qemu/bsd-user/main.c

1141 lines
35 KiB
C
Raw Normal View History

/*
* qemu user main
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu-version.h"
#include <machine/trap.h>
#include "qapi/error.h"
#include "qemu.h"
#include "qemu/config-file.h"
#include "qemu/path.h"
#include "qemu/help_option.h"
/* For tb_lock */
#include "cpu.h"
#include "exec/exec-all.h"
#include "tcg.h"
#include "qemu/timer.h"
#include "qemu/envlist.h"
#include "exec/log.h"
#include "trace/control.h"
#include "glib-compat.h"
int singlestep;
unsigned long mmap_min_addr;
unsigned long guest_base;
int have_guest_base;
unsigned long reserved_va;
static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
const char *qemu_uname_release;
extern char **environ;
enum BSDType bsd_type;
/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
we allocate a bigger stack. Need a better solution, for example
by remapping the process stack directly at the right place */
unsigned long x86_stack_size = 512 * 1024;
void gemu_log(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
vfprintf(stderr, fmt, ap);
va_end(ap);
}
#if defined(TARGET_I386)
int cpu_get_pic_interrupt(CPUX86State *env)
{
return -1;
}
#endif
/* These are no-ops because we are not threadsafe. */
static inline void cpu_exec_start(CPUArchState *env)
{
}
static inline void cpu_exec_end(CPUArchState *env)
{
}
static inline void start_exclusive(void)
{
}
static inline void end_exclusive(void)
{
}
void fork_start(void)
{
}
void fork_end(int child)
{
if (child) {
gdbserver_fork(thread_cpu);
}
}
void cpu_list_lock(void)
{
}
void cpu_list_unlock(void)
{
}
#ifdef TARGET_I386
/***********************************************************/
/* CPUX86 core interface */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_host_ticks();
}
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
int flags)
{
unsigned int e1, e2;
uint32_t *p;
e1 = (addr << 16) | (limit & 0xffff);
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
e2 |= flags;
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
static uint64_t *idt_table;
#ifdef TARGET_X86_64
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
uint64_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
p[2] = tswap32(addr >> 32);
p[3] = 0;
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
}
#else
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
uint32_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl)
{
set_gate(idt_table + n, 0, dpl, 0, 0);
}
#endif
void cpu_loop(CPUX86State *env)
{
X86CPU *cpu = x86_env_get_cpu(env);
CPUState *cs = CPU(cpu);
int trapnr;
abi_ulong pc;
//target_siginfo_t info;
for(;;) {
trapnr = cpu_exec(cs);
switch(trapnr) {
case 0x80:
/* syscall from int $0x80 */
if (bsd_type == target_freebsd) {
abi_ulong params = (abi_ulong) env->regs[R_ESP] +
sizeof(int32_t);
int32_t syscall_nr = env->regs[R_EAX];
int32_t arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8;
if (syscall_nr == TARGET_FREEBSD_NR_syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int32_t);
} else if (syscall_nr == TARGET_FREEBSD_NR___syscall) {
get_user_s32(syscall_nr, params);
params += sizeof(int64_t);
}
get_user_s32(arg1, params);
params += sizeof(int32_t);
get_user_s32(arg2, params);
params += sizeof(int32_t);
get_user_s32(arg3, params);
params += sizeof(int32_t);
get_user_s32(arg4, params);
params += sizeof(int32_t);
get_user_s32(arg5, params);
params += sizeof(int32_t);
get_user_s32(arg6, params);
params += sizeof(int32_t);
get_user_s32(arg7, params);
params += sizeof(int32_t);
get_user_s32(arg8, params);
env->regs[R_EAX] = do_freebsd_syscall(env,
syscall_nr,
arg1,
arg2,
arg3,
arg4,
arg5,
arg6,
arg7,
arg8);
} else { //if (bsd_type == target_openbsd)
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP]);
}
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
#ifndef TARGET_ABI32
case EXCP_SYSCALL:
/* syscall from syscall instruction */
if (bsd_type == target_freebsd)
env->regs[R_EAX] = do_freebsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[R_ECX],
env->regs[8],
env->regs[9], 0, 0);
else { //if (bsd_type == target_openbsd)
env->regs[R_EAX] = do_openbsd_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9]);
}
env->eip = env->exception_next_eip;
if (((abi_ulong)env->regs[R_EAX]) >= (abi_ulong)(-515)) {
env->regs[R_EAX] = -env->regs[R_EAX];
env->eflags |= CC_C;
} else {
env->eflags &= ~CC_C;
}
break;
#endif
#if 0
case EXCP0B_NOSEG:
case EXCP0C_STACK:
info.si_signo = SIGBUS;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
break;
case EXCP0D_GPF:
/* XXX: potential problem if ABI32 */
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_fault(env);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP0E_PAGE:
info.si_signo = SIGSEGV;
info.si_errno = 0;
if (!(env->error_code & 1))
info.si_code = TARGET_SEGV_MAPERR;
else
info.si_code = TARGET_SEGV_ACCERR;
info._sifields._sigfault._addr = env->cr[2];
queue_signal(env, info.si_signo, &info);
break;
case EXCP00_DIVZ:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
/* division by zero */
info.si_signo = SIGFPE;
info.si_errno = 0;
info.si_code = TARGET_FPE_INTDIV;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP01_DB:
case EXCP03_INT3:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGTRAP;
info.si_errno = 0;
if (trapnr == EXCP01_DB) {
info.si_code = TARGET_TRAP_BRKPT;
info._sifields._sigfault._addr = env->eip;
} else {
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
}
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP04_INTO:
case EXCP05_BOUND:
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
} else
#endif
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
info.si_code = TARGET_SI_KERNEL;
info._sifields._sigfault._addr = 0;
queue_signal(env, info.si_signo, &info);
}
break;
case EXCP06_ILLOP:
info.si_signo = SIGILL;
info.si_errno = 0;
info.si_code = TARGET_ILL_ILLOPN;
info._sifields._sigfault._addr = env->eip;
queue_signal(env, info.si_signo, &info);
break;
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
#if 0
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig (env, TARGET_SIGTRAP);
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
queue_signal(env, info.si_signo, &info);
}
}
break;
#endif
default:
pc = env->segs[R_CS].base + env->eip;
fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
(long)pc, trapnr);
abort();
}
process_pending_signals(env);
}
}
#endif
#ifdef TARGET_SPARC
#define SPARC64_STACK_BIAS 2047
//#define DEBUG_WIN
/* WARNING: dealing with register windows _is_ complicated. More info
can be found at http://www.sics.se/~psm/sparcstack.html */
static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
{
index = (index + cwp * 16) % (16 * env->nwindows);
/* wrap handling : if cwp is on the last window, then we use the
registers 'after' the end */
if (index < 8 && env->cwp == env->nwindows - 1)
index += 16 * env->nwindows;
return index;
}
/* save the register window 'cwp1' */
static inline void save_window_offset(CPUSPARCState *env, int cwp1)
{
unsigned int i;
abi_ulong sp_ptr;
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if put_user() fails? */
put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
}
static void save_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->wim = new_wim;
#else
save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
env->cansave++;
env->canrestore--;
#endif
}
static void restore_window(CPUSPARCState *env)
{
#ifndef TARGET_SPARC64
unsigned int new_wim;
#endif
unsigned int i, cwp1;
abi_ulong sp_ptr;
#ifndef TARGET_SPARC64
new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
((1LL << env->nwindows) - 1);
#endif
/* restore the invalid window */
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
#ifdef TARGET_SPARC64
if (sp_ptr & 3)
sp_ptr += SPARC64_STACK_BIAS;
#endif
#if defined(DEBUG_WIN)
printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
sp_ptr, cwp1);
#endif
for(i = 0; i < 16; i++) {
/* FIXME - what to do if get_user() fails? */
get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
sp_ptr += sizeof(abi_ulong);
}
#ifdef TARGET_SPARC64
env->canrestore++;
if (env->cleanwin < env->nwindows - 1)
env->cleanwin++;
env->cansave--;
#else
env->wim = new_wim;
#endif
}
static void flush_windows(CPUSPARCState *env)
{
int offset, cwp1;
offset = 1;
for(;;) {
/* if restore would invoke restore_window(), then we can stop */
cwp1 = cpu_cwp_inc(env, env->cwp + offset);
#ifndef TARGET_SPARC64
if (env->wim & (1 << cwp1))
break;
#else
if (env->canrestore == 0)
break;
env->cansave++;
env->canrestore--;
#endif
save_window_offset(env, cwp1);
offset++;
}
cwp1 = cpu_cwp_inc(env, env->cwp + 1);
#ifndef TARGET_SPARC64
/* set wim so that restore will reload the registers */
env->wim = 1 << cwp1;
#endif
#if defined(DEBUG_WIN)
printf("flush_windows: nb=%d\n", offset - 1);
#endif
}
void cpu_loop(CPUSPARCState *env)
{
CPUState *cs = CPU(sparc_env_get_cpu(env));
int trapnr, ret, syscall_nr;
//target_siginfo_t info;
while (1) {
trapnr = cpu_exec(cs);
switch (trapnr) {
#ifndef TARGET_SPARC64
case 0x80:
#else
/* FreeBSD uses 0x141 for syscalls too */
case 0x141:
if (bsd_type != target_freebsd)
goto badtrap;
case 0x100:
#endif
syscall_nr = env->gregs[1];
if (bsd_type == target_freebsd)
ret = do_freebsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5], 0, 0);
else if (bsd_type == target_netbsd)
ret = do_netbsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5]);
else { //if (bsd_type == target_openbsd)
#if defined(TARGET_SPARC64)
syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
TARGET_OPENBSD_SYSCALL_G2RFLAG);
#endif
ret = do_openbsd_syscall(env, syscall_nr,
env->regwptr[0], env->regwptr[1],
env->regwptr[2], env->regwptr[3],
env->regwptr[4], env->regwptr[5]);
}
if ((unsigned int)ret >= (unsigned int)(-515)) {
ret = -ret;
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc |= PSR_CARRY;
#else
env->psr |= PSR_CARRY;
#endif
} else {
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
env->xcc &= ~PSR_CARRY;
#else
env->psr &= ~PSR_CARRY;
#endif
}
env->regwptr[0] = ret;
/* next instruction */
#if defined(TARGET_SPARC64)
if (bsd_type == target_openbsd &&
env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
env->pc = env->gregs[2];
env->npc = env->pc + 4;
} else if (bsd_type == target_openbsd &&
env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
env->pc = env->gregs[7];
env->npc = env->pc + 4;
} else {
env->pc = env->npc;
env->npc = env->npc + 4;
}
#else
env->pc = env->npc;
env->npc = env->npc + 4;
#endif
break;
case 0x83: /* flush windows */
#ifdef TARGET_ABI32
case 0x103:
#endif
flush_windows(env);
/* next instruction */
env->pc = env->npc;
env->npc = env->npc + 4;
break;
#ifndef TARGET_SPARC64
case TT_WIN_OVF: /* window overflow */
save_window(env);
break;
case TT_WIN_UNF: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
#if 0
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
info._sifields._sigfault._addr = env->mmuregs[4];
queue_signal(env, info.si_signo, &info);
}
#endif
break;
#else
case TT_SPILL: /* window overflow */
save_window(env);
break;
case TT_FILL: /* window underflow */
restore_window(env);
break;
case TT_TFAULT:
case TT_DFAULT:
#if 0
{
info.si_signo = SIGSEGV;
info.si_errno = 0;
/* XXX: check env->error_code */
info.si_code = TARGET_SEGV_MAPERR;
if (trapnr == TT_DFAULT)
info._sifields._sigfault._addr = env->dmmuregs[4];
else
info._sifields._sigfault._addr = env->tsptr->tpc;
//queue_signal(env, info.si_signo, &info);
}
#endif
break;
#endif
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
{
int sig;
sig = gdb_handlesig(cs, TARGET_SIGTRAP);
#if 0
if (sig)
{
info.si_signo = sig;
info.si_errno = 0;
info.si_code = TARGET_TRAP_BRKPT;
//queue_signal(env, info.si_signo, &info);
}
#endif
}
break;
default:
#ifdef TARGET_SPARC64
badtrap:
#endif
printf ("Unhandled trap: 0x%x\n", trapnr);
cpu_dump_state(cs, stderr, fprintf, 0);
exit (1);
}
process_pending_signals (env);
}
}
#endif
static void usage(void)
{
printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
", " QEMU_COPYRIGHT "\n"
"usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
"BSD CPU emulator (compiled for %s emulation)\n"
"\n"
"Standard options:\n"
"-h print this help\n"
"-g port wait gdb connection to port\n"
"-L path set the elf interpreter prefix (default=%s)\n"
"-s size set the stack size in bytes (default=%ld)\n"
"-cpu model select CPU (-cpu help for list)\n"
"-drop-ld-preload drop LD_PRELOAD for target process\n"
"-E var=value sets/modifies targets environment variable(s)\n"
"-U var unsets targets environment variable(s)\n"
"-B address set guest_base address to address\n"
"-bsd type select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
"\n"
"Debug options:\n"
"-d item1[,...] enable logging of specified items\n"
" (use '-d help' for a list of log items)\n"
"-D logfile write logs to 'logfile' (default stderr)\n"
"-p pagesize set the host page size to 'pagesize'\n"
"-singlestep always run in singlestep mode\n"
"-strace log system calls\n"
"-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
" specify tracing options\n"
"\n"
"Environment variables:\n"
"QEMU_STRACE Print system calls and arguments similar to the\n"
" 'strace' program. Enable by setting to any value.\n"
"You can use -E and -U options to set/unset environment variables\n"
"for target process. It is possible to provide several variables\n"
"by repeating the option. For example:\n"
" -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
"Note that if you provide several changes to single variable\n"
"last change will stay in effect.\n"
,
TARGET_NAME,
interp_prefix,
x86_stack_size);
exit(1);
}
THREAD CPUState *thread_cpu;
/* Assumes contents are already zeroed. */
void init_task_state(TaskState *ts)
{
int i;
ts->used = 1;
ts->first_free = ts->sigqueue_table;
for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
}
ts->sigqueue_table[i].next = NULL;
}
int main(int argc, char **argv)
{
const char *filename;
const char *cpu_model;
const char *log_file = NULL;
const char *log_mask = NULL;
struct target_pt_regs regs1, *regs = &regs1;
struct image_info info1, *info = &info1;
TaskState ts1, *ts = &ts1;
CPUArchState *env;
CPUState *cpu;
int optind;
const char *r;
int gdbstub_port = 0;
char **target_environ, **wrk;
envlist_t *envlist = NULL;
char *trace_file = NULL;
bsd_type = target_openbsd;
if (argc <= 1)
usage();
module_call_init(MODULE_INIT_QOM);
if ((envlist = envlist_create()) == NULL) {
(void) fprintf(stderr, "Unable to allocate envlist\n");
exit(1);
}
/* add current environment into the list */
for (wrk = environ; *wrk != NULL; wrk++) {
(void) envlist_setenv(envlist, *wrk);
}
cpu_model = NULL;
qemu_add_opts(&qemu_trace_opts);
optind = 1;
for (;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-')
break;
optind++;
r++;
if (!strcmp(r, "-")) {
break;
} else if (!strcmp(r, "d")) {
if (optind >= argc) {
break;
}
log_mask = argv[optind++];
} else if (!strcmp(r, "D")) {
if (optind >= argc) {
break;
}
log_file = argv[optind++];
} else if (!strcmp(r, "E")) {
r = argv[optind++];
if (envlist_setenv(envlist, r) != 0)
usage();
} else if (!strcmp(r, "ignore-environment")) {
envlist_free(envlist);
if ((envlist = envlist_create()) == NULL) {
(void) fprintf(stderr, "Unable to allocate envlist\n");
exit(1);
}
} else if (!strcmp(r, "U")) {
r = argv[optind++];
if (envlist_unsetenv(envlist, r) != 0)
usage();
} else if (!strcmp(r, "s")) {
r = argv[optind++];
x86_stack_size = strtol(r, (char **)&r, 0);
if (x86_stack_size <= 0)
usage();
if (*r == 'M')
x86_stack_size *= 1024 * 1024;
else if (*r == 'k' || *r == 'K')
x86_stack_size *= 1024;
} else if (!strcmp(r, "L")) {
interp_prefix = argv[optind++];
} else if (!strcmp(r, "p")) {
qemu_host_page_size = atoi(argv[optind++]);
if (qemu_host_page_size == 0 ||
(qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
fprintf(stderr, "page size must be a power of two\n");
exit(1);
}
} else if (!strcmp(r, "g")) {
gdbstub_port = atoi(argv[optind++]);
} else if (!strcmp(r, "r")) {
qemu_uname_release = argv[optind++];
} else if (!strcmp(r, "cpu")) {
cpu_model = argv[optind++];
if (is_help_option(cpu_model)) {
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
cpu_list(stdout, &fprintf);
#endif
exit(1);
}
} else if (!strcmp(r, "B")) {
guest_base = strtol(argv[optind++], NULL, 0);
have_guest_base = 1;
} else if (!strcmp(r, "drop-ld-preload")) {
(void) envlist_unsetenv(envlist, "LD_PRELOAD");
} else if (!strcmp(r, "bsd")) {
if (!strcasecmp(argv[optind], "freebsd")) {
bsd_type = target_freebsd;
} else if (!strcasecmp(argv[optind], "netbsd")) {
bsd_type = target_netbsd;
} else if (!strcasecmp(argv[optind], "openbsd")) {
bsd_type = target_openbsd;
} else {
usage();
}
optind++;
} else if (!strcmp(r, "singlestep")) {
singlestep = 1;
} else if (!strcmp(r, "strace")) {
do_strace = 1;
} else if (!strcmp(r, "trace")) {
g_free(trace_file);
trace_file = trace_opt_parse(optarg);
} else {
usage();
}
}
/* init debug */
qemu_log_needs_buffers();
qemu_set_log_filename(log_file, &error_fatal);
if (log_mask) {
int mask;
mask = qemu_str_to_log_mask(log_mask);
if (!mask) {
qemu_print_log_usage(stdout);
exit(1);
}
qemu_set_log(mask);
}
if (optind >= argc) {
usage();
}
filename = argv[optind];
if (!trace_init_backends()) {
exit(1);
}
trace_init_file(trace_file);
/* Zero out regs */
memset(regs, 0, sizeof(struct target_pt_regs));
/* Zero out image_info */
memset(info, 0, sizeof(struct image_info));
/* Scan interp_prefix dir for replacement files. */
init_paths(interp_prefix);
if (cpu_model == NULL) {
#if defined(TARGET_I386)
#ifdef TARGET_X86_64
cpu_model = "qemu64";
#else
cpu_model = "qemu32";
#endif
#elif defined(TARGET_SPARC)
#ifdef TARGET_SPARC64
cpu_model = "TI UltraSparc II";
#else
cpu_model = "Fujitsu MB86904";
#endif
#else
cpu_model = "any";
#endif
}
tcg_exec_init(0);
/* NOTE: we need to init the CPU at this stage to get
qemu_host_page_size */
cpu: Make cpu_init() return QOM CPUState object Instead of making cpu_init() return CPUArchState, return CPUState. Changes were made using the Coccinelle semantic patch below. @@ typedef CPUState; identifier e; expression args; type CPUArchState; @@ - e = + cpu = cpu_init(args); - if (!e) { + if (!cpu) { ... } - cpu = ENV_GET_CPU(env); + e = cpu->env_ptr; @@ identifier new_env, new_cpu, env, cpu; type CPUArchState; expression args; @@ -{ - CPUState *cpu = ENV_GET_CPU(env); - CPUArchState *new_env = cpu_init(args); - CPUState *new_cpu = ENV_GET_CPU(new_env); +{ + CPUState *cpu = ENV_GET_CPU(env); + CPUState *new_cpu = cpu_init(args); + CPUArchState *new_env = new_cpu->env_ptr; ... } @@ identifier c, cpu_init_func, cpu_model; type StateType, CPUType; @@ -static inline StateType* cpu_init(const char *cpu_model) -{ - CPUType *c = cpu_init_func(cpu_model); ( - if (c == NULL) { - return NULL; - } - return &c->env; | - if (c) { - return &c->env; - } - return NULL; ) -} +#define cpu_init(cpu_model) CPU(cpu_init_func(cpu_model)) @@ identifier cpu_init_func; identifier model; @@ -#define cpu_init(model) (&cpu_init_func(model)->env) +#define cpu_init(model) CPU(cpu_init_func(model)) Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Cc: Blue Swirl <blauwirbel@gmail.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Riku Voipio <riku.voipio@iki.fi> Cc: Richard Henderson <rth@twiddle.net> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: "Edgar E. Iglesias" <edgar.iglesias@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Michael Walle <michael@walle.cc> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Leon Alrae <leon.alrae@imgtec.com> Cc: Anthony Green <green@moxielogic.com> Cc: Jia Liu <proljc@gmail.com> Cc: Alexander Graf <agraf@suse.de> Cc: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Cc: Max Filippov <jcmvbkbc@gmail.com> [AF: Fixed up cpu_copy() manually] Signed-off-by: Andreas Färber <afaerber@suse.de>
2015-02-26 23:37:49 +03:00
cpu = cpu_init(cpu_model);
if (!cpu) {
fprintf(stderr, "Unable to find CPU definition\n");
exit(1);
}
cpu: Make cpu_init() return QOM CPUState object Instead of making cpu_init() return CPUArchState, return CPUState. Changes were made using the Coccinelle semantic patch below. @@ typedef CPUState; identifier e; expression args; type CPUArchState; @@ - e = + cpu = cpu_init(args); - if (!e) { + if (!cpu) { ... } - cpu = ENV_GET_CPU(env); + e = cpu->env_ptr; @@ identifier new_env, new_cpu, env, cpu; type CPUArchState; expression args; @@ -{ - CPUState *cpu = ENV_GET_CPU(env); - CPUArchState *new_env = cpu_init(args); - CPUState *new_cpu = ENV_GET_CPU(new_env); +{ + CPUState *cpu = ENV_GET_CPU(env); + CPUState *new_cpu = cpu_init(args); + CPUArchState *new_env = new_cpu->env_ptr; ... } @@ identifier c, cpu_init_func, cpu_model; type StateType, CPUType; @@ -static inline StateType* cpu_init(const char *cpu_model) -{ - CPUType *c = cpu_init_func(cpu_model); ( - if (c == NULL) { - return NULL; - } - return &c->env; | - if (c) { - return &c->env; - } - return NULL; ) -} +#define cpu_init(cpu_model) CPU(cpu_init_func(cpu_model)) @@ identifier cpu_init_func; identifier model; @@ -#define cpu_init(model) (&cpu_init_func(model)->env) +#define cpu_init(model) CPU(cpu_init_func(model)) Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Cc: Blue Swirl <blauwirbel@gmail.com> Cc: Guan Xuetao <gxt@mprc.pku.edu.cn> Cc: Riku Voipio <riku.voipio@iki.fi> Cc: Richard Henderson <rth@twiddle.net> Cc: Peter Maydell <peter.maydell@linaro.org> Cc: "Edgar E. Iglesias" <edgar.iglesias@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Michael Walle <michael@walle.cc> Cc: Aurelien Jarno <aurelien@aurel32.net> Cc: Leon Alrae <leon.alrae@imgtec.com> Cc: Anthony Green <green@moxielogic.com> Cc: Jia Liu <proljc@gmail.com> Cc: Alexander Graf <agraf@suse.de> Cc: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> Cc: Max Filippov <jcmvbkbc@gmail.com> [AF: Fixed up cpu_copy() manually] Signed-off-by: Andreas Färber <afaerber@suse.de>
2015-02-26 23:37:49 +03:00
env = cpu->env_ptr;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
cpu_reset(cpu);
#endif
thread_cpu = cpu;
if (getenv("QEMU_STRACE")) {
do_strace = 1;
}
target_environ = envlist_to_environ(envlist, NULL);
envlist_free(envlist);
/*
* Now that page sizes are configured in cpu_init() we can do
* proper page alignment for guest_base.
*/
guest_base = HOST_PAGE_ALIGN(guest_base);
/*
* Read in mmap_min_addr kernel parameter. This value is used
* When loading the ELF image to determine whether guest_base
* is needed.
*
* When user has explicitly set the quest base, we skip this
* test.
*/
if (!have_guest_base) {
FILE *fp;
if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
unsigned long tmp;
if (fscanf(fp, "%lu", &tmp) == 1) {
mmap_min_addr = tmp;
qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr);
}
fclose(fp);
}
}
if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
printf("Error loading %s\n", filename);
_exit(1);
}
for (wrk = target_environ; *wrk; wrk++) {
free(*wrk);
}
free(target_environ);
if (qemu_loglevel_mask(CPU_LOG_PAGE)) {
qemu_log("guest_base 0x%lx\n", guest_base);
log_page_dump();
qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code);
qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n",
info->start_code);
qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n",
info->start_data);
qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data);
qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
info->start_stack);
qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk);
qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry);
}
target_set_brk(info->brk);
syscall_init();
signal_init();
/* Now that we've loaded the binary, GUEST_BASE is fixed. Delay
generating the prologue until now so that the prologue can take
the real value of GUEST_BASE into account. */
tcg_prologue_init(&tcg_ctx);
/* build Task State */
memset(ts, 0, sizeof(TaskState));
init_task_state(ts);
ts->info = info;
cpu->opaque = ts;
#if defined(TARGET_I386)
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
env->cr[4] |= CR4_OSFXSR_MASK;
env->hflags |= HF_OSFXSR_MASK;
}
#ifndef TARGET_ABI32
/* enable 64 bit mode if possible */
if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(1);
}
env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
env->hflags |= HF_LMA_MASK;
#endif
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags |= IF_MASK;
/* linux register setup */
#ifndef TARGET_ABI32
env->regs[R_EAX] = regs->rax;
env->regs[R_EBX] = regs->rbx;
env->regs[R_ECX] = regs->rcx;
env->regs[R_EDX] = regs->rdx;
env->regs[R_ESI] = regs->rsi;
env->regs[R_EDI] = regs->rdi;
env->regs[R_EBP] = regs->rbp;
env->regs[R_ESP] = regs->rsp;
env->eip = regs->rip;
#else
env->regs[R_EAX] = regs->eax;
env->regs[R_EBX] = regs->ebx;
env->regs[R_ECX] = regs->ecx;
env->regs[R_EDX] = regs->edx;
env->regs[R_ESI] = regs->esi;
env->regs[R_EDI] = regs->edi;
env->regs[R_EBP] = regs->ebp;
env->regs[R_ESP] = regs->esp;
env->eip = regs->eip;
#endif
/* linux interrupt setup */
#ifndef TARGET_ABI32
env->idt.limit = 511;
#else
env->idt.limit = 255;
#endif
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
idt_table = g2h(env->idt.base);
set_idt(0, 0);
set_idt(1, 0);
set_idt(2, 0);
set_idt(3, 3);
set_idt(4, 3);
set_idt(5, 0);
set_idt(6, 0);
set_idt(7, 0);
set_idt(8, 0);
set_idt(9, 0);
set_idt(10, 0);
set_idt(11, 0);
set_idt(12, 0);
set_idt(13, 0);
set_idt(14, 0);
set_idt(15, 0);
set_idt(16, 0);
set_idt(17, 0);
set_idt(18, 0);
set_idt(19, 0);
set_idt(0x80, 3);
/* linux segment setup */
{
uint64_t *gdt_table;
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
gdt_table = g2h(env->gdt.base);
#ifdef TARGET_ABI32
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#else
/* 64 bit code segment */
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
DESC_L_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#endif
write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
}
cpu_x86_load_seg(env, R_CS, __USER_CS);
cpu_x86_load_seg(env, R_SS, __USER_DS);
#ifdef TARGET_ABI32
cpu_x86_load_seg(env, R_DS, __USER_DS);
cpu_x86_load_seg(env, R_ES, __USER_DS);
cpu_x86_load_seg(env, R_FS, __USER_DS);
cpu_x86_load_seg(env, R_GS, __USER_DS);
/* This hack makes Wine work... */
env->segs[R_FS].selector = 0;
#else
cpu_x86_load_seg(env, R_DS, 0);
cpu_x86_load_seg(env, R_ES, 0);
cpu_x86_load_seg(env, R_FS, 0);
cpu_x86_load_seg(env, R_GS, 0);
#endif
#elif defined(TARGET_SPARC)
{
int i;
env->pc = regs->pc;
env->npc = regs->npc;
env->y = regs->y;
for(i = 0; i < 8; i++)
env->gregs[i] = regs->u_regs[i];
for(i = 0; i < 8; i++)
env->regwptr[i] = regs->u_regs[i + 8];
}
#else
#error unsupported target CPU
#endif
if (gdbstub_port) {
gdbserver_start (gdbstub_port);
gdb_handlesig(cpu, 0);
}
trace_init_vcpu_events();
cpu_loop(env);
/* never exits */
return 0;
}