qemu/target/hexagon/op_helper.c

1182 lines
33 KiB
C
Raw Normal View History

/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "cpu.h"
#include "internal.h"
#include "macros.h"
#include "arch.h"
#include "hex_arch_types.h"
#include "fma_emu.h"
#define SF_BIAS 127
#define SF_MANTBITS 23
/* Exceptions processing helpers */
static void QEMU_NORETURN do_raise_exception_err(CPUHexagonState *env,
uint32_t exception,
uintptr_t pc)
{
CPUState *cs = env_cpu(env);
qemu_log_mask(CPU_LOG_INT, "%s: %d\n", __func__, exception);
cs->exception_index = exception;
cpu_loop_exit_restore(cs, pc);
}
void QEMU_NORETURN HELPER(raise_exception)(CPUHexagonState *env, uint32_t excp)
{
do_raise_exception_err(env, excp, 0);
}
static void log_reg_write(CPUHexagonState *env, int rnum,
target_ulong val, uint32_t slot)
{
HEX_DEBUG_LOG("log_reg_write[%d] = " TARGET_FMT_ld " (0x" TARGET_FMT_lx ")",
rnum, val, val);
if (val == env->gpr[rnum]) {
HEX_DEBUG_LOG(" NO CHANGE");
}
HEX_DEBUG_LOG("\n");
env->new_value[rnum] = val;
if (HEX_DEBUG) {
/* Do this so HELPER(debug_commit_end) will know */
env->reg_written[rnum] = 1;
}
}
static void log_pred_write(CPUHexagonState *env, int pnum, target_ulong val)
{
HEX_DEBUG_LOG("log_pred_write[%d] = " TARGET_FMT_ld
" (0x" TARGET_FMT_lx ")\n",
pnum, val, val);
/* Multiple writes to the same preg are and'ed together */
if (env->pred_written & (1 << pnum)) {
env->new_pred_value[pnum] &= val & 0xff;
} else {
env->new_pred_value[pnum] = val & 0xff;
env->pred_written |= 1 << pnum;
}
}
static void log_store32(CPUHexagonState *env, target_ulong addr,
target_ulong val, int width, int slot)
{
HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx
", %" PRId32 " [0x08%" PRIx32 "])\n",
width, addr, val, val);
env->mem_log_stores[slot].va = addr;
env->mem_log_stores[slot].width = width;
env->mem_log_stores[slot].data32 = val;
}
static void log_store64(CPUHexagonState *env, target_ulong addr,
int64_t val, int width, int slot)
{
HEX_DEBUG_LOG("log_store%d(0x" TARGET_FMT_lx
", %" PRId64 " [0x016%" PRIx64 "])\n",
width, addr, val, val);
env->mem_log_stores[slot].va = addr;
env->mem_log_stores[slot].width = width;
env->mem_log_stores[slot].data64 = val;
}
static void write_new_pc(CPUHexagonState *env, target_ulong addr)
{
HEX_DEBUG_LOG("write_new_pc(0x" TARGET_FMT_lx ")\n", addr);
/*
* If more than one branch is taken in a packet, only the first one
* is actually done.
*/
if (env->branch_taken) {
HEX_DEBUG_LOG("INFO: multiple branches taken in same packet, "
"ignoring the second one\n");
} else {
fCHECK_PCALIGN(addr);
env->branch_taken = 1;
env->next_PC = addr;
}
}
/* Handy place to set a breakpoint */
void HELPER(debug_start_packet)(CPUHexagonState *env)
{
HEX_DEBUG_LOG("Start packet: pc = 0x" TARGET_FMT_lx "\n",
env->gpr[HEX_REG_PC]);
for (int i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
env->reg_written[i] = 0;
}
}
/* Checks for bookkeeping errors between disassembly context and runtime */
void HELPER(debug_check_store_width)(CPUHexagonState *env, int slot, int check)
{
if (env->mem_log_stores[slot].width != check) {
HEX_DEBUG_LOG("ERROR: %d != %d\n",
env->mem_log_stores[slot].width, check);
g_assert_not_reached();
}
}
void HELPER(commit_store)(CPUHexagonState *env, int slot_num)
{
uintptr_t ra = GETPC();
uint8_t width = env->mem_log_stores[slot_num].width;
target_ulong va = env->mem_log_stores[slot_num].va;
switch (width) {
case 1:
cpu_stb_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 2:
cpu_stw_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 4:
cpu_stl_data_ra(env, va, env->mem_log_stores[slot_num].data32, ra);
break;
case 8:
cpu_stq_data_ra(env, va, env->mem_log_stores[slot_num].data64, ra);
break;
default:
g_assert_not_reached();
}
}
static void print_store(CPUHexagonState *env, int slot)
{
if (!(env->slot_cancelled & (1 << slot))) {
uint8_t width = env->mem_log_stores[slot].width;
if (width == 1) {
uint32_t data = env->mem_log_stores[slot].data32 & 0xff;
HEX_DEBUG_LOG("\tmemb[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%02" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 2) {
uint32_t data = env->mem_log_stores[slot].data32 & 0xffff;
HEX_DEBUG_LOG("\tmemh[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%04" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 4) {
uint32_t data = env->mem_log_stores[slot].data32;
HEX_DEBUG_LOG("\tmemw[0x" TARGET_FMT_lx "] = %" PRId32
" (0x%08" PRIx32 ")\n",
env->mem_log_stores[slot].va, data, data);
} else if (width == 8) {
HEX_DEBUG_LOG("\tmemd[0x" TARGET_FMT_lx "] = %" PRId64
" (0x%016" PRIx64 ")\n",
env->mem_log_stores[slot].va,
env->mem_log_stores[slot].data64,
env->mem_log_stores[slot].data64);
} else {
HEX_DEBUG_LOG("\tBad store width %d\n", width);
g_assert_not_reached();
}
}
}
/* This function is a handy place to set a breakpoint */
void HELPER(debug_commit_end)(CPUHexagonState *env, int has_st0, int has_st1)
{
bool reg_printed = false;
bool pred_printed = false;
int i;
HEX_DEBUG_LOG("Packet committed: pc = 0x" TARGET_FMT_lx "\n",
env->this_PC);
HEX_DEBUG_LOG("slot_cancelled = %d\n", env->slot_cancelled);
for (i = 0; i < TOTAL_PER_THREAD_REGS; i++) {
if (env->reg_written[i]) {
if (!reg_printed) {
HEX_DEBUG_LOG("Regs written\n");
reg_printed = true;
}
HEX_DEBUG_LOG("\tr%d = " TARGET_FMT_ld " (0x" TARGET_FMT_lx ")\n",
i, env->new_value[i], env->new_value[i]);
}
}
for (i = 0; i < NUM_PREGS; i++) {
if (env->pred_written & (1 << i)) {
if (!pred_printed) {
HEX_DEBUG_LOG("Predicates written\n");
pred_printed = true;
}
HEX_DEBUG_LOG("\tp%d = 0x" TARGET_FMT_lx "\n",
i, env->new_pred_value[i]);
}
}
if (has_st0 || has_st1) {
HEX_DEBUG_LOG("Stores\n");
if (has_st0) {
print_store(env, 0);
}
if (has_st1) {
print_store(env, 1);
}
}
HEX_DEBUG_LOG("Next PC = " TARGET_FMT_lx "\n", env->next_PC);
HEX_DEBUG_LOG("Exec counters: pkt = " TARGET_FMT_lx
", insn = " TARGET_FMT_lx
"\n",
env->gpr[HEX_REG_QEMU_PKT_CNT],
env->gpr[HEX_REG_QEMU_INSN_CNT]);
}
int32_t HELPER(fcircadd)(int32_t RxV, int32_t offset, int32_t M, int32_t CS)
{
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
int32_t K_const = sextract32(M, 24, 4);
int32_t length = sextract32(M, 0, 17);
uint32_t new_ptr = RxV + offset;
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
uint32_t start_addr;
uint32_t end_addr;
if (K_const == 0 && length >= 4) {
Hexagon (target/hexagon) circular addressing The following instructions are added L2_loadrub_pci Rd32 = memub(Rx32++#s4:0:circ(Mu2)) L2_loadrb_pci Rd32 = memb(Rx32++#s4:0:circ(Mu2)) L2_loadruh_pci Rd32 = memuh(Rx32++#s4:1:circ(Mu2)) L2_loadrh_pci Rd32 = memh(Rx32++#s4:1:circ(Mu2)) L2_loadri_pci Rd32 = memw(Rx32++#s4:2:circ(Mu2)) L2_loadrd_pci Rdd32 = memd(Rx32++#s4:3:circ(Mu2)) S2_storerb_pci memb(Rx32++#s4:0:circ(Mu2)) = Rt32 S2_storerh_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt32 S2_storerf_pci memh(Rx32++#s4:1:circ(Mu2)) = Rt.H32 S2_storeri_pci memw(Rx32++#s4:2:circ(Mu2)) = Rt32 S2_storerd_pci memd(Rx32++#s4:3:circ(Mu2)) = Rtt32 S2_storerbnew_pci memb(Rx32++#s4:0:circ(Mu2)) = Nt8.new S2_storerhnew_pci memw(Rx32++#s4:1:circ(Mu2)) = Nt8.new S2_storerinew_pci memw(Rx32++#s4:2:circ(Mu2)) = Nt8.new L2_loadrub_pcr Rd32 = memub(Rx32++I:circ(Mu2)) L2_loadrb_pcr Rd32 = memb(Rx32++I:circ(Mu2)) L2_loadruh_pcr Rd32 = memuh(Rx32++I:circ(Mu2)) L2_loadrh_pcr Rd32 = memh(Rx32++I:circ(Mu2)) L2_loadri_pcr Rd32 = memw(Rx32++I:circ(Mu2)) L2_loadrd_pcr Rdd32 = memd(Rx32++I:circ(Mu2)) S2_storerb_pcr memb(Rx32++I:circ(Mu2)) = Rt32 S2_storerh_pcr memh(Rx32++I:circ(Mu2)) = Rt32 S2_storerf_pcr memh(Rx32++I:circ(Mu2)) = Rt32.H32 S2_storeri_pcr memw(Rx32++I:circ(Mu2)) = Rt32 S2_storerd_pcr memd(Rx32++I:circ(Mu2)) = Rtt32 S2_storerbnew_pcr memb(Rx32++I:circ(Mu2)) = Nt8.new S2_storerhnew_pcr memh(Rx32++I:circ(Mu2)) = Nt8.new S2_storerinew_pcr memw(Rx32++I:circ(Mu2)) = Nt8.new Test cases in tests/tcg/hexagon/circ.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-23-git-send-email-tsimpson@quicinc.com> [rth: Squash <1619667142-29636-1-git-send-email-tsimpson@quicinc.com> removing gen_read_reg and gen_set_byte to avoid clang Werror.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2021-04-09 04:07:50 +03:00
start_addr = CS;
end_addr = start_addr + length;
} else {
/*
* Versions v3 and earlier used the K value to specify a power-of-2 size
* 2^(K+2) that is greater than the buffer length
*/
int32_t mask = (1 << (K_const + 2)) - 1;
start_addr = RxV & (~mask);
end_addr = start_addr | length;
}
if (new_ptr >= end_addr) {
new_ptr -= length;
} else if (new_ptr < start_addr) {
new_ptr += length;
}
return new_ptr;
}
uint32_t HELPER(fbrev)(uint32_t addr)
{
/*
* Bit reverse the low 16 bits of the address
*/
return deposit32(addr, 0, 16, revbit16(addr));
}
static float32 build_float32(uint8_t sign, uint32_t exp, uint32_t mant)
{
return make_float32(
((sign & 1) << 31) |
((exp & 0xff) << SF_MANTBITS) |
(mant & ((1 << SF_MANTBITS) - 1)));
}
/*
* sfrecipa, sfinvsqrta have two 32-bit results
* r0,p0=sfrecipa(r1,r2)
* r0,p0=sfinvsqrta(r1)
*
* Since helpers can only return a single value, we pack the two results
* into a 64-bit value.
*/
uint64_t HELPER(sfrecipa)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PeV = 0;
float32 RdV;
int idx;
int adjust;
int mant;
int exp;
arch_fpop_start(env);
if (arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status)) {
PeV = adjust;
idx = (RtV >> 16) & 0x7f;
mant = (recip_lookup_table[idx] << 15) | 1;
exp = SF_BIAS - (float32_getexp(RtV) - SF_BIAS) - 1;
RdV = build_float32(extract32(RtV, 31, 1), exp, mant);
}
arch_fpop_end(env);
return ((uint64_t)RdV << 32) | PeV;
}
uint64_t HELPER(sfinvsqrta)(CPUHexagonState *env, float32 RsV)
{
int PeV = 0;
float32 RdV;
int idx;
int adjust;
int mant;
int exp;
arch_fpop_start(env);
if (arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status)) {
PeV = adjust;
idx = (RsV >> 17) & 0x7f;
mant = (invsqrt_lookup_table[idx] << 15);
exp = SF_BIAS - ((float32_getexp(RsV) - SF_BIAS) >> 1) - 1;
RdV = build_float32(extract32(RsV, 31, 1), exp, mant);
}
arch_fpop_end(env);
return ((uint64_t)RdV << 32) | PeV;
}
int64_t HELPER(vacsh_val)(CPUHexagonState *env,
int64_t RxxV, int64_t RssV, int64_t RttV)
{
for (int i = 0; i < 4; i++) {
int xv = sextract64(RxxV, i * 16, 16);
int sv = sextract64(RssV, i * 16, 16);
int tv = sextract64(RttV, i * 16, 16);
int max;
xv = xv + tv;
sv = sv - tv;
max = xv > sv ? xv : sv;
/* Note that fSATH can set the OVF bit in usr */
RxxV = deposit64(RxxV, i * 16, 16, fSATH(max));
}
return RxxV;
}
int32_t HELPER(vacsh_pred)(CPUHexagonState *env,
int64_t RxxV, int64_t RssV, int64_t RttV)
{
int32_t PeV = 0;
for (int i = 0; i < 4; i++) {
int xv = sextract64(RxxV, i * 16, 16);
int sv = sextract64(RssV, i * 16, 16);
int tv = sextract64(RttV, i * 16, 16);
xv = xv + tv;
sv = sv - tv;
PeV = deposit32(PeV, i * 2, 1, (xv > sv));
PeV = deposit32(PeV, i * 2 + 1, 1, (xv > sv));
}
return PeV;
}
/*
* mem_noshuf
* Section 5.5 of the Hexagon V67 Programmer's Reference Manual
*
* If the load is in slot 0 and there is a store in slot1 (that
* wasn't cancelled), we have to do the store first.
*/
static void check_noshuf(CPUHexagonState *env, uint32_t slot)
{
if (slot == 0 && env->pkt_has_store_s1 &&
((env->slot_cancelled & (1 << 1)) == 0)) {
HELPER(commit_store)(env, 1);
}
}
static uint8_t mem_load1(CPUHexagonState *env, uint32_t slot,
target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot);
return cpu_ldub_data_ra(env, vaddr, ra);
}
static uint16_t mem_load2(CPUHexagonState *env, uint32_t slot,
target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot);
return cpu_lduw_data_ra(env, vaddr, ra);
}
static uint32_t mem_load4(CPUHexagonState *env, uint32_t slot,
target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot);
return cpu_ldl_data_ra(env, vaddr, ra);
}
static uint64_t mem_load8(CPUHexagonState *env, uint32_t slot,
target_ulong vaddr)
{
uintptr_t ra = GETPC();
check_noshuf(env, slot);
return cpu_ldq_data_ra(env, vaddr, ra);
}
/* Floating point */
float64 HELPER(conv_sf2df)(CPUHexagonState *env, float32 RsV)
{
float64 out_f64;
arch_fpop_start(env);
out_f64 = float32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return out_f64;
}
float32 HELPER(conv_df2sf)(CPUHexagonState *env, float64 RssV)
{
float32 out_f32;
arch_fpop_start(env);
out_f32 = float64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return out_f32;
}
float32 HELPER(conv_uw2sf)(CPUHexagonState *env, int32_t RsV)
{
float32 RdV;
arch_fpop_start(env);
RdV = uint32_to_float32(RsV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_uw2df)(CPUHexagonState *env, int32_t RsV)
{
float64 RddV;
arch_fpop_start(env);
RddV = uint32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_w2sf)(CPUHexagonState *env, int32_t RsV)
{
float32 RdV;
arch_fpop_start(env);
RdV = int32_to_float32(RsV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_w2df)(CPUHexagonState *env, int32_t RsV)
{
float64 RddV;
arch_fpop_start(env);
RddV = int32_to_float64(RsV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_ud2sf)(CPUHexagonState *env, int64_t RssV)
{
float32 RdV;
arch_fpop_start(env);
RdV = uint64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_ud2df)(CPUHexagonState *env, int64_t RssV)
{
float64 RddV;
arch_fpop_start(env);
RddV = uint64_to_float64(RssV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float32 HELPER(conv_d2sf)(CPUHexagonState *env, int64_t RssV)
{
float32 RdV;
arch_fpop_start(env);
RdV = int64_to_float32(RssV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float64 HELPER(conv_d2df)(CPUHexagonState *env, int64_t RssV)
{
float64 RddV;
arch_fpop_start(env);
RddV = int64_to_float64(RssV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_sf2uw)(CPUHexagonState *env, float32 RsV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float32_to_uint32(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_sf2w)(CPUHexagonState *env, float32 RsV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float32_to_int32(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_sf2ud)(CPUHexagonState *env, float32 RsV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float32_to_uint64(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_sf2d)(CPUHexagonState *env, float32 RsV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float32_to_int64(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_df2uw)(CPUHexagonState *env, float64 RssV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float64_to_uint32(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_df2w)(CPUHexagonState *env, float64 RssV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float64_to_int32(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_df2ud)(CPUHexagonState *env, float64 RssV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float64_to_uint64(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_df2d)(CPUHexagonState *env, float64 RssV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float64_to_int64(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_sf2uw_chop)(CPUHexagonState *env, float32 RsV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float32_to_uint32_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_sf2w_chop)(CPUHexagonState *env, float32 RsV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float32_to_int32_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_sf2ud_chop)(CPUHexagonState *env, float32 RsV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float32_is_neg(RsV) && !float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float32_to_uint64_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_sf2d_chop)(CPUHexagonState *env, float32 RsV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float32_is_any_nan(RsV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float32_to_int64_round_to_zero(RsV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
uint32_t HELPER(conv_df2uw_chop)(CPUHexagonState *env, float64 RssV)
{
uint32_t RdV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float32_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = 0;
} else {
RdV = float64_to_uint32_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(conv_df2w_chop)(CPUHexagonState *env, float64 RssV)
{
int32_t RdV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RdV = -1;
} else {
RdV = float64_to_int32_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RdV;
}
uint64_t HELPER(conv_df2ud_chop)(CPUHexagonState *env, float64 RssV)
{
uint64_t RddV;
arch_fpop_start(env);
/* Hexagon checks the sign before rounding */
if (float64_is_neg(RssV) && !float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = 0;
} else {
RddV = float64_to_uint64_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int64_t HELPER(conv_df2d_chop)(CPUHexagonState *env, float64 RssV)
{
int64_t RddV;
arch_fpop_start(env);
/* Hexagon returns -1 for NaN */
if (float64_is_any_nan(RssV)) {
float_raise(float_flag_invalid, &env->fp_status);
RddV = -1;
} else {
RddV = float64_to_int64_round_to_zero(RssV, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
float32 HELPER(sfadd)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_add(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sfsub)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_sub(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(sfcmpeq)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float32_eq_quiet(RsV, RtV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpgt)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float32_compare_quiet(RsV, RtV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpge)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float32_compare_quiet(RsV, RtV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater ||
cmp == float_relation_equal);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(sfcmpuo)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float32_is_any_nan(RsV) ||
float32_is_any_nan(RtV));
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sfmax)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_maxnum(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sfmin)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = float32_minnum(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
int32_t HELPER(sfclass)(CPUHexagonState *env, float32 RsV, int32_t uiV)
{
int32_t PdV = 0;
arch_fpop_start(env);
if (fGETBIT(0, uiV) && float32_is_zero(RsV)) {
PdV = 0xff;
}
if (fGETBIT(1, uiV) && float32_is_normal(RsV)) {
PdV = 0xff;
}
if (fGETBIT(2, uiV) && float32_is_denormal(RsV)) {
PdV = 0xff;
}
if (fGETBIT(3, uiV) && float32_is_infinity(RsV)) {
PdV = 0xff;
}
if (fGETBIT(4, uiV) && float32_is_any_nan(RsV)) {
PdV = 0xff;
}
set_float_exception_flags(0, &env->fp_status);
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sffixupn)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status);
RdV = RsV;
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffixupd)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_recip_common(&RsV, &RtV, &RdV, &adjust, &env->fp_status);
RdV = RtV;
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffixupr)(CPUHexagonState *env, float32 RsV)
{
float32 RdV = 0;
int adjust;
arch_fpop_start(env);
arch_sf_invsqrt_common(&RsV, &RdV, &adjust, &env->fp_status);
RdV = RsV;
arch_fpop_end(env);
return RdV;
}
float64 HELPER(dfadd)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_add(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfsub)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_sub(RssV, RttV, &env->fp_status);
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmax)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_maxnum(RssV, RttV, &env->fp_status);
if (float64_is_any_nan(RssV) || float64_is_any_nan(RttV)) {
float_raise(float_flag_invalid, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmin)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
float64 RddV;
arch_fpop_start(env);
RddV = float64_minnum(RssV, RttV, &env->fp_status);
if (float64_is_any_nan(RssV) || float64_is_any_nan(RttV)) {
float_raise(float_flag_invalid, &env->fp_status);
}
arch_fpop_end(env);
return RddV;
}
int32_t HELPER(dfcmpeq)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float64_eq_quiet(RssV, RttV, &env->fp_status));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpgt)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float64_compare_quiet(RssV, RttV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpge)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int cmp;
int32_t PdV;
arch_fpop_start(env);
cmp = float64_compare_quiet(RssV, RttV, &env->fp_status);
PdV = f8BITSOF(cmp == float_relation_greater ||
cmp == float_relation_equal);
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfcmpuo)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int32_t PdV;
arch_fpop_start(env);
PdV = f8BITSOF(float64_is_any_nan(RssV) ||
float64_is_any_nan(RttV));
arch_fpop_end(env);
return PdV;
}
int32_t HELPER(dfclass)(CPUHexagonState *env, float64 RssV, int32_t uiV)
{
int32_t PdV = 0;
arch_fpop_start(env);
if (fGETBIT(0, uiV) && float64_is_zero(RssV)) {
PdV = 0xff;
}
if (fGETBIT(1, uiV) && float64_is_normal(RssV)) {
PdV = 0xff;
}
if (fGETBIT(2, uiV) && float64_is_denormal(RssV)) {
PdV = 0xff;
}
if (fGETBIT(3, uiV) && float64_is_infinity(RssV)) {
PdV = 0xff;
}
if (fGETBIT(4, uiV) && float64_is_any_nan(RssV)) {
PdV = 0xff;
}
set_float_exception_flags(0, &env->fp_status);
arch_fpop_end(env);
return PdV;
}
float32 HELPER(sfmpy)(CPUHexagonState *env, float32 RsV, float32 RtV)
{
float32 RdV;
arch_fpop_start(env);
RdV = internal_mpyf(RsV, RtV, &env->fp_status);
arch_fpop_end(env);
return RdV;
}
float32 HELPER(sffma)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
arch_fpop_start(env);
RxV = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status);
arch_fpop_end(env);
return RxV;
}
static bool is_zero_prod(float32 a, float32 b)
{
return ((float32_is_zero(a) && is_finite(b)) ||
(float32_is_zero(b) && is_finite(a)));
}
static float32 check_nan(float32 dst, float32 x, float_status *fp_status)
{
float32 ret = dst;
if (float32_is_any_nan(x)) {
if (extract32(x, 22, 1) == 0) {
float_raise(float_flag_invalid, fp_status);
}
ret = make_float32(0xffffffff); /* nan */
}
return ret;
}
float32 HELPER(sffma_sc)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV, float32 PuV)
{
size4s_t tmp;
arch_fpop_start(env);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
tmp = internal_fmafx(RsV, RtV, RxV, fSXTN(8, 64, PuV), &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
arch_fpop_end(env);
return RxV;
}
float32 HELPER(sffms)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
float32 neg_RsV;
arch_fpop_start(env);
neg_RsV = float32_sub(float32_zero, RsV, &env->fp_status);
RxV = internal_fmafx(neg_RsV, RtV, RxV, 0, &env->fp_status);
arch_fpop_end(env);
return RxV;
}
static bool is_inf_prod(int32_t a, int32_t b)
{
return (float32_is_infinity(a) && float32_is_infinity(b)) ||
(float32_is_infinity(a) && is_finite(b) && !float32_is_zero(b)) ||
(float32_is_infinity(b) && is_finite(a) && !float32_is_zero(a));
}
float32 HELPER(sffma_lib)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
bool infinp;
bool infminusinf;
float32 tmp;
arch_fpop_start(env);
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
infminusinf = float32_is_infinity(RxV) &&
is_inf_prod(RsV, RtV) &&
(fGETBIT(31, RsV ^ RxV ^ RtV) != 0);
infinp = float32_is_infinity(RxV) ||
float32_is_infinity(RtV) ||
float32_is_infinity(RsV);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
tmp = internal_fmafx(RsV, RtV, RxV, 0, &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
set_float_exception_flags(0, &env->fp_status);
if (float32_is_infinity(RxV) && !infinp) {
RxV = RxV - 1;
}
if (infminusinf) {
RxV = 0;
}
arch_fpop_end(env);
return RxV;
}
float32 HELPER(sffms_lib)(CPUHexagonState *env, float32 RxV,
float32 RsV, float32 RtV)
{
bool infinp;
bool infminusinf;
float32 tmp;
arch_fpop_start(env);
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
infminusinf = float32_is_infinity(RxV) &&
is_inf_prod(RsV, RtV) &&
(fGETBIT(31, RsV ^ RxV ^ RtV) == 0);
infinp = float32_is_infinity(RxV) ||
float32_is_infinity(RtV) ||
float32_is_infinity(RsV);
RxV = check_nan(RxV, RxV, &env->fp_status);
RxV = check_nan(RxV, RsV, &env->fp_status);
RxV = check_nan(RxV, RtV, &env->fp_status);
float32 minus_RsV = float32_sub(float32_zero, RsV, &env->fp_status);
tmp = internal_fmafx(minus_RsV, RtV, RxV, 0, &env->fp_status);
if (!(float32_is_zero(RxV) && is_zero_prod(RsV, RtV))) {
RxV = tmp;
}
set_float_exception_flags(0, &env->fp_status);
if (float32_is_infinity(RxV) && !infinp) {
RxV = RxV - 1;
}
if (infminusinf) {
RxV = 0;
}
arch_fpop_end(env);
return RxV;
}
float64 HELPER(dfmpyfix)(CPUHexagonState *env, float64 RssV, float64 RttV)
{
int64_t RddV;
arch_fpop_start(env);
if (float64_is_denormal(RssV) &&
(float64_getexp(RttV) >= 512) &&
float64_is_normal(RttV)) {
RddV = float64_mul(RssV, make_float64(0x4330000000000000),
&env->fp_status);
} else if (float64_is_denormal(RttV) &&
(float64_getexp(RssV) >= 512) &&
float64_is_normal(RssV)) {
RddV = float64_mul(RssV, make_float64(0x3cb0000000000000),
&env->fp_status);
} else {
RddV = RssV;
}
arch_fpop_end(env);
return RddV;
}
float64 HELPER(dfmpyhh)(CPUHexagonState *env, float64 RxxV,
float64 RssV, float64 RttV)
{
arch_fpop_start(env);
RxxV = internal_mpyhh(RssV, RttV, RxxV, &env->fp_status);
arch_fpop_end(env);
return RxxV;
}
static void cancel_slot(CPUHexagonState *env, uint32_t slot)
{
HEX_DEBUG_LOG("Slot %d cancelled\n", slot);
env->slot_cancelled |= (1 << slot);
}
/* These macros can be referenced in the generated helper functions */
#define warn(...) /* Nothing */
#define fatal(...) g_assert_not_reached();
#define BOGUS_HELPER(tag) \
printf("ERROR: bogus helper: " #tag "\n")
#include "helper_funcs_generated.c.inc"