qemu/include/hw/ppc/xive_regs.h

242 lines
9.3 KiB
C
Raw Normal View History

/*
* QEMU PowerPC XIVE internal structure definitions
*
*
* The XIVE structures are accessed by the HW and their format is
* architected to be big-endian. Some macros are provided to ease
* access to the different fields.
*
*
* Copyright (c) 2016-2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#ifndef PPC_XIVE_REGS_H
#define PPC_XIVE_REGS_H
/*
* Interrupt source number encoding on PowerBUS
*/
#define XIVE_SRCNO_BLOCK(srcno) (((srcno) >> 28) & 0xf)
#define XIVE_SRCNO_INDEX(srcno) ((srcno) & 0x0fffffff)
#define XIVE_SRCNO(blk, idx) ((uint32_t)(blk) << 28 | (idx))
ppc/xive: introduce the XIVE interrupt thread context Each POWER9 processor chip has a XIVE presenter that can generate four different exceptions to its threads: - hypervisor exception, - O/S exception - Event-Based Branch (EBB) - msgsnd (doorbell). Each exception has a state independent from the others called a Thread Interrupt Management context. This context is a set of registers which lets the thread handle priority management and interrupt acknowledgment among other things. The most important ones being : - Interrupt Priority Register (PIPR) - Interrupt Pending Buffer (IPB) - Current Processor Priority (CPPR) - Notification Source Register (NSR) These registers are accessible through a specific MMIO region, called the Thread Interrupt Management Area (TIMA), four aligned pages, each exposing a different view of the registers. First page (page address ending in 0b00) gives access to the entire context and is reserved for the ring 0 view for the physical thread context. The second (page address ending in 0b01) is for the hypervisor, ring 1 view. The third (page address ending in 0b10) is for the operating system, ring 2 view. The fourth (page address ending in 0b11) is for user level, ring 3 view. The thread interrupt context is modeled with a XiveTCTX object containing the values of the different exception registers. The TIMA region is mapped at the same address for each CPU. Signed-off-by: Cédric Le Goater <clg@kaod.org> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
2018-12-09 22:45:53 +03:00
#define TM_SHIFT 16
/* TM register offsets */
#define TM_QW0_USER 0x000 /* All rings */
#define TM_QW1_OS 0x010 /* Ring 0..2 */
#define TM_QW2_HV_POOL 0x020 /* Ring 0..1 */
#define TM_QW3_HV_PHYS 0x030 /* Ring 0..1 */
/* Byte offsets inside a QW QW0 QW1 QW2 QW3 */
#define TM_NSR 0x0 /* + + - + */
#define TM_CPPR 0x1 /* - + - + */
#define TM_IPB 0x2 /* - + + + */
#define TM_LSMFB 0x3 /* - + + + */
#define TM_ACK_CNT 0x4 /* - + - - */
#define TM_INC 0x5 /* - + - + */
#define TM_AGE 0x6 /* - + - + */
#define TM_PIPR 0x7 /* - + - + */
#define TM_WORD0 0x0
#define TM_WORD1 0x4
/*
* QW word 2 contains the valid bit at the top and other fields
* depending on the QW.
*/
#define TM_WORD2 0x8
#define TM_QW0W2_VU PPC_BIT32(0)
#define TM_QW0W2_LOGIC_SERV PPC_BITMASK32(1, 31) /* XX 2,31 ? */
#define TM_QW1W2_VO PPC_BIT32(0)
#define TM_QW1W2_OS_CAM PPC_BITMASK32(8, 31)
#define TM_QW2W2_VP PPC_BIT32(0)
#define TM_QW2W2_POOL_CAM PPC_BITMASK32(8, 31)
#define TM_QW3W2_VT PPC_BIT32(0)
#define TM_QW3W2_LP PPC_BIT32(6)
#define TM_QW3W2_LE PPC_BIT32(7)
#define TM_QW3W2_T PPC_BIT32(31)
/*
* In addition to normal loads to "peek" and writes (only when invalid)
* using 4 and 8 bytes accesses, the above registers support these
* "special" byte operations:
*
* - Byte load from QW0[NSR] - User level NSR (EBB)
* - Byte store to QW0[NSR] - User level NSR (EBB)
* - Byte load/store to QW1[CPPR] and QW3[CPPR] - CPPR access
* - Byte load from QW3[TM_WORD2] - Read VT||00000||LP||LE on thrd 0
* otherwise VT||0000000
* - Byte store to QW3[TM_WORD2] - Set VT bit (and LP/LE if present)
*
* Then we have all these "special" CI ops at these offset that trigger
* all sorts of side effects:
*/
#define TM_SPC_ACK_EBB 0x800 /* Load8 ack EBB to reg*/
#define TM_SPC_ACK_OS_REG 0x810 /* Load16 ack OS irq to reg */
#define TM_SPC_PUSH_USR_CTX 0x808 /* Store32 Push/Validate user context */
#define TM_SPC_PULL_USR_CTX 0x808 /* Load32 Pull/Invalidate user
* context */
#define TM_SPC_SET_OS_PENDING 0x812 /* Store8 Set OS irq pending bit */
#define TM_SPC_PULL_OS_CTX 0x818 /* Load32/Load64 Pull/Invalidate OS
* context to reg */
#define TM_SPC_PULL_POOL_CTX 0x828 /* Load32/Load64 Pull/Invalidate Pool
* context to reg*/
#define TM_SPC_ACK_HV_REG 0x830 /* Load16 ack HV irq to reg */
#define TM_SPC_PULL_USR_CTX_OL 0xc08 /* Store8 Pull/Inval usr ctx to odd
* line */
#define TM_SPC_ACK_OS_EL 0xc10 /* Store8 ack OS irq to even line */
#define TM_SPC_ACK_HV_POOL_EL 0xc20 /* Store8 ack HV evt pool to even
* line */
#define TM_SPC_ACK_HV_EL 0xc30 /* Store8 ack HV irq to even line */
/* XXX more... */
/* NSR fields for the various QW ack types */
#define TM_QW0_NSR_EB PPC_BIT8(0)
#define TM_QW1_NSR_EO PPC_BIT8(0)
#define TM_QW3_NSR_HE PPC_BITMASK8(0, 1)
#define TM_QW3_NSR_HE_NONE 0
#define TM_QW3_NSR_HE_POOL 1
#define TM_QW3_NSR_HE_PHYS 2
#define TM_QW3_NSR_HE_LSI 3
#define TM_QW3_NSR_I PPC_BIT8(2)
#define TM_QW3_NSR_GRP_LVL PPC_BIT8(3, 7)
/*
* EAS (Event Assignment Structure)
*
* One per interrupt source. Targets an interrupt to a given Event
* Notification Descriptor (END) and provides the corresponding
* logical interrupt number (END data)
*/
typedef struct XiveEAS {
/*
* Use a single 64-bit definition to make it easier to perform
* atomic updates
*/
uint64_t w;
#define EAS_VALID PPC_BIT(0)
#define EAS_END_BLOCK PPC_BITMASK(4, 7) /* Destination END block# */
#define EAS_END_INDEX PPC_BITMASK(8, 31) /* Destination END index */
#define EAS_MASKED PPC_BIT(32) /* Masked */
#define EAS_END_DATA PPC_BITMASK(33, 63) /* Data written to the END */
} XiveEAS;
#define xive_eas_is_valid(eas) (be64_to_cpu((eas)->w) & EAS_VALID)
#define xive_eas_is_masked(eas) (be64_to_cpu((eas)->w) & EAS_MASKED)
static inline uint64_t xive_get_field64(uint64_t mask, uint64_t word)
{
return (be64_to_cpu(word) & mask) >> ctz64(mask);
}
static inline uint64_t xive_set_field64(uint64_t mask, uint64_t word,
uint64_t value)
{
uint64_t tmp =
(be64_to_cpu(word) & ~mask) | ((value << ctz64(mask)) & mask);
return cpu_to_be64(tmp);
}
static inline uint32_t xive_get_field32(uint32_t mask, uint32_t word)
{
return (be32_to_cpu(word) & mask) >> ctz32(mask);
}
static inline uint32_t xive_set_field32(uint32_t mask, uint32_t word,
uint32_t value)
{
uint32_t tmp =
(be32_to_cpu(word) & ~mask) | ((value << ctz32(mask)) & mask);
return cpu_to_be32(tmp);
}
/* Event Notification Descriptor (END) */
typedef struct XiveEND {
uint32_t w0;
#define END_W0_VALID PPC_BIT32(0) /* "v" bit */
#define END_W0_ENQUEUE PPC_BIT32(1) /* "q" bit */
#define END_W0_UCOND_NOTIFY PPC_BIT32(2) /* "n" bit */
#define END_W0_BACKLOG PPC_BIT32(3) /* "b" bit */
#define END_W0_PRECL_ESC_CTL PPC_BIT32(4) /* "p" bit */
#define END_W0_ESCALATE_CTL PPC_BIT32(5) /* "e" bit */
#define END_W0_UNCOND_ESCALATE PPC_BIT32(6) /* "u" bit - DD2.0 */
#define END_W0_SILENT_ESCALATE PPC_BIT32(7) /* "s" bit - DD2.0 */
#define END_W0_QSIZE PPC_BITMASK32(12, 15)
#define END_W0_SW0 PPC_BIT32(16)
#define END_W0_FIRMWARE END_W0_SW0 /* Owned by FW */
#define END_QSIZE_4K 0
#define END_QSIZE_64K 4
#define END_W0_HWDEP PPC_BITMASK32(24, 31)
uint32_t w1;
#define END_W1_ESn PPC_BITMASK32(0, 1)
#define END_W1_ESn_P PPC_BIT32(0)
#define END_W1_ESn_Q PPC_BIT32(1)
#define END_W1_ESe PPC_BITMASK32(2, 3)
#define END_W1_ESe_P PPC_BIT32(2)
#define END_W1_ESe_Q PPC_BIT32(3)
#define END_W1_GENERATION PPC_BIT32(9)
#define END_W1_PAGE_OFF PPC_BITMASK32(10, 31)
uint32_t w2;
#define END_W2_MIGRATION_REG PPC_BITMASK32(0, 3)
#define END_W2_OP_DESC_HI PPC_BITMASK32(4, 31)
uint32_t w3;
#define END_W3_OP_DESC_LO PPC_BITMASK32(0, 31)
uint32_t w4;
#define END_W4_ESC_END_BLOCK PPC_BITMASK32(4, 7)
#define END_W4_ESC_END_INDEX PPC_BITMASK32(8, 31)
uint32_t w5;
#define END_W5_ESC_END_DATA PPC_BITMASK32(1, 31)
uint32_t w6;
#define END_W6_FORMAT_BIT PPC_BIT32(8)
#define END_W6_NVT_BLOCK PPC_BITMASK32(9, 12)
#define END_W6_NVT_INDEX PPC_BITMASK32(13, 31)
uint32_t w7;
#define END_W7_F0_IGNORE PPC_BIT32(0)
#define END_W7_F0_BLK_GROUPING PPC_BIT32(1)
#define END_W7_F0_PRIORITY PPC_BITMASK32(8, 15)
#define END_W7_F1_WAKEZ PPC_BIT32(0)
#define END_W7_F1_LOG_SERVER_ID PPC_BITMASK32(1, 31)
} XiveEND;
#define xive_end_is_valid(end) (be32_to_cpu((end)->w0) & END_W0_VALID)
#define xive_end_is_enqueue(end) (be32_to_cpu((end)->w0) & END_W0_ENQUEUE)
#define xive_end_is_notify(end) (be32_to_cpu((end)->w0) & END_W0_UCOND_NOTIFY)
#define xive_end_is_backlog(end) (be32_to_cpu((end)->w0) & END_W0_BACKLOG)
#define xive_end_is_escalate(end) (be32_to_cpu((end)->w0) & END_W0_ESCALATE_CTL)
static inline uint64_t xive_end_qaddr(XiveEND *end)
{
return ((uint64_t) be32_to_cpu(end->w2) & 0x0fffffff) << 32 |
be32_to_cpu(end->w3);
}
/* Notification Virtual Target (NVT) */
typedef struct XiveNVT {
uint32_t w0;
#define NVT_W0_VALID PPC_BIT32(0)
uint32_t w1;
uint32_t w2;
uint32_t w3;
uint32_t w4;
uint32_t w5;
uint32_t w6;
uint32_t w7;
uint32_t w8;
#define NVT_W8_GRP_VALID PPC_BIT32(0)
uint32_t w9;
uint32_t wa;
uint32_t wb;
uint32_t wc;
uint32_t wd;
uint32_t we;
uint32_t wf;
} XiveNVT;
#define xive_nvt_is_valid(nvt) (be32_to_cpu((nvt)->w0) & NVT_W0_VALID)
#endif /* PPC_XIVE_REGS_H */