qemu/ui/cursor.c

251 lines
6.8 KiB
C
Raw Normal View History

#include "qemu/osdep.h"
#include "ui/console.h"
#include "cursor_hidden.xpm"
#include "cursor_left_ptr.xpm"
/* for creating built-in cursors */
static QEMUCursor *cursor_parse_xpm(const char *xpm[])
{
QEMUCursor *c;
uint32_t ctab[128];
unsigned int width, height, colors, chars;
unsigned int line = 0, i, r, g, b, x, y, pixel;
char name[16];
uint8_t idx;
/* parse header line: width, height, #colors, #chars */
if (sscanf(xpm[line], "%u %u %u %u",
&width, &height, &colors, &chars) != 4) {
fprintf(stderr, "%s: header parse error: \"%s\"\n",
__func__, xpm[line]);
return NULL;
}
if (chars != 1) {
fprintf(stderr, "%s: chars != 1 not supported\n", __func__);
return NULL;
}
line++;
/* parse color table */
for (i = 0; i < colors; i++, line++) {
if (sscanf(xpm[line], "%c c %15s", &idx, name) == 2) {
if (sscanf(name, "#%02x%02x%02x", &r, &g, &b) == 3) {
ctab[idx] = (0xff << 24) | (b << 16) | (g << 8) | r;
continue;
}
if (strcmp(name, "None") == 0) {
ctab[idx] = 0x00000000;
continue;
}
}
fprintf(stderr, "%s: color parse error: \"%s\"\n",
__func__, xpm[line]);
return NULL;
}
/* parse pixel data */
c = cursor_alloc(width, height);
assert(c != NULL);
for (pixel = 0, y = 0; y < height; y++, line++) {
for (x = 0; x < height; x++, pixel++) {
idx = xpm[line][x];
c->data[pixel] = ctab[idx];
}
}
return c;
}
/* nice for debugging */
void cursor_print_ascii_art(QEMUCursor *c, const char *prefix)
{
uint32_t *data = c->data;
int x,y;
for (y = 0; y < c->height; y++) {
fprintf(stderr, "%s: %2d: |", prefix, y);
for (x = 0; x < c->width; x++, data++) {
if ((*data & 0xff000000) != 0xff000000) {
fprintf(stderr, " "); /* transparent */
} else if ((*data & 0x00ffffff) == 0x00ffffff) {
fprintf(stderr, "."); /* white */
} else if ((*data & 0x00ffffff) == 0x00000000) {
fprintf(stderr, "X"); /* black */
} else {
fprintf(stderr, "o"); /* other */
}
}
fprintf(stderr, "|\n");
}
}
QEMUCursor *cursor_builtin_hidden(void)
{
return cursor_parse_xpm(cursor_hidden_xpm);
}
QEMUCursor *cursor_builtin_left_ptr(void)
{
return cursor_parse_xpm(cursor_left_ptr_xpm);
}
QEMUCursor *cursor_alloc(int width, int height)
{
QEMUCursor *c;
size_t datasize = width * height * sizeof(uint32_t);
if (width > 512 || height > 512) {
return NULL;
}
c = g_malloc0(sizeof(QEMUCursor) + datasize);
c->width = width;
c->height = height;
c->refcount = 1;
return c;
}
QEMUCursor *cursor_ref(QEMUCursor *c)
{
c->refcount++;
return c;
}
void cursor_unref(QEMUCursor *c)
{
if (c == NULL)
return;
c->refcount--;
if (c->refcount)
return;
g_free(c);
}
int cursor_get_mono_bpl(QEMUCursor *c)
{
return DIV_ROUND_UP(c->width, 8);
}
void cursor_set_mono(QEMUCursor *c,
uint32_t foreground, uint32_t background, uint8_t *image,
int transparent, uint8_t *mask)
{
uint32_t *data = c->data;
uint8_t bit;
int x,y,bpl;
bool expand_bitmap_only = image == mask;
bool has_inverted_colors = false;
const uint32_t inverted = 0x80000000;
/*
* Converts a monochrome bitmap with XOR mask 'image' and AND mask 'mask':
* https://docs.microsoft.com/en-us/windows-hardware/drivers/display/drawing-monochrome-pointers
*/
bpl = cursor_get_mono_bpl(c);
for (y = 0; y < c->height; y++) {
bit = 0x80;
for (x = 0; x < c->width; x++, data++) {
if (transparent && mask[x/8] & bit) {
if (!expand_bitmap_only && image[x / 8] & bit) {
*data = inverted;
has_inverted_colors = true;
} else {
*data = 0x00000000;
}
} else if (!transparent && !(mask[x/8] & bit)) {
*data = 0x00000000;
} else if (image[x/8] & bit) {
*data = 0xff000000 | foreground;
} else {
*data = 0xff000000 | background;
}
bit >>= 1;
if (bit == 0) {
bit = 0x80;
}
}
mask += bpl;
image += bpl;
}
/*
* If there are any pixels with inverted colors, create an outline (fill
* transparent neighbors with the background color) and use the foreground
* color as "inverted" color.
*/
if (has_inverted_colors) {
data = c->data;
for (y = 0; y < c->height; y++) {
for (x = 0; x < c->width; x++, data++) {
if (*data == 0 /* transparent */ &&
((x > 0 && data[-1] == inverted) ||
(x + 1 < c->width && data[1] == inverted) ||
(y > 0 && data[-c->width] == inverted) ||
(y + 1 < c->height && data[c->width] == inverted))) {
*data = 0xff000000 | background;
}
}
}
data = c->data;
for (x = 0; x < c->width * c->height; x++, data++) {
if (*data == inverted) {
*data = 0xff000000 | foreground;
}
}
}
}
void cursor_get_mono_image(QEMUCursor *c, int foreground, uint8_t *image)
{
uint32_t *data = c->data;
uint8_t bit;
int x,y,bpl;
bpl = cursor_get_mono_bpl(c);
memset(image, 0, bpl * c->height);
for (y = 0; y < c->height; y++) {
bit = 0x80;
for (x = 0; x < c->width; x++, data++) {
if (((*data & 0xff000000) == 0xff000000) &&
((*data & 0x00ffffff) == foreground)) {
image[x/8] |= bit;
}
bit >>= 1;
if (bit == 0) {
bit = 0x80;
}
}
image += bpl;
}
}
void cursor_get_mono_mask(QEMUCursor *c, int transparent, uint8_t *mask)
{
uint32_t *data = c->data;
uint8_t bit;
int x,y,bpl;
bpl = cursor_get_mono_bpl(c);
memset(mask, 0, bpl * c->height);
for (y = 0; y < c->height; y++) {
bit = 0x80;
for (x = 0; x < c->width; x++, data++) {
if ((*data & 0xff000000) != 0xff000000) {
if (transparent != 0) {
mask[x/8] |= bit;
}
} else {
if (transparent == 0) {
mask[x/8] |= bit;
}
}
bit >>= 1;
if (bit == 0) {
bit = 0x80;
}
}
mask += bpl;
}
}