qemu/target/arm/gdbstub64.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

607 lines
17 KiB
C
Raw Normal View History

/*
* ARM gdb server stub: AArch64 specific functions.
*
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "gdbstub/helpers.h"
#include "gdbstub/commands.h"
#include "tcg/mte_helper.h"
#if defined(CONFIG_USER_ONLY) && defined(CONFIG_LINUX)
#include <sys/prctl.h>
#include "mte_user_helper.h"
#endif
int aarch64_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (n < 31) {
/* Core integer register. */
return gdb_get_reg64(mem_buf, env->xregs[n]);
}
switch (n) {
case 31:
return gdb_get_reg64(mem_buf, env->xregs[31]);
case 32:
return gdb_get_reg64(mem_buf, env->pc);
case 33:
return gdb_get_reg32(mem_buf, pstate_read(env));
}
/* Unknown register. */
return 0;
}
int aarch64_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp;
tmp = ldq_p(mem_buf);
if (n < 31) {
/* Core integer register. */
env->xregs[n] = tmp;
return 8;
}
switch (n) {
case 31:
env->xregs[31] = tmp;
return 8;
case 32:
env->pc = tmp;
return 8;
case 33:
/* CPSR */
pstate_write(env, tmp);
return 4;
}
/* Unknown register. */
return 0;
}
int aarch64_gdb_get_fpu_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0 ... 31:
{
/* 128 bit FP register - quads are in LE order */
uint64_t *q = aa64_vfp_qreg(env, reg);
return gdb_get_reg128(buf, q[1], q[0]);
}
case 32:
/* FPSR */
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
/* FPCR */
return gdb_get_reg32(buf, vfp_get_fpcr(env));
default:
return 0;
}
}
int aarch64_gdb_set_fpu_reg(CPUState *cs, uint8_t *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0 ... 31:
/* 128 bit FP register */
{
uint64_t *q = aa64_vfp_qreg(env, reg);
q[0] = ldq_le_p(buf);
q[1] = ldq_le_p(buf + 8);
return 16;
}
case 32:
/* FPSR */
vfp_set_fpsr(env, ldl_p(buf));
return 4;
case 33:
/* FPCR */
vfp_set_fpcr(env, ldl_p(buf));
return 4;
default:
return 0;
}
}
int aarch64_gdb_get_sve_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
len += gdb_get_reg128(buf,
env->vfp.zregs[reg].d[vq * 2 + 1],
env->vfp.zregs[reg].d[vq * 2]);
}
return len;
}
case 32:
return gdb_get_reg32(buf, vfp_get_fpsr(env));
case 33:
return gdb_get_reg32(buf, vfp_get_fpcr(env));
/* then 16 predicates and the ffr */
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
len += gdb_get_reg64(buf, env->vfp.pregs[preg].p[vq / 4]);
}
return len;
}
case 51:
{
/*
* We report in Vector Granules (VG) which is 64bit in a Z reg
* while the ZCR works in Vector Quads (VQ) which is 128bit chunks.
*/
int vq = sve_vqm1_for_el(env, arm_current_el(env)) + 1;
return gdb_get_reg64(buf, vq * 2);
}
default:
/* gdbstub asked for something out our range */
qemu_log_mask(LOG_UNIMP, "%s: out of range register %d", __func__, reg);
break;
}
return 0;
}
int aarch64_gdb_set_sve_reg(CPUState *cs, uint8_t *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* The first 32 registers are the zregs */
switch (reg) {
/* The first 32 registers are the zregs */
case 0 ... 31:
{
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq++) {
env->vfp.zregs[reg].d[vq * 2 + 1] = *p++;
env->vfp.zregs[reg].d[vq * 2] = *p++;
len += 16;
}
return len;
}
case 32:
vfp_set_fpsr(env, *(uint32_t *)buf);
return 4;
case 33:
vfp_set_fpcr(env, *(uint32_t *)buf);
return 4;
case 34 ... 50:
{
int preg = reg - 34;
int vq, len = 0;
uint64_t *p = (uint64_t *) buf;
for (vq = 0; vq < cpu->sve_max_vq; vq = vq + 4) {
env->vfp.pregs[preg].p[vq / 4] = *p++;
len += 8;
}
return len;
}
case 51:
/* cannot set vg via gdbstub */
return 0;
default:
/* gdbstub asked for something out our range */
break;
}
return 0;
}
int aarch64_gdb_get_pauth_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
switch (reg) {
case 0: /* pauth_dmask */
case 1: /* pauth_cmask */
case 2: /* pauth_dmask_high */
case 3: /* pauth_cmask_high */
/*
* Note that older versions of this feature only contained
* pauth_{d,c}mask, for use with Linux user processes, and
* thus exclusively in the low half of the address space.
*
* To support system mode, and to debug kernels, two new regs
* were added to cover the high half of the address space.
* For the purpose of pauth_ptr_mask, we can use any well-formed
* address within the address space half -- here, 0 and -1.
*/
{
bool is_data = !(reg & 1);
bool is_high = reg & 2;
ARMMMUIdx mmu_idx = arm_stage1_mmu_idx(env);
ARMVAParameters param;
target/arm: Correct AArch64.S2MinTxSZ 32-bit EL1 input size check In check_s2_mmu_setup() we have a check that is attempting to implement the part of AArch64.S2MinTxSZ that is specific to when EL1 is AArch32: if !s1aarch64 then // EL1 is AArch32 min_txsz = Min(min_txsz, 24); Unfortunately we got this wrong in two ways: (1) The minimum txsz corresponds to a maximum inputsize, but we got the sense of the comparison wrong and were faulting for all inputsizes less than 40 bits (2) We try to implement this as an extra check that happens after we've done the same txsz checks we would do for an AArch64 EL1, but in fact the pseudocode is *loosening* the requirements, so that txsz values that would fault for an AArch64 EL1 do not fault for AArch32 EL1, because it does Min(old_min, 24), not Max(old_min, 24). You can see this also in the text of the Arm ARM in table D8-8, which shows that where the implemented PA size is less than 40 bits an AArch32 EL1 is still OK with a configured stage2 T0SZ for a 40 bit IPA, whereas if EL1 is AArch64 then the T0SZ must be big enough to constrain the IPA to the implemented PA size. Because of part (2), we can't do this as a separate check, but have to integrate it into aa64_va_parameters(). Add a new argument to that function to indicate that EL1 is 32-bit. All the existing callsites except the one in get_phys_addr_lpae() can pass 'false', because they are either doing a lookup for a stage 1 regime or else they don't care about the tsz/tsz_oob fields. Cc: qemu-stable@nongnu.org Resolves: https://gitlab.com/qemu-project/qemu/-/issues/1627 Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20230509092059.3176487-1-peter.maydell@linaro.org
2023-05-09 12:20:59 +03:00
param = aa64_va_parameters(env, -is_high, mmu_idx, is_data, false);
return gdb_get_reg64(buf, pauth_ptr_mask(param));
}
default:
return 0;
}
}
int aarch64_gdb_set_pauth_reg(CPUState *cs, uint8_t *buf, int reg)
{
/* All pseudo registers are read-only. */
return 0;
}
static void output_vector_union_type(GDBFeatureBuilder *builder, int reg_width,
const char *name)
{
struct TypeSize {
const char *gdb_type;
short size;
char sz, suffix;
};
static const struct TypeSize vec_lanes[] = {
/* quads */
{ "uint128", 128, 'q', 'u' },
{ "int128", 128, 'q', 's' },
/* 64 bit */
{ "ieee_double", 64, 'd', 'f' },
{ "uint64", 64, 'd', 'u' },
{ "int64", 64, 'd', 's' },
/* 32 bit */
{ "ieee_single", 32, 's', 'f' },
{ "uint32", 32, 's', 'u' },
{ "int32", 32, 's', 's' },
/* 16 bit */
{ "ieee_half", 16, 'h', 'f' },
{ "uint16", 16, 'h', 'u' },
{ "int16", 16, 'h', 's' },
/* bytes */
{ "uint8", 8, 'b', 'u' },
{ "int8", 8, 'b', 's' },
};
static const char suf[] = { 'b', 'h', 's', 'd', 'q' };
int i, j;
/* First define types and totals in a whole VL */
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
gdb_feature_builder_append_tag(
builder, "<vector id=\"%s%c%c\" type=\"%s\" count=\"%d\"/>",
name, vec_lanes[i].sz, vec_lanes[i].suffix,
vec_lanes[i].gdb_type, reg_width / vec_lanes[i].size);
}
/*
* Now define a union for each size group containing unsigned and
* signed and potentially float versions of each size from 128 to
* 8 bits.
*/
for (i = 0; i < ARRAY_SIZE(suf); i++) {
int bits = 8 << i;
gdb_feature_builder_append_tag(builder, "<union id=\"%sn%c\">",
name, suf[i]);
for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
if (vec_lanes[j].size == bits) {
gdb_feature_builder_append_tag(
builder, "<field name=\"%c\" type=\"%s%c%c\"/>",
vec_lanes[j].suffix, name,
vec_lanes[j].sz, vec_lanes[j].suffix);
}
}
gdb_feature_builder_append_tag(builder, "</union>");
}
/* And now the final union of unions */
gdb_feature_builder_append_tag(builder, "<union id=\"%s\">", name);
for (i = ARRAY_SIZE(suf) - 1; i >= 0; i--) {
gdb_feature_builder_append_tag(builder,
"<field name=\"%c\" type=\"%sn%c\"/>",
suf[i], name, suf[i]);
}
gdb_feature_builder_append_tag(builder, "</union>");
}
GDBFeature *arm_gen_dynamic_svereg_feature(CPUState *cs, int base_reg)
{
ARMCPU *cpu = ARM_CPU(cs);
int reg_width = cpu->sve_max_vq * 128;
int pred_width = cpu->sve_max_vq * 16;
GDBFeatureBuilder builder;
char *name;
int reg = 0;
int i;
gdb_feature_builder_init(&builder, &cpu->dyn_svereg_feature.desc,
"org.gnu.gdb.aarch64.sve", "sve-registers.xml",
base_reg);
/* Create the vector union type. */
output_vector_union_type(&builder, reg_width, "svev");
/* Create the predicate vector type. */
gdb_feature_builder_append_tag(
&builder, "<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
pred_width / 8);
/* Define the vector registers. */
for (i = 0; i < 32; i++) {
name = g_strdup_printf("z%d", i);
gdb_feature_builder_append_reg(&builder, name, reg_width, reg++,
"svev", NULL);
}
/* fpscr & status registers */
gdb_feature_builder_append_reg(&builder, "fpsr", 32, reg++,
"int", "float");
gdb_feature_builder_append_reg(&builder, "fpcr", 32, reg++,
"int", "float");
/* Define the predicate registers. */
for (i = 0; i < 16; i++) {
name = g_strdup_printf("p%d", i);
gdb_feature_builder_append_reg(&builder, name, pred_width, reg++,
"svep", NULL);
}
gdb_feature_builder_append_reg(&builder, "ffr", pred_width, reg++,
"svep", "vector");
/* Define the vector length pseudo-register. */
gdb_feature_builder_append_reg(&builder, "vg", 64, reg++, "int", NULL);
gdb_feature_builder_end(&builder);
return &cpu->dyn_svereg_feature.desc;
}
#ifdef CONFIG_USER_ONLY
int aarch64_gdb_get_tag_ctl_reg(CPUState *cs, GByteArray *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tcf0;
assert(reg == 0);
tcf0 = extract64(env->cp15.sctlr_el[1], 38, 2);
return gdb_get_reg64(buf, tcf0);
}
int aarch64_gdb_set_tag_ctl_reg(CPUState *cs, uint8_t *buf, int reg)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint8_t tcf;
assert(reg == 0);
tcf = *buf << PR_MTE_TCF_SHIFT;
if (!tcf) {
return 0;
}
/*
* 'tag_ctl' register is actually a "pseudo-register" provided by GDB to
* expose options regarding the type of MTE fault that can be controlled at
* runtime.
*/
arm_set_mte_tcf0(env, tcf);
return 1;
}
static void handle_q_memtag(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
int type = gdb_get_cmd_param(params, 2)->val_ul;
uint8_t *tags;
uint8_t addr_tag;
g_autoptr(GString) str_buf = g_string_new(NULL);
/*
* GDB does not query multiple tags for a memory range on remote targets, so
* that's not supported either by gdbstub.
*/
if (len != 1) {
gdb_put_packet("E02");
}
/* GDB never queries a tag different from an allocation tag (type 1). */
if (type != 1) {
gdb_put_packet("E03");
}
/* Note that tags are packed here (2 tags packed in one byte). */
tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
MMU_DATA_LOAD, true, 0);
if (!tags) {
/* Address is not in a tagged region. */
gdb_put_packet("E04");
return;
}
/* Unpack tag from byte. */
addr_tag = load_tag1(addr, tags);
g_string_printf(str_buf, "m%.2x", addr_tag);
gdb_put_packet(str_buf->str);
}
static void handle_q_isaddresstagged(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t addr = gdb_get_cmd_param(params, 0)->val_ull;
uint8_t *tags;
const char *reply;
tags = allocation_tag_mem_probe(env, 0, addr, MMU_DATA_LOAD, 8 /* 64-bit */,
MMU_DATA_LOAD, true, 0);
reply = tags ? "01" : "00";
gdb_put_packet(reply);
}
static void handle_Q_memtag(GArray *params, void *user_ctx)
{
ARMCPU *cpu = ARM_CPU(user_ctx);
CPUARMState *env = &cpu->env;
uint64_t start_addr = gdb_get_cmd_param(params, 0)->val_ull;
uint64_t len = gdb_get_cmd_param(params, 1)->val_ul;
int type = gdb_get_cmd_param(params, 2)->val_ul;
char const *new_tags_str = gdb_get_cmd_param(params, 3)->data;
uint64_t end_addr;
int num_new_tags;
uint8_t *tags;
g_autoptr(GByteArray) new_tags = g_byte_array_new();
/*
* Only the allocation tag (i.e. type 1) can be set at the stub side.
*/
if (type != 1) {
gdb_put_packet("E02");
return;
}
end_addr = start_addr + (len - 1); /* 'len' is always >= 1 */
/* Check if request's memory range does not cross page boundaries. */
if ((start_addr ^ end_addr) & TARGET_PAGE_MASK) {
gdb_put_packet("E03");
return;
}
/*
* Get all tags in the page starting from the tag of the start address.
* Note that there are two tags packed into a single byte here.
*/
tags = allocation_tag_mem_probe(env, 0, start_addr, MMU_DATA_STORE,
8 /* 64-bit */, MMU_DATA_STORE, true, 0);
if (!tags) {
/* Address is not in a tagged region. */
gdb_put_packet("E04");
return;
}
/* Convert tags provided by GDB, 2 hex digits per tag. */
num_new_tags = strlen(new_tags_str) / 2;
gdb_hextomem(new_tags, new_tags_str, num_new_tags);
uint64_t address = start_addr;
int new_tag_index = 0;
while (address <= end_addr) {
uint8_t new_tag;
int packed_index;
/*
* Find packed tag index from unpacked tag index. There are two tags
* in one packed index (one tag per nibble).
*/
packed_index = new_tag_index / 2;
new_tag = new_tags->data[new_tag_index % num_new_tags];
store_tag1(address, tags + packed_index, new_tag);
address += TAG_GRANULE;
new_tag_index++;
}
gdb_put_packet("OK");
}
enum Command {
qMemTags,
qIsAddressTagged,
QMemTags,
NUM_CMDS
};
static GdbCmdParseEntry cmd_handler_table[NUM_CMDS] = {
[qMemTags] = {
.handler = handle_q_memtag,
.cmd_startswith = true,
.cmd = "MemTags:",
.schema = "L,l:l0",
.need_cpu_context = true
},
[qIsAddressTagged] = {
.handler = handle_q_isaddresstagged,
.cmd_startswith = true,
.cmd = "IsAddressTagged:",
.schema = "L0",
.need_cpu_context = true
},
[QMemTags] = {
.handler = handle_Q_memtag,
.cmd_startswith = true,
.cmd = "MemTags:",
.schema = "L,l:l:s0",
.need_cpu_context = true
},
};
#endif /* CONFIG_USER_ONLY */
void aarch64_cpu_register_gdb_commands(ARMCPU *cpu, GString *qsupported,
GArray *qtable, GArray *stable)
{
#ifdef CONFIG_USER_ONLY
/* MTE */
if (cpu_isar_feature(aa64_mte, cpu)) {
g_string_append(qsupported, ";memory-tagging+");
g_array_append_val(qtable, cmd_handler_table[qMemTags]);
g_array_append_val(qtable, cmd_handler_table[qIsAddressTagged]);
g_array_append_val(stable, cmd_handler_table[QMemTags]);
}
#endif
}