)) {
return;
}
/* Encode the value for the GPCCR_EL3 field. */
switch (value) {
case 30:
case 34:
case 36:
case 39:
cpu->reset_l0gptsz = value - 30;
break;
default:
error_setg(errp, "invalid value for l0gptsz");
error_append_hint(errp, "valid values are 30, 34, 36, 39\n");
break;
}
}
static void cpu_max_get_l0gptsz(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
uint32_t value = cpu->reset_l0gptsz + 30;
visit_type_uint32(v, name, &value, errp);
}
static Property arm_cpu_lpa2_property =
DEFINE_PROP_BOOL("lpa2", ARMCPU, prop_lpa2, true);
static void aarch64_a55_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a55";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by B2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0x84448004; /* L1Ip = VIPT */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
cpu->isar.id_aa64pfr0 = 0x0000000010112222ull;
cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x04010088;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x01011121;
cpu->isar.id_isar6 = 0x00000010;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x00021110;
cpu->isar.id_pfr0 = 0x10010131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x412FD050; /* r2p0 */
cpu->revidr = 0;
/* From B2.23 CCSIDR_EL1 */
cpu->ccsidr[0] = 0x700fe01a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x200fe01a; /* 32KB L1 icache */
cpu->ccsidr[2] = 0x703fe07a; /* 512KB L2 cache */
/* From B2.96 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From B4.45 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From D5.4 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x410b3000;
}
static void aarch64_a72_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a72";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x410fd083;
cpu->revidr = 0x00000000;
cpu->reset_fpsid = 0x41034080;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x12111111;
cpu->isar.mvfr2 = 0x00000043;
cpu->ctr = 0x8444c004;
cpu->reset_sctlr = 0x00c50838;
cpu->isar.id_pfr0 = 0x00000131;
cpu->isar.id_pfr1 = 0x00011011;
cpu->isar.id_dfr0 = 0x03010066;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02102211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00011142;
cpu->isar.id_isar5 = 0x00011121;
cpu->isar.id_aa64pfr0 = 0x00002222;
cpu->isar.id_aa64dfr0 = 0x10305106;
cpu->isar.id_aa64isar0 = 0x00011120;
cpu->isar.id_aa64mmfr0 = 0x00001124;
cpu->isar.dbgdidr = 0x3516d000;
cpu->isar.dbgdevid = 0x01110f13;
cpu->isar.dbgdevid1 = 0x2;
cpu->isar.reset_pmcr_el0 = 0x41023000;
cpu->clidr = 0x0a200023;
cpu->ccsidr[0] = 0x701fe00a; /* 32KB L1 dcache */
cpu->ccsidr[1] = 0x201fe012; /* 48KB L1 icache */
cpu->ccsidr[2] = 0x707fe07a; /* 1MB L2 cache */
cpu->dcz_blocksize = 4; /* 64 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
define_cortex_a72_a57_a53_cp_reginfo(cpu);
}
static void aarch64_a76_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a76";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by B2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0x8444C004;
cpu->dcz_blocksize = 4;
cpu->isar.id_aa64dfr0 = 0x0000000010305408ull;
cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101122ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000010ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x04010088;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x01011121;
cpu->isar.id_isar6 = 0x00000010;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x00021110;
cpu->isar.id_pfr0 = 0x10010131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x414fd0b1; /* r4p1 */
cpu->revidr = 0;
/* From B2.18 CCSIDR_EL1 */
cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x707fe03a; /* 512KB L2 cache */
/* From B2.93 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From B4.23 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From B5.1 AdvSIMD AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From D5.1 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x410b3000;
}
static void aarch64_a64fx_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,a64fx";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
cpu->midr = 0x461f0010;
cpu->revidr = 0x00000000;
cpu->ctr = 0x86668006;
cpu->reset_sctlr = 0x30000180;
cpu->isar.id_aa64pfr0 = 0x0000000101111111; /* No RAS Extensions */
cpu->isar.id_aa64pfr1 = 0x0000000000000000;
cpu->isar.id_aa64dfr0 = 0x0000000010305408;
cpu->isar.id_aa64dfr1 = 0x0000000000000000;
cpu->id_aa64afr0 = 0x0000000000000000;
cpu->id_aa64afr1 = 0x0000000000000000;
cpu->isar.id_aa64mmfr0 = 0x0000000000001122;
cpu->isar.id_aa64mmfr1 = 0x0000000011212100;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011;
cpu->isar.id_aa64isar0 = 0x0000000010211120;
cpu->isar.id_aa64isar1 = 0x0000000000010001;
cpu->isar.id_aa64zfr0 = 0x0000000000000000;
cpu->clidr = 0x0000000080000023;
cpu->ccsidr[0] = 0x7007e01c; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x2007e01c; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x70ffe07c; /* 8MB L2 cache */
cpu->dcz_blocksize = 6; /* 256 bytes */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* The A64FX supports only 128, 256 and 512 bit vector lengths */
aarch64_add_sve_properties(obj);
cpu->sve_vq.supported = (1 << 0) /* 128bit */
| (1 << 1) /* 256bit */
| (1 << 3); /* 512bit */
cpu->isar.reset_pmcr_el0 = 0x46014040;
/* TODO: Add A64FX specific HPC extension registers */
}
static CPAccessResult access_actlr_w(CPUARMState *env, const ARMCPRegInfo *r,
bool read)
{
if (!read) {
int el = arm_current_el(env);
/* Because ACTLR_EL2 is constant 0, writes below EL2 trap to EL2. */
if (el < 2 && arm_is_el2_enabled(env)) {
return CP_ACCESS_TRAP_EL2;
}
/* Because ACTLR_EL3 is constant 0, writes below EL3 trap to EL3. */
if (el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
return CP_ACCESS_TRAP_EL3;
}
}
return CP_ACCESS_OK;
}
static const ARMCPRegInfo neoverse_n1_cp_reginfo[] = {
{ .name = "ATCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
/* Traps and enables are the same as for TCR_EL1. */
.accessfn = access_tvm_trvm, .fgt = FGT_TCR_EL1, },
{ .name = "ATCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "ATCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "ATCR_EL12", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 5, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "AVTCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR3_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
/*
* Report CPUCFR_EL1.SCU as 1, as we do not implement the DSU
* (and in particular its system registers).
*/
{ .name = "CPUCFR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 4 },
{ .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 4,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0x961563010,
.accessfn = access_actlr_w },
{ .name = "CPUPCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPMR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 3,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPOR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 2,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPSELR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPWRCTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 7,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "ERXPFGCDN_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "ERXPFGCTL_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "ERXPFGF_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
};
static void define_neoverse_n1_cp_reginfo(ARMCPU *cpu)
{
define_arm_cp_regs(cpu, neoverse_n1_cp_reginfo);
}
static const ARMCPRegInfo neoverse_v1_cp_reginfo[] = {
{ .name = "CPUECTLR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 5,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR3_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 6,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
};
static void define_neoverse_v1_cp_reginfo(ARMCPU *cpu)
{
/*
* The Neoverse V1 has all of the Neoverse N1's IMPDEF
* registers and a few more of its own.
*/
define_arm_cp_regs(cpu, neoverse_n1_cp_reginfo);
define_arm_cp_regs(cpu, neoverse_v1_cp_reginfo);
}
static void aarch64_neoverse_n1_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,neoverse-n1";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by B2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0x8444c004;
cpu->dcz_blocksize = 4;
cpu->isar.id_aa64dfr0 = 0x0000000110305408ull;
cpu->isar.id_aa64isar0 = 0x0000100010211120ull;
cpu->isar.id_aa64isar1 = 0x0000000000100001ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0000000000001011ull;
cpu->isar.id_aa64pfr0 = 0x1100000010111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x04010088;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x01011121;
cpu->isar.id_isar6 = 0x00000010;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x00021110;
cpu->isar.id_pfr0 = 0x10010131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x414fd0c1; /* r4p1 */
cpu->revidr = 0;
/* From B2.23 CCSIDR_EL1 */
cpu->ccsidr[0] = 0x701fe01a; /* 64KB L1 dcache */
cpu->ccsidr[1] = 0x201fe01a; /* 64KB L1 icache */
cpu->ccsidr[2] = 0x70ffe03a; /* 1MB L2 cache */
/* From B2.98 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From B4.23 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From B5.1 AdvSIMD AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From D5.1 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x410c3000;
define_neoverse_n1_cp_reginfo(cpu);
}
static void aarch64_neoverse_v1_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,neoverse-v1";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by 3.2.4 AArch64 registers by functional group */
cpu->clidr = 0x82000023;
cpu->ctr = 0xb444c004; /* With DIC and IDC set */
cpu->dcz_blocksize = 4;
cpu->id_aa64afr0 = 0x00000000;
cpu->id_aa64afr1 = 0x00000000;
cpu->isar.id_aa64dfr0 = 0x000001f210305519ull;
cpu->isar.id_aa64dfr1 = 0x00000000;
cpu->isar.id_aa64isar0 = 0x1011111110212120ull; /* with FEAT_RNG */
cpu->isar.id_aa64isar1 = 0x0111000001211032ull;
cpu->isar.id_aa64mmfr0 = 0x0000000000101125ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x0220011102101011ull;
cpu->isar.id_aa64pfr0 = 0x1101110120111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000020ull;
cpu->id_afr0 = 0x00000000;
cpu->isar.id_dfr0 = 0x15011099;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x11011121;
cpu->isar.id_isar6 = 0x01100111;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_mmfr4 = 0x01021110;
cpu->isar.id_pfr0 = 0x21110131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_pfr2 = 0x00000011;
cpu->midr = 0x411FD402; /* r1p2 */
cpu->revidr = 0;
/*
* The Neoverse-V1 r1p2 TRM lists 32-bit format CCSIDR_EL1 values,
* but also says it implements CCIDX, which means they should be
* 64-bit format. So we here use values which are based on the textual
* information in chapter 2 of the TRM:
*
* L1: 4-way set associative 64-byte line size, total size 64K.
* L2: 8-way set associative, 64 byte line size, either 512K or 1MB.
* L3: No L3 (this matches the CLIDR_EL1 value).
*/
cpu->ccsidr[0] = make_ccsidr64(4, 64, 64 * KiB); /* L1 dcache */
cpu->ccsidr[1] = cpu->ccsidr[0]; /* L1 icache */
cpu->ccsidr[2] = make_ccsidr64(8, 64, 1 * MiB); /* L2 cache */
/* From 3.2.115 SCTLR_EL3 */
cpu->reset_sctlr = 0x30c50838;
/* From 3.4.8 ICC_CTLR_EL3 and 3.4.23 ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* From 3.5.1 AdvSIMD AArch64 register summary */
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
/* From 3.7.5 ID_AA64ZFR0_EL1 */
cpu->isar.id_aa64zfr0 = 0x0000100000100000;
cpu->sve_vq.supported = (1 << 0) /* 128bit */
| (1 << 1); /* 256bit */
/* From 5.5.1 AArch64 PMU register summary */
cpu->isar.reset_pmcr_el0 = 0x41213000;
define_neoverse_v1_cp_reginfo(cpu);
aarch64_add_pauth_properties(obj);
aarch64_add_sve_properties(obj);
}
static const ARMCPRegInfo cortex_a710_cp_reginfo[] = {
{ .name = "CPUACTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR3_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR4_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 3,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUECTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 4,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUECTLR2_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 1, .opc2 = 5,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 4,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPWRCTLR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 2, .opc2 = 7,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "ATCR_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR5_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 0,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR6_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 1,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "CPUACTLR7_EL1", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 0, .crn = 15, .crm = 8, .opc2 = 2,
.access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0,
.accessfn = access_actlr_w },
{ .name = "ATCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "AVTCR_EL2", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 4, .crn = 15, .crm = 7, .opc2 = 1,
.access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR4_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 4,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR5_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 5,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPPMCR6_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 2, .opc2 = 6,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUACTLR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 4, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "ATCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 7, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPSELR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 0,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPCR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 1,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPOR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 2,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPMR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 3,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPOR2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 4,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPMR2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 5,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "CPUPFR_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 8, .opc2 = 6,
.access = PL3_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
/*
* Stub RAMINDEX, as we don't actually implement caches, BTB,
* or anything else with cpu internal memory.
* "Read" zeros into the IDATA* and DDATA* output registers.
*/
{ .name = "RAMINDEX_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 1, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL3_W, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "IDATA0_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 0,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "IDATA1_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 1,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "IDATA2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 0, .opc2 = 2,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DDATA0_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 0,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DDATA1_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 1,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
{ .name = "DDATA2_EL3", .state = ARM_CP_STATE_AA64,
.opc0 = 3, .opc1 = 6, .crn = 15, .crm = 1, .opc2 = 2,
.access = PL3_R, .type = ARM_CP_CONST, .resetvalue = 0 },
};
static void aarch64_a710_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu->dtb_compatible = "arm,cortex-a710";
set_feature(&cpu->env, ARM_FEATURE_V8);
set_feature(&cpu->env, ARM_FEATURE_NEON);
set_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER);
set_feature(&cpu->env, ARM_FEATURE_AARCH64);
set_feature(&cpu->env, ARM_FEATURE_CBAR_RO);
set_feature(&cpu->env, ARM_FEATURE_EL2);
set_feature(&cpu->env, ARM_FEATURE_EL3);
set_feature(&cpu->env, ARM_FEATURE_PMU);
/* Ordered by Section B.4: AArch64 registers */
cpu->midr = 0x412FD471; /* r2p1 */
cpu->revidr = 0;
cpu->isar.id_pfr0 = 0x21110131;
cpu->isar.id_pfr1 = 0x00010000; /* GIC filled in later */
cpu->isar.id_dfr0 = 0x16011099;
cpu->id_afr0 = 0;
cpu->isar.id_mmfr0 = 0x10201105;
cpu->isar.id_mmfr1 = 0x40000000;
cpu->isar.id_mmfr2 = 0x01260000;
cpu->isar.id_mmfr3 = 0x02122211;
cpu->isar.id_isar0 = 0x02101110;
cpu->isar.id_isar1 = 0x13112111;
cpu->isar.id_isar2 = 0x21232042;
cpu->isar.id_isar3 = 0x01112131;
cpu->isar.id_isar4 = 0x00010142;
cpu->isar.id_isar5 = 0x11011121; /* with Crypto */
cpu->isar.id_mmfr4 = 0x21021110;
cpu->isar.id_isar6 = 0x01111111;
cpu->isar.mvfr0 = 0x10110222;
cpu->isar.mvfr1 = 0x13211111;
cpu->isar.mvfr2 = 0x00000043;
cpu->isar.id_pfr2 = 0x00000011;
cpu->isar.id_aa64pfr0 = 0x1201111120111112ull; /* GIC filled in later */
cpu->isar.id_aa64pfr1 = 0x0000000000000221ull;
cpu->isar.id_aa64zfr0 = 0x0000110100110021ull; /* with Crypto */
cpu->isar.id_aa64dfr0 = 0x000011f010305611ull;
cpu->isar.id_aa64dfr1 = 0;
cpu->id_aa64afr0 = 0;
cpu->id_aa64afr1 = 0;
cpu->isar.id_aa64isar0 = 0x0221111110212120ull; /* with Crypto */
cpu->isar.id_aa64isar1 = 0x0010111101211032ull;
cpu->isar.id_aa64mmfr0 = 0x0000022200101122ull;
cpu->isar.id_aa64mmfr1 = 0x0000000010212122ull;
cpu->isar.id_aa64mmfr2 = 0x1221011110101011ull;
cpu->clidr = 0x0000001482000023ull;
cpu->gm_blocksize = 4;
cpu->ctr = 0x000000049444c004ull;
cpu->dcz_blocksize = 4;
/* TODO FEAT_MPAM: mpamidr_el1 = 0x0000_0001_0006_003f */
/* Section B.5.2: PMCR_EL0 */
cpu->isar.reset_pmcr_el0 = 0xa000; /* with 20 counters */
/* Section B.6.7: ICH_VTR_EL2 */
cpu->gic_num_lrs = 4;
cpu->gic_vpribits = 5;
cpu->gic_vprebits = 5;
cpu->gic_pribits = 5;
/* Section 14: Scalable Vector Extensions support */
cpu->sve_vq.supported = 1 << 0; /* 128bit */
/*
* The cortex-a710 TRM does not list CCSIDR values. The layout of
* the caches are in text in Table 7-1, Table 8-1, and Table 9-1.
*
* L1: 4-way set associative 64-byte line size, total either 32K or 64K.
* L2: 8-way set associative 64 byte line size, total either 256K or 512K.
*/
cpu->ccsidr[0] = make_ccsidr64(4, 64, 64 * KiB); /* L1 dcache */
cpu->ccsidr[1] = cpu->ccsidr[0]; /* L1 icache */
cpu->ccsidr[2] = make_ccsidr64(8, 64, 512 * KiB); /* L2 cache */
/* FIXME: Not documented -- copied from neoverse-v1 */
cpu->reset_sctlr = 0x30c50838;
define_arm_cp_regs(cpu, cortex_a710_cp_reginfo);
aarch64_add_pauth_properties(obj);
aarch64_add_sve_properties(obj);
}
/*
* -cpu max: a CPU with as many features enabled as our emulation supports.
* The version of '-cpu max' for qemu-system-arm is defined in cpu32.c;
* this only needs to handle 64 bits.
*/
void aarch64_max_tcg_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
uint64_t t;
uint32_t u;
/*
* Reset MIDR so the guest doesn't mistake our 'max' CPU type for a real
* one and try to apply errata workarounds or use impdef features we
* don't provide.
* An IMPLEMENTER field of 0 means "reserved for software use";
* ARCHITECTURE must be 0xf indicating "v7 or later, check ID registers
* to see which features are present";
* the VARIANT, PARTNUM and REVISION fields are all implementation
* defined and we choose to define PARTNUM just in case guest
* code needs to distinguish this QEMU CPU from other software
* implementations, though this shouldn't be needed.
*/
t = FIELD_DP64(0, MIDR_EL1, IMPLEMENTER, 0);
t = FIELD_DP64(t, MIDR_EL1, ARCHITECTURE, 0xf);
t = FIELD_DP64(t, MIDR_EL1, PARTNUM, 'Q');
t = FIELD_DP64(t, MIDR_EL1, VARIANT, 0);
t = FIELD_DP64(t, MIDR_EL1, REVISION, 0);
cpu->midr = t;
/*
* We're going to set FEAT_S2FWB, which mandates that CLIDR_EL1.{LoUU,LoUIS}
* are zero.
*/
u = cpu->clidr;
u = FIELD_DP32(u, CLIDR_EL1, LOUIS, 0);
u = FIELD_DP32(u, CLIDR_EL1, LOUU, 0);
cpu->clidr = u;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 2); /* FEAT_PMULL */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 1); /* FEAT_SHA1 */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 2); /* FEAT_SHA512 */
t = FIELD_DP64(t, ID_AA64ISAR0, CRC32, 1); /* FEAT_CRC32 */
t = FIELD_DP64(t, ID_AA64ISAR0, ATOMIC, 2); /* FEAT_LSE */
t = FIELD_DP64(t, ID_AA64ISAR0, RDM, 1); /* FEAT_RDM */
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 1); /* FEAT_SHA3 */
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 1); /* FEAT_SM3 */
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 1); /* FEAT_SM4 */
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 1); /* FEAT_DotProd */
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 1); /* FEAT_FHM */
t = FIELD_DP64(t, ID_AA64ISAR0, TS, 2); /* FEAT_FlagM2 */
t = FIELD_DP64(t, ID_AA64ISAR0, TLB, 2); /* FEAT_TLBIRANGE */
t = FIELD_DP64(t, ID_AA64ISAR0, RNDR, 1); /* FEAT_RNG */
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, DPB, 2); /* FEAT_DPB2 */
t = FIELD_DP64(t, ID_AA64ISAR1, APA, PauthFeat_FPACCOMBINED);
t = FIELD_DP64(t, ID_AA64ISAR1, API, 1);
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 1); /* FEAT_JSCVT */
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 1); /* FEAT_FCMA */
t = FIELD_DP64(t, ID_AA64ISAR1, LRCPC, 2); /* FEAT_LRCPC2 */
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 1); /* FEAT_FRINTTS */
t = FIELD_DP64(t, ID_AA64ISAR1, SB, 1); /* FEAT_SB */
t = FIELD_DP64(t, ID_AA64ISAR1, SPECRES, 1); /* FEAT_SPECRES */
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 1); /* FEAT_BF16 */
t = FIELD_DP64(t, ID_AA64ISAR1, DGH, 1); /* FEAT_DGH */
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 1); /* FEAT_I8MM */
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64isar2;
t = FIELD_DP64(t, ID_AA64ISAR2, MOPS, 1); /* FEAT_MOPS */
t = FIELD_DP64(t, ID_AA64ISAR2, BC, 1); /* FEAT_HBC */
cpu->isar.id_aa64isar2 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, FP, 1); /* FEAT_FP16 */
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 1); /* FEAT_FP16 */
t = FIELD_DP64(t, ID_AA64PFR0, RAS, 2); /* FEAT_RASv1p1 + FEAT_DoubleFault */
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
t = FIELD_DP64(t, ID_AA64PFR0, SEL2, 1); /* FEAT_SEL2 */
t = FIELD_DP64(t, ID_AA64PFR0, DIT, 1); /* FEAT_DIT */
t = FIELD_DP64(t, ID_AA64PFR0, CSV2, 2); /* FEAT_CSV2_2 */
t = FIELD_DP64(t, ID_AA64PFR0, CSV3, 1); /* FEAT_CSV3 */
cpu->isar.id_aa64pfr0 = t;
t = cpu->isar.id_aa64pfr1;
t = FIELD_DP64(t, ID_AA64PFR1, BT, 1); /* FEAT_BTI */
t = FIELD_DP64(t, ID_AA64PFR1, SSBS, 2); /* FEAT_SSBS2 */
/*
* Begin with full support for MTE. This will be downgraded to MTE=0
* during realize if the board provides no tag memory, much like
* we do for EL2 with the virtualization=on property.
*/
t = FIELD_DP64(t, ID_AA64PFR1, MTE, 3); /* FEAT_MTE3 */
t = FIELD_DP64(t, ID_AA64PFR1, RAS_FRAC, 0); /* FEAT_RASv1p1 + FEAT_DoubleFault */
t = FIELD_DP64(t, ID_AA64PFR1, SME, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64PFR1, CSV2_FRAC, 0); /* FEAT_CSV2_2 */
cpu->isar.id_aa64pfr1 = t;
t = cpu->isar.id_aa64mmfr0;
t = FIELD_DP64(t, ID_AA64MMFR0, PARANGE, 6); /* FEAT_LPA: 52 bits */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16, 1); /* 16k pages supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN16_2, 2); /* 16k stage2 supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN64_2, 2); /* 64k stage2 supported */
t = FIELD_DP64(t, ID_AA64MMFR0, TGRAN4_2, 2); /* 4k stage2 supported */
t = FIELD_DP64(t, ID_AA64MMFR0, FGT, 1); /* FEAT_FGT */
cpu->isar.id_aa64mmfr0 = t;
t = cpu->isar.id_aa64mmfr1;
t = FIELD_DP64(t, ID_AA64MMFR1, HAFDBS, 2); /* FEAT_HAFDBS */
t = FIELD_DP64(t, ID_AA64MMFR1, VMIDBITS, 2); /* FEAT_VMID16 */
t = FIELD_DP64(t, ID_AA64MMFR1, VH, 1); /* FEAT_VHE */
t = FIELD_DP64(t, ID_AA64MMFR1, HPDS, 2); /* FEAT_HPDS2 */
t = FIELD_DP64(t, ID_AA64MMFR1, LO, 1); /* FEAT_LOR */
t = FIELD_DP64(t, ID_AA64MMFR1, PAN, 3); /* FEAT_PAN3 */
t = FIELD_DP64(t, ID_AA64MMFR1, XNX, 1); /* FEAT_XNX */
t = FIELD_DP64(t, ID_AA64MMFR1, ETS, 1); /* FEAT_ETS */
t = FIELD_DP64(t, ID_AA64MMFR1, HCX, 1); /* FEAT_HCX */
t = FIELD_DP64(t, ID_AA64MMFR1, TIDCP1, 1); /* FEAT_TIDCP1 */
cpu->isar.id_aa64mmfr1 = t;
t = cpu->isar.id_aa64mmfr2;
t = FIELD_DP64(t, ID_AA64MMFR2, CNP, 1); /* FEAT_TTCNP */
t = FIELD_DP64(t, ID_AA64MMFR2, UAO, 1); /* FEAT_UAO */
t = FIELD_DP64(t, ID_AA64MMFR2, IESB, 1); /* FEAT_IESB */
t = FIELD_DP64(t, ID_AA64MMFR2, VARANGE, 1); /* FEAT_LVA */
t = FIELD_DP64(t, ID_AA64MMFR2, ST, 1); /* FEAT_TTST */
t = FIELD_DP64(t, ID_AA64MMFR2, AT, 1); /* FEAT_LSE2 */
t = FIELD_DP64(t, ID_AA64MMFR2, IDS, 1); /* FEAT_IDST */
t = FIELD_DP64(t, ID_AA64MMFR2, FWB, 1); /* FEAT_S2FWB */
t = FIELD_DP64(t, ID_AA64MMFR2, TTL, 1); /* FEAT_TTL */
t = FIELD_DP64(t, ID_AA64MMFR2, BBM, 2); /* FEAT_BBM at level 2 */
t = FIELD_DP64(t, ID_AA64MMFR2, EVT, 2); /* FEAT_EVT */
t = FIELD_DP64(t, ID_AA64MMFR2, E0PD, 1); /* FEAT_E0PD */
cpu->isar.id_aa64mmfr2 = t;
t = cpu->isar.id_aa64zfr0;
t = FIELD_DP64(t, ID_AA64ZFR0, SVEVER, 1);
t = FIELD_DP64(t, ID_AA64ZFR0, AES, 2); /* FEAT_SVE_PMULL128 */
t = FIELD_DP64(t, ID_AA64ZFR0, BITPERM, 1); /* FEAT_SVE_BitPerm */
t = FIELD_DP64(t, ID_AA64ZFR0, BFLOAT16, 1); /* FEAT_BF16 */
t = FIELD_DP64(t, ID_AA64ZFR0, SHA3, 1); /* FEAT_SVE_SHA3 */
t = FIELD_DP64(t, ID_AA64ZFR0, SM4, 1); /* FEAT_SVE_SM4 */
t = FIELD_DP64(t, ID_AA64ZFR0, I8MM, 1); /* FEAT_I8MM */
t = FIELD_DP64(t, ID_AA64ZFR0, F32MM, 1); /* FEAT_F32MM */
t = FIELD_DP64(t, ID_AA64ZFR0, F64MM, 1); /* FEAT_F64MM */
cpu->isar.id_aa64zfr0 = t;
t = cpu->isar.id_aa64dfr0;
t = FIELD_DP64(t, ID_AA64DFR0, DEBUGVER, 9); /* FEAT_Debugv8p4 */
t = FIELD_DP64(t, ID_AA64DFR0, PMUVER, 6); /* FEAT_PMUv3p5 */
cpu->isar.id_aa64dfr0 = t;
t = cpu->isar.id_aa64smfr0;
t = FIELD_DP64(t, ID_AA64SMFR0, F32F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, B16F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, F16F32, 1); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, I8I32, 0xf); /* FEAT_SME */
t = FIELD_DP64(t, ID_AA64SMFR0, F64F64, 1); /* FEAT_SME_F64F64 */
t = FIELD_DP64(t, ID_AA64SMFR0, I16I64, 0xf); /* FEAT_SME_I16I64 */
t = FIELD_DP64(t, ID_AA64SMFR0, FA64, 1); /* FEAT_SME_FA64 */
cpu->isar.id_aa64smfr0 = t;
/* Replicate the same data to the 32-bit id registers. */
aa32_max_features(cpu);
#ifdef CONFIG_USER_ONLY
/*
* For usermode -cpu max we can use a larger and more efficient DCZ
* blocksize since we don't have to follow what the hardware does.
*/
cpu->ctr = 0x80038003; /* 32 byte I and D cacheline size, VIPT icache */
cpu->dcz_blocksize = 7; /* 512 bytes */
#endif
cpu->gm_blocksize = 6; /* 256 bytes */
cpu->sve_vq.supported = MAKE_64BIT_MASK(0, ARM_MAX_VQ);
cpu->sme_vq.supported = SVE_VQ_POW2_MAP;
aarch64_add_pauth_properties(obj);
aarch64_add_sve_properties(obj);
aarch64_add_sme_properties(obj);
object_property_add(obj, "sve-max-vq", "uint32", cpu_max_get_sve_max_vq,
cpu_max_set_sve_max_vq, NULL, NULL);
object_property_add_bool(obj, "x-rme", cpu_arm_get_rme, cpu_arm_set_rme);
object_property_add(obj, "x-l0gptsz", "uint32", cpu_max_get_l0gptsz,
cpu_max_set_l0gptsz, NULL, NULL);
qdev_property_add_static(DEVICE(obj), &arm_cpu_lpa2_property);
}
static const ARMCPUInfo aarch64_cpus[] = {
{ .name = "cortex-a35", .initfn = aarch64_a35_initfn },
{ .name = "cortex-a55", .initfn = aarch64_a55_initfn },
{ .name = "cortex-a72", .initfn = aarch64_a72_initfn },
{ .name = "cortex-a76", .initfn = aarch64_a76_initfn },
{ .name = "cortex-a710", .initfn = aarch64_a710_initfn },
{ .name = "a64fx", .initfn = aarch64_a64fx_initfn },
{ .name = "neoverse-n1", .initfn = aarch64_neoverse_n1_initfn },
{ .name = "neoverse-v1", .initfn = aarch64_neoverse_v1_initfn },
};
static void aarch64_cpu_register_types(void)
{
size_t i;
for (i = 0; i < ARRAY_SIZE(aarch64_cpus); ++i) {
aarch64_cpu_register(&aarch64_cpus[i]);
}
}
type_init(aarch64_cpu_register_types)