qemu/hw/net/npcm_gmac.c

740 lines
26 KiB
C
Raw Normal View History

/*
* Nuvoton NPCM7xx/8xx GMAC Module
*
* Copyright 2024 Google LLC
* Authors:
* Hao Wu <wuhaotsh@google.com>
* Nabih Estefan <nabihestefan@google.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*
* Unsupported/unimplemented features:
* - MII is not implemented, MII_ADDR.BUSY and MII_DATA always return zero
* - Precision timestamp (PTP) is not implemented.
*/
#include "qemu/osdep.h"
#include "hw/registerfields.h"
#include "hw/net/mii.h"
#include "hw/net/npcm_gmac.h"
#include "migration/vmstate.h"
#include "net/checksum.h"
#include "net/eth.h"
#include "net/net.h"
#include "qemu/cutils.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "sysemu/dma.h"
#include "trace.h"
REG32(NPCM_DMA_BUS_MODE, 0x1000)
REG32(NPCM_DMA_XMT_POLL_DEMAND, 0x1004)
REG32(NPCM_DMA_RCV_POLL_DEMAND, 0x1008)
REG32(NPCM_DMA_RX_BASE_ADDR, 0x100c)
REG32(NPCM_DMA_TX_BASE_ADDR, 0x1010)
REG32(NPCM_DMA_STATUS, 0x1014)
REG32(NPCM_DMA_CONTROL, 0x1018)
REG32(NPCM_DMA_INTR_ENA, 0x101c)
REG32(NPCM_DMA_MISSED_FRAME_CTR, 0x1020)
REG32(NPCM_DMA_HOST_TX_DESC, 0x1048)
REG32(NPCM_DMA_HOST_RX_DESC, 0x104c)
REG32(NPCM_DMA_CUR_TX_BUF_ADDR, 0x1050)
REG32(NPCM_DMA_CUR_RX_BUF_ADDR, 0x1054)
REG32(NPCM_DMA_HW_FEATURE, 0x1058)
REG32(NPCM_GMAC_MAC_CONFIG, 0x0)
REG32(NPCM_GMAC_FRAME_FILTER, 0x4)
REG32(NPCM_GMAC_HASH_HIGH, 0x8)
REG32(NPCM_GMAC_HASH_LOW, 0xc)
REG32(NPCM_GMAC_MII_ADDR, 0x10)
REG32(NPCM_GMAC_MII_DATA, 0x14)
REG32(NPCM_GMAC_FLOW_CTRL, 0x18)
REG32(NPCM_GMAC_VLAN_FLAG, 0x1c)
REG32(NPCM_GMAC_VERSION, 0x20)
REG32(NPCM_GMAC_WAKEUP_FILTER, 0x28)
REG32(NPCM_GMAC_PMT, 0x2c)
REG32(NPCM_GMAC_LPI_CTRL, 0x30)
REG32(NPCM_GMAC_TIMER_CTRL, 0x34)
REG32(NPCM_GMAC_INT_STATUS, 0x38)
REG32(NPCM_GMAC_INT_MASK, 0x3c)
REG32(NPCM_GMAC_MAC0_ADDR_HI, 0x40)
REG32(NPCM_GMAC_MAC0_ADDR_LO, 0x44)
REG32(NPCM_GMAC_MAC1_ADDR_HI, 0x48)
REG32(NPCM_GMAC_MAC1_ADDR_LO, 0x4c)
REG32(NPCM_GMAC_MAC2_ADDR_HI, 0x50)
REG32(NPCM_GMAC_MAC2_ADDR_LO, 0x54)
REG32(NPCM_GMAC_MAC3_ADDR_HI, 0x58)
REG32(NPCM_GMAC_MAC3_ADDR_LO, 0x5c)
REG32(NPCM_GMAC_RGMII_STATUS, 0xd8)
REG32(NPCM_GMAC_WATCHDOG, 0xdc)
REG32(NPCM_GMAC_PTP_TCR, 0x700)
REG32(NPCM_GMAC_PTP_SSIR, 0x704)
REG32(NPCM_GMAC_PTP_STSR, 0x708)
REG32(NPCM_GMAC_PTP_STNSR, 0x70c)
REG32(NPCM_GMAC_PTP_STSUR, 0x710)
REG32(NPCM_GMAC_PTP_STNSUR, 0x714)
REG32(NPCM_GMAC_PTP_TAR, 0x718)
REG32(NPCM_GMAC_PTP_TTSR, 0x71c)
/* Register Fields */
#define NPCM_GMAC_MII_ADDR_BUSY BIT(0)
#define NPCM_GMAC_MII_ADDR_WRITE BIT(1)
#define NPCM_GMAC_MII_ADDR_GR(rv) extract16((rv), 6, 5)
#define NPCM_GMAC_MII_ADDR_PA(rv) extract16((rv), 11, 5)
#define NPCM_GMAC_INT_MASK_LPIIM BIT(10)
#define NPCM_GMAC_INT_MASK_PMTM BIT(3)
#define NPCM_GMAC_INT_MASK_RGIM BIT(0)
#define NPCM_DMA_BUS_MODE_SWR BIT(0)
static const uint32_t npcm_gmac_cold_reset_values[NPCM_GMAC_NR_REGS] = {
/* Reduce version to 3.2 so that the kernel can enable interrupt. */
[R_NPCM_GMAC_VERSION] = 0x00001032,
[R_NPCM_GMAC_TIMER_CTRL] = 0x03e80000,
[R_NPCM_GMAC_MAC0_ADDR_HI] = 0x8000ffff,
[R_NPCM_GMAC_MAC0_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC1_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC1_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC2_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC2_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_MAC3_ADDR_HI] = 0x0000ffff,
[R_NPCM_GMAC_MAC3_ADDR_LO] = 0xffffffff,
[R_NPCM_GMAC_PTP_TCR] = 0x00002000,
[R_NPCM_DMA_BUS_MODE] = 0x00020101,
[R_NPCM_DMA_HW_FEATURE] = 0x100d4f37,
};
static const uint16_t phy_reg_init[] = {
[MII_BMCR] = MII_BMCR_AUTOEN | MII_BMCR_FD | MII_BMCR_SPEED1000,
[MII_BMSR] = MII_BMSR_100TX_FD | MII_BMSR_100TX_HD | MII_BMSR_10T_FD |
MII_BMSR_10T_HD | MII_BMSR_EXTSTAT | MII_BMSR_AUTONEG |
MII_BMSR_LINK_ST | MII_BMSR_EXTCAP,
[MII_PHYID1] = 0x0362,
[MII_PHYID2] = 0x5e6a,
[MII_ANAR] = MII_ANAR_TXFD | MII_ANAR_TX | MII_ANAR_10FD |
MII_ANAR_10 | MII_ANAR_CSMACD,
[MII_ANLPAR] = MII_ANLPAR_ACK | MII_ANLPAR_PAUSE |
MII_ANLPAR_TXFD | MII_ANLPAR_TX | MII_ANLPAR_10FD |
MII_ANLPAR_10 | MII_ANLPAR_CSMACD,
[MII_ANER] = 0x64 | MII_ANER_NWAY,
[MII_ANNP] = 0x2001,
[MII_CTRL1000] = MII_CTRL1000_FULL,
[MII_STAT1000] = MII_STAT1000_FULL,
[MII_EXTSTAT] = 0x3000, /* 1000BASTE_T full-duplex capable */
};
static void npcm_gmac_soft_reset(NPCMGMACState *gmac)
{
memcpy(gmac->regs, npcm_gmac_cold_reset_values,
NPCM_GMAC_NR_REGS * sizeof(uint32_t));
/* Clear reset bits */
gmac->regs[R_NPCM_DMA_BUS_MODE] &= ~NPCM_DMA_BUS_MODE_SWR;
}
static void gmac_phy_set_link(NPCMGMACState *gmac, bool active)
{
/* Autonegotiation status mirrors link status. */
if (active) {
gmac->phy_regs[0][MII_BMSR] |= (MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
} else {
gmac->phy_regs[0][MII_BMSR] &= ~(MII_BMSR_LINK_ST | MII_BMSR_AN_COMP);
}
}
static bool gmac_can_receive(NetClientState *nc)
{
NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));
/* If GMAC receive is disabled. */
if (!(gmac->regs[R_NPCM_GMAC_MAC_CONFIG] & NPCM_GMAC_MAC_CONFIG_RX_EN)) {
return false;
}
/* If GMAC DMA RX is stopped. */
if (!(gmac->regs[R_NPCM_DMA_CONTROL] & NPCM_DMA_CONTROL_START_STOP_RX)) {
return false;
}
return true;
}
/*
* Function that updates the GMAC IRQ
* It find the logical OR of the enabled bits for NIS (if enabled)
* It find the logical OR of the enabled bits for AIS (if enabled)
*/
static void gmac_update_irq(NPCMGMACState *gmac)
{
/*
* Check if the normal interrupts summary is enabled
* if so, add the bits for the summary that are enabled
*/
if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
(NPCM_DMA_INTR_ENAB_NIE_BITS)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_NIS;
}
/*
* Check if the abnormal interrupts summary is enabled
* if so, add the bits for the summary that are enabled
*/
if (gmac->regs[R_NPCM_DMA_INTR_ENA] & gmac->regs[R_NPCM_DMA_STATUS] &
(NPCM_DMA_INTR_ENAB_AIE_BITS)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_AIS;
}
/* Get the logical OR of both normal and abnormal interrupts */
int level = !!((gmac->regs[R_NPCM_DMA_STATUS] &
gmac->regs[R_NPCM_DMA_INTR_ENA] &
NPCM_DMA_STATUS_NIS) |
(gmac->regs[R_NPCM_DMA_STATUS] &
gmac->regs[R_NPCM_DMA_INTR_ENA] &
NPCM_DMA_STATUS_AIS));
/* Set the IRQ */
trace_npcm_gmac_update_irq(DEVICE(gmac)->canonical_path,
gmac->regs[R_NPCM_DMA_STATUS],
gmac->regs[R_NPCM_DMA_INTR_ENA],
level);
qemu_set_irq(gmac->irq, level);
}
static int gmac_read_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
if (dma_memory_read(&address_space_memory, addr, desc,
sizeof(*desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to read descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
desc->rdes0 = le32_to_cpu(desc->rdes0);
desc->rdes1 = le32_to_cpu(desc->rdes1);
desc->rdes2 = le32_to_cpu(desc->rdes2);
desc->rdes3 = le32_to_cpu(desc->rdes3);
return 0;
}
static int gmac_write_rx_desc(dma_addr_t addr, struct NPCMGMACRxDesc *desc)
{
struct NPCMGMACRxDesc le_desc;
le_desc.rdes0 = cpu_to_le32(desc->rdes0);
le_desc.rdes1 = cpu_to_le32(desc->rdes1);
le_desc.rdes2 = cpu_to_le32(desc->rdes2);
le_desc.rdes3 = cpu_to_le32(desc->rdes3);
if (dma_memory_write(&address_space_memory, addr, &le_desc,
sizeof(le_desc), MEMTXATTRS_UNSPECIFIED)) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Failed to write descriptor @ 0x%"
HWADDR_PRIx "\n", __func__, addr);
return -1;
}
return 0;
}
static int gmac_rx_transfer_frame_to_buffer(uint32_t rx_buf_len,
uint32_t *left_frame,
uint32_t rx_buf_addr,
bool *eof_transferred,
const uint8_t **frame_ptr,
uint16_t *transferred)
{
uint32_t to_transfer;
/*
* Check that buffer is bigger than the frame being transfered
* If bigger then transfer only whats left of frame
* Else, fill frame with all the content possible
*/
if (rx_buf_len >= *left_frame) {
to_transfer = *left_frame;
*eof_transferred = true;
} else {
to_transfer = rx_buf_len;
}
/* write frame part to memory */
if (dma_memory_write(&address_space_memory, (uint64_t) rx_buf_addr,
*frame_ptr, to_transfer, MEMTXATTRS_UNSPECIFIED)) {
return -1;
}
/* update frame pointer and size of whats left of frame */
*frame_ptr += to_transfer;
*left_frame -= to_transfer;
*transferred += to_transfer;
return 0;
}
static void gmac_dma_set_state(NPCMGMACState *gmac, int shift, uint32_t state)
{
gmac->regs[R_NPCM_DMA_STATUS] = deposit32(gmac->regs[R_NPCM_DMA_STATUS],
shift, 3, state);
}
static ssize_t gmac_receive(NetClientState *nc, const uint8_t *buf, size_t len)
{
/*
* Comments have steps that relate to the
* receiving process steps in pg 386
*/
NPCMGMACState *gmac = NPCM_GMAC(qemu_get_nic_opaque(nc));
uint32_t left_frame = len;
const uint8_t *frame_ptr = buf;
uint32_t desc_addr;
uint32_t rx_buf_len, rx_buf_addr;
struct NPCMGMACRxDesc rx_desc;
uint16_t transferred = 0;
bool eof_transferred = false;
trace_npcm_gmac_packet_receive(DEVICE(gmac)->canonical_path, len);
if (!gmac_can_receive(nc)) {
qemu_log_mask(LOG_GUEST_ERROR, "GMAC Currently is not able for Rx");
return -1;
}
if (!gmac->regs[R_NPCM_DMA_HOST_RX_DESC]) {
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] =
NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_RX_BASE_ADDR]);
}
desc_addr = NPCM_DMA_HOST_RX_DESC_MASK(gmac->regs[R_NPCM_DMA_HOST_RX_DESC]);
/* step 1 */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_FETCHING_STATE);
trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path, desc_addr);
if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
qemu_log_mask(LOG_GUEST_ERROR, "RX Descriptor @ 0x%x cant be read\n",
desc_addr);
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
return -1;
}
/* step 2 */
if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
qemu_log_mask(LOG_GUEST_ERROR,
"RX Descriptor @ 0x%x is owned by software\n",
desc_addr);
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_SUSPENDED_STATE);
gmac_update_irq(gmac);
return len;
}
/* step 3 */
/*
* TODO --
* Implement all frame filtering and processing (with its own interrupts)
*/
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* Clear rdes0 for the incoming descriptor and set FS in first descriptor.*/
rx_desc.rdes0 = RX_DESC_RDES0_FIRST_DESC_MASK;
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_TRANSFERRING_STATE);
/* Pad the frame with FCS as the kernel driver will strip it away. */
left_frame += ETH_FCS_LEN;
/* repeat while we still have frame to transfer to memory */
while (!eof_transferred) {
/* Return descriptor no matter what happens */
rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
/* Set the frame to be an IPv4/IPv6 frame. */
rx_desc.rdes0 |= RX_DESC_RDES0_FRM_TYPE_MASK;
/* step 4 */
rx_buf_len = RX_DESC_RDES1_BFFR1_SZ_MASK(rx_desc.rdes1);
rx_buf_addr = rx_desc.rdes2;
gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame, rx_buf_addr,
&eof_transferred, &frame_ptr,
&transferred);
trace_npcm_gmac_packet_receiving_buffer(DEVICE(gmac)->canonical_path,
rx_buf_len, rx_buf_addr);
/* if we still have frame left and the second buffer is not chained */
if (!(rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) && \
!eof_transferred) {
/* repeat process from above on buffer 2 */
rx_buf_len = RX_DESC_RDES1_BFFR2_SZ_MASK(rx_desc.rdes1);
rx_buf_addr = rx_desc.rdes3;
gmac->regs[R_NPCM_DMA_CUR_RX_BUF_ADDR] = rx_buf_addr;
gmac_rx_transfer_frame_to_buffer(rx_buf_len, &left_frame,
rx_buf_addr, &eof_transferred,
&frame_ptr, &transferred);
trace_npcm_gmac_packet_receiving_buffer( \
DEVICE(gmac)->canonical_path,
rx_buf_len, rx_buf_addr);
}
/* update address for descriptor */
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = rx_buf_addr;
/* Return descriptor */
rx_desc.rdes0 &= ~RX_DESC_RDES0_OWN;
/* Update frame length transferred */
rx_desc.rdes0 |= ((uint32_t)transferred)
<< RX_DESC_RDES0_FRAME_LEN_SHIFT;
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1,
rx_desc.rdes2, rx_desc.rdes3);
/* step 5 */
gmac_write_rx_desc(desc_addr, &rx_desc);
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path,
&rx_desc, rx_desc.rdes0,
rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* read new descriptor into rx_desc if needed*/
if (!eof_transferred) {
/* Get next descriptor address (chained or sequential) */
if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
} else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
desc_addr = rx_desc.rdes3;
} else {
desc_addr += sizeof(rx_desc);
}
trace_npcm_gmac_packet_desc_read(DEVICE(gmac)->canonical_path,
desc_addr);
if (gmac_read_rx_desc(desc_addr, &rx_desc)) {
qemu_log_mask(LOG_GUEST_ERROR,
"RX Descriptor @ 0x%x cant be read\n",
desc_addr);
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RU;
gmac_update_irq(gmac);
return len;
}
/* step 6 */
if (!(rx_desc.rdes0 & RX_DESC_RDES0_OWN)) {
if (!(gmac->regs[R_NPCM_DMA_CONTROL] & \
NPCM_DMA_CONTROL_FLUSH_MASK)) {
rx_desc.rdes0 |= RX_DESC_RDES0_DESC_ERR_MASK;
}
eof_transferred = true;
}
/* Clear rdes0 for the incoming descriptor */
rx_desc.rdes0 = 0;
}
}
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_CLOSING_STATE);
rx_desc.rdes0 |= RX_DESC_RDES0_LAST_DESC_MASK;
if (!(rx_desc.rdes1 & RX_DESC_RDES1_DIS_INTR_COMP_MASK)) {
gmac->regs[R_NPCM_DMA_STATUS] |= NPCM_DMA_STATUS_RI;
gmac_update_irq(gmac);
}
trace_npcm_gmac_debug_desc_data(DEVICE(gmac)->canonical_path, &rx_desc,
rx_desc.rdes0, rx_desc.rdes1, rx_desc.rdes2,
rx_desc.rdes3);
/* step 8 */
gmac->regs[R_NPCM_DMA_CONTROL] |= NPCM_DMA_CONTROL_FLUSH_MASK;
/* step 9 */
trace_npcm_gmac_packet_received(DEVICE(gmac)->canonical_path, left_frame);
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
gmac_write_rx_desc(desc_addr, &rx_desc);
/* Get next descriptor address (chained or sequential) */
if (rx_desc.rdes1 & RX_DESC_RDES1_RC_END_RING_MASK) {
desc_addr = gmac->regs[R_NPCM_DMA_RX_BASE_ADDR];
} else if (rx_desc.rdes1 & RX_DESC_RDES1_SEC_ADDR_CHND_MASK) {
desc_addr = rx_desc.rdes3;
} else {
desc_addr += sizeof(rx_desc);
}
gmac->regs[R_NPCM_DMA_HOST_RX_DESC] = desc_addr;
return len;
}
static void gmac_cleanup(NetClientState *nc)
{
/* Nothing to do yet. */
}
static void gmac_set_link(NetClientState *nc)
{
NPCMGMACState *gmac = qemu_get_nic_opaque(nc);
trace_npcm_gmac_set_link(!nc->link_down);
gmac_phy_set_link(gmac, !nc->link_down);
}
static void npcm_gmac_mdio_access(NPCMGMACState *gmac, uint16_t v)
{
bool busy = v & NPCM_GMAC_MII_ADDR_BUSY;
uint8_t is_write;
uint8_t pa, gr;
uint16_t data;
if (busy) {
is_write = v & NPCM_GMAC_MII_ADDR_WRITE;
pa = NPCM_GMAC_MII_ADDR_PA(v);
gr = NPCM_GMAC_MII_ADDR_GR(v);
/* Both pa and gr are 5 bits, so they are less than 32. */
g_assert(pa < NPCM_GMAC_MAX_PHYS);
g_assert(gr < NPCM_GMAC_MAX_PHY_REGS);
if (v & NPCM_GMAC_MII_ADDR_WRITE) {
data = gmac->regs[R_NPCM_GMAC_MII_DATA];
/* Clear reset bit for BMCR register */
switch (gr) {
case MII_BMCR:
data &= ~MII_BMCR_RESET;
/* Autonegotiation is a W1C bit*/
if (data & MII_BMCR_ANRESTART) {
/* Tells autonegotiation to not restart again */
data &= ~MII_BMCR_ANRESTART;
}
if ((data & MII_BMCR_AUTOEN) &&
!(gmac->phy_regs[pa][MII_BMSR] & MII_BMSR_AN_COMP)) {
/* sets autonegotiation as complete */
gmac->phy_regs[pa][MII_BMSR] |= MII_BMSR_AN_COMP;
/* Resolve AN automatically->need to set this */
gmac->phy_regs[0][MII_ANLPAR] = 0x0000;
}
}
gmac->phy_regs[pa][gr] = data;
} else {
data = gmac->phy_regs[pa][gr];
gmac->regs[R_NPCM_GMAC_MII_DATA] = data;
}
trace_npcm_gmac_mdio_access(DEVICE(gmac)->canonical_path, is_write, pa,
gr, data);
}
gmac->regs[R_NPCM_GMAC_MII_ADDR] = v & ~NPCM_GMAC_MII_ADDR_BUSY;
}
static uint64_t npcm_gmac_read(void *opaque, hwaddr offset, unsigned size)
{
NPCMGMACState *gmac = opaque;
uint32_t v = 0;
switch (offset) {
/* Write only registers */
case A_NPCM_DMA_XMT_POLL_DEMAND:
case A_NPCM_DMA_RCV_POLL_DEMAND:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only reg: offset: 0x%04" HWADDR_PRIx
"\n", DEVICE(gmac)->canonical_path, offset);
break;
default:
v = gmac->regs[offset / sizeof(uint32_t)];
}
trace_npcm_gmac_reg_read(DEVICE(gmac)->canonical_path, offset, v);
return v;
}
static void npcm_gmac_write(void *opaque, hwaddr offset,
uint64_t v, unsigned size)
{
NPCMGMACState *gmac = opaque;
trace_npcm_gmac_reg_write(DEVICE(gmac)->canonical_path, offset, v);
switch (offset) {
/* Read only registers */
case A_NPCM_GMAC_VERSION:
case A_NPCM_GMAC_INT_STATUS:
case A_NPCM_GMAC_RGMII_STATUS:
case A_NPCM_GMAC_PTP_STSR:
case A_NPCM_GMAC_PTP_STNSR:
case A_NPCM_DMA_MISSED_FRAME_CTR:
case A_NPCM_DMA_HOST_TX_DESC:
case A_NPCM_DMA_HOST_RX_DESC:
case A_NPCM_DMA_CUR_TX_BUF_ADDR:
case A_NPCM_DMA_CUR_RX_BUF_ADDR:
case A_NPCM_DMA_HW_FEATURE:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write of read-only reg: offset: 0x%04" HWADDR_PRIx
", value: 0x%04" PRIx64 "\n",
DEVICE(gmac)->canonical_path, offset, v);
break;
case A_NPCM_GMAC_MAC_CONFIG:
gmac->regs[offset / sizeof(uint32_t)] = v;
break;
case A_NPCM_GMAC_MII_ADDR:
npcm_gmac_mdio_access(gmac, v);
break;
case A_NPCM_GMAC_MAC0_ADDR_HI:
gmac->regs[offset / sizeof(uint32_t)] = v;
gmac->conf.macaddr.a[0] = v >> 8;
gmac->conf.macaddr.a[1] = v >> 0;
break;
case A_NPCM_GMAC_MAC0_ADDR_LO:
gmac->regs[offset / sizeof(uint32_t)] = v;
gmac->conf.macaddr.a[2] = v >> 24;
gmac->conf.macaddr.a[3] = v >> 16;
gmac->conf.macaddr.a[4] = v >> 8;
gmac->conf.macaddr.a[5] = v >> 0;
break;
case A_NPCM_GMAC_MAC1_ADDR_HI:
case A_NPCM_GMAC_MAC1_ADDR_LO:
case A_NPCM_GMAC_MAC2_ADDR_HI:
case A_NPCM_GMAC_MAC2_ADDR_LO:
case A_NPCM_GMAC_MAC3_ADDR_HI:
case A_NPCM_GMAC_MAC3_ADDR_LO:
gmac->regs[offset / sizeof(uint32_t)] = v;
qemu_log_mask(LOG_UNIMP,
"%s: Only MAC Address 0 is supported. This request "
"is ignored.\n", DEVICE(gmac)->canonical_path);
break;
case A_NPCM_DMA_BUS_MODE:
gmac->regs[offset / sizeof(uint32_t)] = v;
if (v & NPCM_DMA_BUS_MODE_SWR) {
npcm_gmac_soft_reset(gmac);
}
break;
case A_NPCM_DMA_RCV_POLL_DEMAND:
/* We dont actually care about the value */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
break;
case A_NPCM_DMA_STATUS:
/* Check that RO bits are not written to */
if (NPCM_DMA_STATUS_RO_MASK(v)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write of read-only bits of reg: offset: 0x%04"
HWADDR_PRIx ", value: 0x%04" PRIx64 "\n",
DEVICE(gmac)->canonical_path, offset, v);
}
/* for W1C bits, implement W1C */
gmac->regs[offset / sizeof(uint32_t)] &= ~NPCM_DMA_STATUS_W1C_MASK(v);
if (v & NPCM_DMA_STATUS_RU) {
/* Clearing RU bit indicates descriptor is owned by DMA again. */
gmac_dma_set_state(gmac, NPCM_DMA_STATUS_RX_PROCESS_STATE_SHIFT,
NPCM_DMA_STATUS_RX_RUNNING_WAITING_STATE);
qemu_flush_queued_packets(qemu_get_queue(gmac->nic));
}
break;
default:
gmac->regs[offset / sizeof(uint32_t)] = v;
break;
}
gmac_update_irq(gmac);
}
static void npcm_gmac_reset(DeviceState *dev)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
npcm_gmac_soft_reset(gmac);
memcpy(gmac->phy_regs[0], phy_reg_init, sizeof(phy_reg_init));
trace_npcm_gmac_reset(DEVICE(gmac)->canonical_path,
gmac->phy_regs[0][MII_BMSR]);
}
static NetClientInfo net_npcm_gmac_info = {
.type = NET_CLIENT_DRIVER_NIC,
.size = sizeof(NICState),
.can_receive = gmac_can_receive,
.receive = gmac_receive,
.cleanup = gmac_cleanup,
.link_status_changed = gmac_set_link,
};
static const struct MemoryRegionOps npcm_gmac_ops = {
.read = npcm_gmac_read,
.write = npcm_gmac_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
};
static void npcm_gmac_realize(DeviceState *dev, Error **errp)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
memory_region_init_io(&gmac->iomem, OBJECT(gmac), &npcm_gmac_ops, gmac,
TYPE_NPCM_GMAC, 8 * KiB);
sysbus_init_mmio(sbd, &gmac->iomem);
sysbus_init_irq(sbd, &gmac->irq);
qemu_macaddr_default_if_unset(&gmac->conf.macaddr);
gmac->nic = qemu_new_nic(&net_npcm_gmac_info, &gmac->conf, TYPE_NPCM_GMAC,
dev->id, &dev->mem_reentrancy_guard, gmac);
qemu_format_nic_info_str(qemu_get_queue(gmac->nic), gmac->conf.macaddr.a);
gmac->regs[R_NPCM_GMAC_MAC0_ADDR_HI] = (gmac->conf.macaddr.a[0] << 8) + \
gmac->conf.macaddr.a[1];
gmac->regs[R_NPCM_GMAC_MAC0_ADDR_LO] = (gmac->conf.macaddr.a[2] << 24) + \
(gmac->conf.macaddr.a[3] << 16) + \
(gmac->conf.macaddr.a[4] << 8) + \
gmac->conf.macaddr.a[5];
}
static void npcm_gmac_unrealize(DeviceState *dev)
{
NPCMGMACState *gmac = NPCM_GMAC(dev);
qemu_del_nic(gmac->nic);
}
static const VMStateDescription vmstate_npcm_gmac = {
.name = TYPE_NPCM_GMAC,
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, NPCMGMACState, NPCM_GMAC_NR_REGS),
VMSTATE_END_OF_LIST(),
},
};
static Property npcm_gmac_properties[] = {
DEFINE_NIC_PROPERTIES(NPCMGMACState, conf),
DEFINE_PROP_END_OF_LIST(),
};
static void npcm_gmac_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
dc->desc = "NPCM GMAC Controller";
dc->realize = npcm_gmac_realize;
dc->unrealize = npcm_gmac_unrealize;
dc->reset = npcm_gmac_reset;
dc->vmsd = &vmstate_npcm_gmac;
device_class_set_props(dc, npcm_gmac_properties);
}
static const TypeInfo npcm_gmac_types[] = {
{
.name = TYPE_NPCM_GMAC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(NPCMGMACState),
.class_init = npcm_gmac_class_init,
},
};
DEFINE_TYPES(npcm_gmac_types)