qemu/hw/adc/stm32f2xx_adc.c

309 lines
9.1 KiB
C
Raw Normal View History

/*
* STM32F2XX ADC
*
* Copyright (c) 2014 Alistair Francis <alistair@alistair23.me>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/adc/stm32f2xx_adc.h"
#ifndef STM_ADC_ERR_DEBUG
#define STM_ADC_ERR_DEBUG 0
#endif
#define DB_PRINT_L(lvl, fmt, args...) do { \
if (STM_ADC_ERR_DEBUG >= lvl) { \
qemu_log("%s: " fmt, __func__, ## args); \
} \
maint: Fix macros with broken 'do/while(0); ' usage The point of writing a macro embedded in a 'do { ... } while (0)' loop (particularly if the macro has multiple statements or would otherwise end with an 'if' statement) is so that the macro can be used as a drop-in statement with the caller supplying the trailing ';'. Although our coding style frowns on brace-less 'if': if (cond) statement; else something else; that is the classic case where failure to use do/while(0) wrapping would cause the 'else' to pair with any embedded 'if' in the macro rather than the intended outer 'if'. But conversely, if the macro includes an embedded ';', then the same brace-less coding style would now have two statements, making the 'else' a syntax error rather than pairing with the outer 'if'. Thus, even though our coding style with required braces is not impacted, ending a macro with ';' makes our code harder to port to projects that use brace-less styles. The change should have no semantic impact. I was not able to fully compile-test all of the changes (as some of them are examples of the ugly bit-rotting debug print statements that are completely elided by default, and I didn't want to recompile with the necessary -D witnesses - cleaning those up is left as a bite-sized task for another day); I did, however, audit that for all files touched, all callers of the changed macros DID supply a trailing ';' at the callsite, and did not appear to be used as part of a brace-less conditional. Found mechanically via: $ git grep -B1 'while (0);' | grep -A1 \\\\ Signed-off-by: Eric Blake <eblake@redhat.com> Acked-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: Michael S. Tsirkin <mst@redhat.com> Acked-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Message-Id: <20171201232433.25193-7-eblake@redhat.com> Reviewed-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2017-12-02 02:24:32 +03:00
} while (0)
#define DB_PRINT(fmt, args...) DB_PRINT_L(1, fmt, ## args)
static void stm32f2xx_adc_reset(DeviceState *dev)
{
STM32F2XXADCState *s = STM32F2XX_ADC(dev);
s->adc_sr = 0x00000000;
s->adc_cr1 = 0x00000000;
s->adc_cr2 = 0x00000000;
s->adc_smpr1 = 0x00000000;
s->adc_smpr2 = 0x00000000;
s->adc_jofr[0] = 0x00000000;
s->adc_jofr[1] = 0x00000000;
s->adc_jofr[2] = 0x00000000;
s->adc_jofr[3] = 0x00000000;
s->adc_htr = 0x00000FFF;
s->adc_ltr = 0x00000000;
s->adc_sqr1 = 0x00000000;
s->adc_sqr2 = 0x00000000;
s->adc_sqr3 = 0x00000000;
s->adc_jsqr = 0x00000000;
s->adc_jdr[0] = 0x00000000;
s->adc_jdr[1] = 0x00000000;
s->adc_jdr[2] = 0x00000000;
s->adc_jdr[3] = 0x00000000;
s->adc_dr = 0x00000000;
}
static uint32_t stm32f2xx_adc_generate_value(STM32F2XXADCState *s)
{
/* Attempts to fake some ADC values */
s->adc_dr = s->adc_dr + 7;
switch ((s->adc_cr1 & ADC_CR1_RES) >> 24) {
case 0:
/* 12-bit */
s->adc_dr &= 0xFFF;
break;
case 1:
/* 10-bit */
s->adc_dr &= 0x3FF;
break;
case 2:
/* 8-bit */
s->adc_dr &= 0xFF;
break;
default:
/* 6-bit */
s->adc_dr &= 0x3F;
}
if (s->adc_cr2 & ADC_CR2_ALIGN) {
return (s->adc_dr << 1) & 0xFFF0;
} else {
return s->adc_dr;
}
}
static uint64_t stm32f2xx_adc_read(void *opaque, hwaddr addr,
unsigned int size)
{
STM32F2XXADCState *s = opaque;
DB_PRINT("Address: 0x%" HWADDR_PRIx "\n", addr);
if (addr >= ADC_COMMON_ADDRESS) {
qemu_log_mask(LOG_UNIMP,
"%s: ADC Common Register Unsupported\n", __func__);
}
switch (addr) {
case ADC_SR:
return s->adc_sr;
case ADC_CR1:
return s->adc_cr1;
case ADC_CR2:
return s->adc_cr2 & 0xFFFFFFF;
case ADC_SMPR1:
return s->adc_smpr1;
case ADC_SMPR2:
return s->adc_smpr2;
case ADC_JOFR1:
case ADC_JOFR2:
case ADC_JOFR3:
case ADC_JOFR4:
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
return s->adc_jofr[(addr - ADC_JOFR1) / 4];
case ADC_HTR:
return s->adc_htr;
case ADC_LTR:
return s->adc_ltr;
case ADC_SQR1:
return s->adc_sqr1;
case ADC_SQR2:
return s->adc_sqr2;
case ADC_SQR3:
return s->adc_sqr3;
case ADC_JSQR:
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
return s->adc_jsqr;
case ADC_JDR1:
case ADC_JDR2:
case ADC_JDR3:
case ADC_JDR4:
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
return s->adc_jdr[(addr - ADC_JDR1) / 4] -
s->adc_jofr[(addr - ADC_JDR1) / 4];
case ADC_DR:
if ((s->adc_cr2 & ADC_CR2_ADON) && (s->adc_cr2 & ADC_CR2_SWSTART)) {
s->adc_cr2 ^= ADC_CR2_SWSTART;
return stm32f2xx_adc_generate_value(s);
} else {
return 0;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr);
}
return 0;
}
static void stm32f2xx_adc_write(void *opaque, hwaddr addr,
uint64_t val64, unsigned int size)
{
STM32F2XXADCState *s = opaque;
uint32_t value = (uint32_t) val64;
DB_PRINT("Address: 0x%" HWADDR_PRIx ", Value: 0x%x\n",
addr, value);
if (addr >= 0x100) {
qemu_log_mask(LOG_UNIMP,
"%s: ADC Common Register Unsupported\n", __func__);
}
switch (addr) {
case ADC_SR:
s->adc_sr &= (value & 0x3F);
break;
case ADC_CR1:
s->adc_cr1 = value;
break;
case ADC_CR2:
s->adc_cr2 = value;
break;
case ADC_SMPR1:
s->adc_smpr1 = value;
break;
case ADC_SMPR2:
s->adc_smpr2 = value;
break;
case ADC_JOFR1:
case ADC_JOFR2:
case ADC_JOFR3:
case ADC_JOFR4:
s->adc_jofr[(addr - ADC_JOFR1) / 4] = (value & 0xFFF);
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
break;
case ADC_HTR:
s->adc_htr = value;
break;
case ADC_LTR:
s->adc_ltr = value;
break;
case ADC_SQR1:
s->adc_sqr1 = value;
break;
case ADC_SQR2:
s->adc_sqr2 = value;
break;
case ADC_SQR3:
s->adc_sqr3 = value;
break;
case ADC_JSQR:
s->adc_jsqr = value;
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
break;
case ADC_JDR1:
case ADC_JDR2:
case ADC_JDR3:
case ADC_JDR4:
s->adc_jdr[(addr - ADC_JDR1) / 4] = value;
qemu_log_mask(LOG_UNIMP, "%s: " \
"Injection ADC is not implemented, the registers are " \
"included for compatibility\n", __func__);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad offset 0x%" HWADDR_PRIx "\n", __func__, addr);
}
}
static const MemoryRegionOps stm32f2xx_adc_ops = {
.read = stm32f2xx_adc_read,
.write = stm32f2xx_adc_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.impl.min_access_size = 4,
.impl.max_access_size = 4,
};
static const VMStateDescription vmstate_stm32f2xx_adc = {
.name = TYPE_STM32F2XX_ADC,
.version_id = 1,
.minimum_version_id = 1,
.fields = (const VMStateField[]) {
VMSTATE_UINT32(adc_sr, STM32F2XXADCState),
VMSTATE_UINT32(adc_cr1, STM32F2XXADCState),
VMSTATE_UINT32(adc_cr2, STM32F2XXADCState),
VMSTATE_UINT32(adc_smpr1, STM32F2XXADCState),
VMSTATE_UINT32(adc_smpr2, STM32F2XXADCState),
VMSTATE_UINT32_ARRAY(adc_jofr, STM32F2XXADCState, 4),
VMSTATE_UINT32(adc_htr, STM32F2XXADCState),
VMSTATE_UINT32(adc_ltr, STM32F2XXADCState),
VMSTATE_UINT32(adc_sqr1, STM32F2XXADCState),
VMSTATE_UINT32(adc_sqr2, STM32F2XXADCState),
VMSTATE_UINT32(adc_sqr3, STM32F2XXADCState),
VMSTATE_UINT32(adc_jsqr, STM32F2XXADCState),
VMSTATE_UINT32_ARRAY(adc_jdr, STM32F2XXADCState, 4),
VMSTATE_UINT32(adc_dr, STM32F2XXADCState),
VMSTATE_END_OF_LIST()
}
};
static void stm32f2xx_adc_init(Object *obj)
{
STM32F2XXADCState *s = STM32F2XX_ADC(obj);
sysbus_init_irq(SYS_BUS_DEVICE(obj), &s->irq);
memory_region_init_io(&s->mmio, obj, &stm32f2xx_adc_ops, s,
TYPE_STM32F2XX_ADC, 0x100);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio);
}
static void stm32f2xx_adc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = stm32f2xx_adc_reset;
dc->vmsd = &vmstate_stm32f2xx_adc;
}
static const TypeInfo stm32f2xx_adc_info = {
.name = TYPE_STM32F2XX_ADC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(STM32F2XXADCState),
.instance_init = stm32f2xx_adc_init,
.class_init = stm32f2xx_adc_class_init,
};
static void stm32f2xx_adc_register_types(void)
{
type_register_static(&stm32f2xx_adc_info);
}
type_init(stm32f2xx_adc_register_types)