1204 lines
30 KiB
C
1204 lines
30 KiB
C
|
/*
|
||
|
* QEMU System Emulator
|
||
|
*
|
||
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
||
|
*
|
||
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
* of this software and associated documentation files (the "Software"), to deal
|
||
|
* in the Software without restriction, including without limitation the rights
|
||
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
* copies of the Software, and to permit persons to whom the Software is
|
||
|
* furnished to do so, subject to the following conditions:
|
||
|
*
|
||
|
* The above copyright notice and this permission notice shall be included in
|
||
|
* all copies or substantial portions of the Software.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
||
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
||
|
* THE SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
#include "sysemu.h"
|
||
|
#include "net.h"
|
||
|
#include "monitor.h"
|
||
|
#include "console.h"
|
||
|
|
||
|
#include "hw/hw.h"
|
||
|
|
||
|
#include <unistd.h>
|
||
|
#include <fcntl.h>
|
||
|
#include <time.h>
|
||
|
#include <errno.h>
|
||
|
#include <sys/time.h>
|
||
|
#include <signal.h>
|
||
|
|
||
|
#ifdef __linux__
|
||
|
#include <sys/ioctl.h>
|
||
|
#include <linux/rtc.h>
|
||
|
/* For the benefit of older linux systems which don't supply it,
|
||
|
we use a local copy of hpet.h. */
|
||
|
/* #include <linux/hpet.h> */
|
||
|
#include "hpet.h"
|
||
|
#endif
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
#include <windows.h>
|
||
|
#include <mmsystem.h>
|
||
|
#endif
|
||
|
|
||
|
#include "cpu-defs.h"
|
||
|
#include "qemu-timer.h"
|
||
|
#include "exec-all.h"
|
||
|
|
||
|
/* Conversion factor from emulated instructions to virtual clock ticks. */
|
||
|
static int icount_time_shift;
|
||
|
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
|
||
|
#define MAX_ICOUNT_SHIFT 10
|
||
|
/* Compensate for varying guest execution speed. */
|
||
|
static int64_t qemu_icount_bias;
|
||
|
static QEMUTimer *icount_rt_timer;
|
||
|
static QEMUTimer *icount_vm_timer;
|
||
|
|
||
|
|
||
|
/***********************************************************/
|
||
|
/* real time host monotonic timer */
|
||
|
|
||
|
|
||
|
static int64_t get_clock_realtime(void)
|
||
|
{
|
||
|
struct timeval tv;
|
||
|
|
||
|
gettimeofday(&tv, NULL);
|
||
|
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
|
||
|
}
|
||
|
|
||
|
#ifdef WIN32
|
||
|
|
||
|
static int64_t clock_freq;
|
||
|
|
||
|
static void init_get_clock(void)
|
||
|
{
|
||
|
LARGE_INTEGER freq;
|
||
|
int ret;
|
||
|
ret = QueryPerformanceFrequency(&freq);
|
||
|
if (ret == 0) {
|
||
|
fprintf(stderr, "Could not calibrate ticks\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
clock_freq = freq.QuadPart;
|
||
|
}
|
||
|
|
||
|
static int64_t get_clock(void)
|
||
|
{
|
||
|
LARGE_INTEGER ti;
|
||
|
QueryPerformanceCounter(&ti);
|
||
|
return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
|
||
|
}
|
||
|
|
||
|
#else
|
||
|
|
||
|
static int use_rt_clock;
|
||
|
|
||
|
static void init_get_clock(void)
|
||
|
{
|
||
|
use_rt_clock = 0;
|
||
|
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
|
||
|
|| defined(__DragonFly__) || defined(__FreeBSD_kernel__)
|
||
|
{
|
||
|
struct timespec ts;
|
||
|
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
|
||
|
use_rt_clock = 1;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
static int64_t get_clock(void)
|
||
|
{
|
||
|
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
|
||
|
|| defined(__DragonFly__) || defined(__FreeBSD_kernel__)
|
||
|
if (use_rt_clock) {
|
||
|
struct timespec ts;
|
||
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
||
|
return ts.tv_sec * 1000000000LL + ts.tv_nsec;
|
||
|
} else
|
||
|
#endif
|
||
|
{
|
||
|
/* XXX: using gettimeofday leads to problems if the date
|
||
|
changes, so it should be avoided. */
|
||
|
return get_clock_realtime();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Return the virtual CPU time, based on the instruction counter. */
|
||
|
static int64_t cpu_get_icount(void)
|
||
|
{
|
||
|
int64_t icount;
|
||
|
CPUState *env = cpu_single_env;;
|
||
|
icount = qemu_icount;
|
||
|
if (env) {
|
||
|
if (!can_do_io(env))
|
||
|
fprintf(stderr, "Bad clock read\n");
|
||
|
icount -= (env->icount_decr.u16.low + env->icount_extra);
|
||
|
}
|
||
|
return qemu_icount_bias + (icount << icount_time_shift);
|
||
|
}
|
||
|
|
||
|
/***********************************************************/
|
||
|
/* guest cycle counter */
|
||
|
|
||
|
typedef struct TimersState {
|
||
|
int64_t cpu_ticks_prev;
|
||
|
int64_t cpu_ticks_offset;
|
||
|
int64_t cpu_clock_offset;
|
||
|
int32_t cpu_ticks_enabled;
|
||
|
int64_t dummy;
|
||
|
} TimersState;
|
||
|
|
||
|
TimersState timers_state;
|
||
|
|
||
|
/* return the host CPU cycle counter and handle stop/restart */
|
||
|
int64_t cpu_get_ticks(void)
|
||
|
{
|
||
|
if (use_icount) {
|
||
|
return cpu_get_icount();
|
||
|
}
|
||
|
if (!timers_state.cpu_ticks_enabled) {
|
||
|
return timers_state.cpu_ticks_offset;
|
||
|
} else {
|
||
|
int64_t ticks;
|
||
|
ticks = cpu_get_real_ticks();
|
||
|
if (timers_state.cpu_ticks_prev > ticks) {
|
||
|
/* Note: non increasing ticks may happen if the host uses
|
||
|
software suspend */
|
||
|
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
|
||
|
}
|
||
|
timers_state.cpu_ticks_prev = ticks;
|
||
|
return ticks + timers_state.cpu_ticks_offset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* return the host CPU monotonic timer and handle stop/restart */
|
||
|
static int64_t cpu_get_clock(void)
|
||
|
{
|
||
|
int64_t ti;
|
||
|
if (!timers_state.cpu_ticks_enabled) {
|
||
|
return timers_state.cpu_clock_offset;
|
||
|
} else {
|
||
|
ti = get_clock();
|
||
|
return ti + timers_state.cpu_clock_offset;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#ifndef CONFIG_IOTHREAD
|
||
|
static int64_t qemu_icount_delta(void)
|
||
|
{
|
||
|
if (!use_icount) {
|
||
|
return 5000 * (int64_t) 1000000;
|
||
|
} else if (use_icount == 1) {
|
||
|
/* When not using an adaptive execution frequency
|
||
|
we tend to get badly out of sync with real time,
|
||
|
so just delay for a reasonable amount of time. */
|
||
|
return 0;
|
||
|
} else {
|
||
|
return cpu_get_icount() - cpu_get_clock();
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* enable cpu_get_ticks() */
|
||
|
void cpu_enable_ticks(void)
|
||
|
{
|
||
|
if (!timers_state.cpu_ticks_enabled) {
|
||
|
timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
|
||
|
timers_state.cpu_clock_offset -= get_clock();
|
||
|
timers_state.cpu_ticks_enabled = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* disable cpu_get_ticks() : the clock is stopped. You must not call
|
||
|
cpu_get_ticks() after that. */
|
||
|
void cpu_disable_ticks(void)
|
||
|
{
|
||
|
if (timers_state.cpu_ticks_enabled) {
|
||
|
timers_state.cpu_ticks_offset = cpu_get_ticks();
|
||
|
timers_state.cpu_clock_offset = cpu_get_clock();
|
||
|
timers_state.cpu_ticks_enabled = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/***********************************************************/
|
||
|
/* timers */
|
||
|
|
||
|
#define QEMU_CLOCK_REALTIME 0
|
||
|
#define QEMU_CLOCK_VIRTUAL 1
|
||
|
#define QEMU_CLOCK_HOST 2
|
||
|
|
||
|
struct QEMUClock {
|
||
|
int type;
|
||
|
int enabled;
|
||
|
/* XXX: add frequency */
|
||
|
};
|
||
|
|
||
|
struct QEMUTimer {
|
||
|
QEMUClock *clock;
|
||
|
int64_t expire_time;
|
||
|
QEMUTimerCB *cb;
|
||
|
void *opaque;
|
||
|
struct QEMUTimer *next;
|
||
|
};
|
||
|
|
||
|
struct qemu_alarm_timer {
|
||
|
char const *name;
|
||
|
int (*start)(struct qemu_alarm_timer *t);
|
||
|
void (*stop)(struct qemu_alarm_timer *t);
|
||
|
void (*rearm)(struct qemu_alarm_timer *t);
|
||
|
void *priv;
|
||
|
|
||
|
char expired;
|
||
|
char pending;
|
||
|
};
|
||
|
|
||
|
static struct qemu_alarm_timer *alarm_timer;
|
||
|
|
||
|
int qemu_alarm_pending(void)
|
||
|
{
|
||
|
return alarm_timer->pending;
|
||
|
}
|
||
|
|
||
|
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
return !!t->rearm;
|
||
|
}
|
||
|
|
||
|
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
if (!alarm_has_dynticks(t))
|
||
|
return;
|
||
|
|
||
|
t->rearm(t);
|
||
|
}
|
||
|
|
||
|
/* TODO: MIN_TIMER_REARM_US should be optimized */
|
||
|
#define MIN_TIMER_REARM_US 250
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
|
||
|
struct qemu_alarm_win32 {
|
||
|
MMRESULT timerId;
|
||
|
unsigned int period;
|
||
|
} alarm_win32_data = {0, 0};
|
||
|
|
||
|
static int win32_start_timer(struct qemu_alarm_timer *t);
|
||
|
static void win32_stop_timer(struct qemu_alarm_timer *t);
|
||
|
static void win32_rearm_timer(struct qemu_alarm_timer *t);
|
||
|
|
||
|
#else
|
||
|
|
||
|
static int unix_start_timer(struct qemu_alarm_timer *t);
|
||
|
static void unix_stop_timer(struct qemu_alarm_timer *t);
|
||
|
|
||
|
#ifdef __linux__
|
||
|
|
||
|
static int dynticks_start_timer(struct qemu_alarm_timer *t);
|
||
|
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
|
||
|
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
|
||
|
|
||
|
static int hpet_start_timer(struct qemu_alarm_timer *t);
|
||
|
static void hpet_stop_timer(struct qemu_alarm_timer *t);
|
||
|
|
||
|
static int rtc_start_timer(struct qemu_alarm_timer *t);
|
||
|
static void rtc_stop_timer(struct qemu_alarm_timer *t);
|
||
|
|
||
|
#endif /* __linux__ */
|
||
|
|
||
|
#endif /* _WIN32 */
|
||
|
|
||
|
/* Correlation between real and virtual time is always going to be
|
||
|
fairly approximate, so ignore small variation.
|
||
|
When the guest is idle real and virtual time will be aligned in
|
||
|
the IO wait loop. */
|
||
|
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
|
||
|
|
||
|
static void icount_adjust(void)
|
||
|
{
|
||
|
int64_t cur_time;
|
||
|
int64_t cur_icount;
|
||
|
int64_t delta;
|
||
|
static int64_t last_delta;
|
||
|
/* If the VM is not running, then do nothing. */
|
||
|
if (!vm_running)
|
||
|
return;
|
||
|
|
||
|
cur_time = cpu_get_clock();
|
||
|
cur_icount = qemu_get_clock(vm_clock);
|
||
|
delta = cur_icount - cur_time;
|
||
|
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
|
||
|
if (delta > 0
|
||
|
&& last_delta + ICOUNT_WOBBLE < delta * 2
|
||
|
&& icount_time_shift > 0) {
|
||
|
/* The guest is getting too far ahead. Slow time down. */
|
||
|
icount_time_shift--;
|
||
|
}
|
||
|
if (delta < 0
|
||
|
&& last_delta - ICOUNT_WOBBLE > delta * 2
|
||
|
&& icount_time_shift < MAX_ICOUNT_SHIFT) {
|
||
|
/* The guest is getting too far behind. Speed time up. */
|
||
|
icount_time_shift++;
|
||
|
}
|
||
|
last_delta = delta;
|
||
|
qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
|
||
|
}
|
||
|
|
||
|
static void icount_adjust_rt(void * opaque)
|
||
|
{
|
||
|
qemu_mod_timer(icount_rt_timer,
|
||
|
qemu_get_clock(rt_clock) + 1000);
|
||
|
icount_adjust();
|
||
|
}
|
||
|
|
||
|
static void icount_adjust_vm(void * opaque)
|
||
|
{
|
||
|
qemu_mod_timer(icount_vm_timer,
|
||
|
qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
|
||
|
icount_adjust();
|
||
|
}
|
||
|
|
||
|
int64_t qemu_icount_round(int64_t count)
|
||
|
{
|
||
|
return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
|
||
|
}
|
||
|
|
||
|
static struct qemu_alarm_timer alarm_timers[] = {
|
||
|
#ifndef _WIN32
|
||
|
#ifdef __linux__
|
||
|
{"dynticks", dynticks_start_timer,
|
||
|
dynticks_stop_timer, dynticks_rearm_timer, NULL},
|
||
|
/* HPET - if available - is preferred */
|
||
|
{"hpet", hpet_start_timer, hpet_stop_timer, NULL, NULL},
|
||
|
/* ...otherwise try RTC */
|
||
|
{"rtc", rtc_start_timer, rtc_stop_timer, NULL, NULL},
|
||
|
#endif
|
||
|
{"unix", unix_start_timer, unix_stop_timer, NULL, NULL},
|
||
|
#else
|
||
|
{"dynticks", win32_start_timer,
|
||
|
win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
|
||
|
{"win32", win32_start_timer,
|
||
|
win32_stop_timer, NULL, &alarm_win32_data},
|
||
|
#endif
|
||
|
{NULL, }
|
||
|
};
|
||
|
|
||
|
static void show_available_alarms(void)
|
||
|
{
|
||
|
int i;
|
||
|
|
||
|
printf("Available alarm timers, in order of precedence:\n");
|
||
|
for (i = 0; alarm_timers[i].name; i++)
|
||
|
printf("%s\n", alarm_timers[i].name);
|
||
|
}
|
||
|
|
||
|
void configure_alarms(char const *opt)
|
||
|
{
|
||
|
int i;
|
||
|
int cur = 0;
|
||
|
int count = ARRAY_SIZE(alarm_timers) - 1;
|
||
|
char *arg;
|
||
|
char *name;
|
||
|
struct qemu_alarm_timer tmp;
|
||
|
|
||
|
if (!strcmp(opt, "?")) {
|
||
|
show_available_alarms();
|
||
|
exit(0);
|
||
|
}
|
||
|
|
||
|
arg = qemu_strdup(opt);
|
||
|
|
||
|
/* Reorder the array */
|
||
|
name = strtok(arg, ",");
|
||
|
while (name) {
|
||
|
for (i = 0; i < count && alarm_timers[i].name; i++) {
|
||
|
if (!strcmp(alarm_timers[i].name, name))
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (i == count) {
|
||
|
fprintf(stderr, "Unknown clock %s\n", name);
|
||
|
goto next;
|
||
|
}
|
||
|
|
||
|
if (i < cur)
|
||
|
/* Ignore */
|
||
|
goto next;
|
||
|
|
||
|
/* Swap */
|
||
|
tmp = alarm_timers[i];
|
||
|
alarm_timers[i] = alarm_timers[cur];
|
||
|
alarm_timers[cur] = tmp;
|
||
|
|
||
|
cur++;
|
||
|
next:
|
||
|
name = strtok(NULL, ",");
|
||
|
}
|
||
|
|
||
|
qemu_free(arg);
|
||
|
|
||
|
if (cur) {
|
||
|
/* Disable remaining timers */
|
||
|
for (i = cur; i < count; i++)
|
||
|
alarm_timers[i].name = NULL;
|
||
|
} else {
|
||
|
show_available_alarms();
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define QEMU_NUM_CLOCKS 3
|
||
|
|
||
|
QEMUClock *rt_clock;
|
||
|
QEMUClock *vm_clock;
|
||
|
QEMUClock *host_clock;
|
||
|
|
||
|
static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
|
||
|
|
||
|
static QEMUClock *qemu_new_clock(int type)
|
||
|
{
|
||
|
QEMUClock *clock;
|
||
|
clock = qemu_mallocz(sizeof(QEMUClock));
|
||
|
clock->type = type;
|
||
|
clock->enabled = 1;
|
||
|
return clock;
|
||
|
}
|
||
|
|
||
|
void qemu_clock_enable(QEMUClock *clock, int enabled)
|
||
|
{
|
||
|
clock->enabled = enabled;
|
||
|
}
|
||
|
|
||
|
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
|
||
|
{
|
||
|
QEMUTimer *ts;
|
||
|
|
||
|
ts = qemu_mallocz(sizeof(QEMUTimer));
|
||
|
ts->clock = clock;
|
||
|
ts->cb = cb;
|
||
|
ts->opaque = opaque;
|
||
|
return ts;
|
||
|
}
|
||
|
|
||
|
void qemu_free_timer(QEMUTimer *ts)
|
||
|
{
|
||
|
qemu_free(ts);
|
||
|
}
|
||
|
|
||
|
/* stop a timer, but do not dealloc it */
|
||
|
void qemu_del_timer(QEMUTimer *ts)
|
||
|
{
|
||
|
QEMUTimer **pt, *t;
|
||
|
|
||
|
/* NOTE: this code must be signal safe because
|
||
|
qemu_timer_expired() can be called from a signal. */
|
||
|
pt = &active_timers[ts->clock->type];
|
||
|
for(;;) {
|
||
|
t = *pt;
|
||
|
if (!t)
|
||
|
break;
|
||
|
if (t == ts) {
|
||
|
*pt = t->next;
|
||
|
break;
|
||
|
}
|
||
|
pt = &t->next;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* modify the current timer so that it will be fired when current_time
|
||
|
>= expire_time. The corresponding callback will be called. */
|
||
|
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
|
||
|
{
|
||
|
QEMUTimer **pt, *t;
|
||
|
|
||
|
qemu_del_timer(ts);
|
||
|
|
||
|
/* add the timer in the sorted list */
|
||
|
/* NOTE: this code must be signal safe because
|
||
|
qemu_timer_expired() can be called from a signal. */
|
||
|
pt = &active_timers[ts->clock->type];
|
||
|
for(;;) {
|
||
|
t = *pt;
|
||
|
if (!t)
|
||
|
break;
|
||
|
if (t->expire_time > expire_time)
|
||
|
break;
|
||
|
pt = &t->next;
|
||
|
}
|
||
|
ts->expire_time = expire_time;
|
||
|
ts->next = *pt;
|
||
|
*pt = ts;
|
||
|
|
||
|
/* Rearm if necessary */
|
||
|
if (pt == &active_timers[ts->clock->type]) {
|
||
|
if (!alarm_timer->pending) {
|
||
|
qemu_rearm_alarm_timer(alarm_timer);
|
||
|
}
|
||
|
/* Interrupt execution to force deadline recalculation. */
|
||
|
if (use_icount)
|
||
|
qemu_notify_event();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int qemu_timer_pending(QEMUTimer *ts)
|
||
|
{
|
||
|
QEMUTimer *t;
|
||
|
for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
|
||
|
if (t == ts)
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
|
||
|
{
|
||
|
if (!timer_head)
|
||
|
return 0;
|
||
|
return (timer_head->expire_time <= current_time);
|
||
|
}
|
||
|
|
||
|
static void qemu_run_timers(QEMUClock *clock)
|
||
|
{
|
||
|
QEMUTimer **ptimer_head, *ts;
|
||
|
int64_t current_time;
|
||
|
|
||
|
if (!clock->enabled)
|
||
|
return;
|
||
|
|
||
|
current_time = qemu_get_clock (clock);
|
||
|
ptimer_head = &active_timers[clock->type];
|
||
|
for(;;) {
|
||
|
ts = *ptimer_head;
|
||
|
if (!ts || ts->expire_time > current_time)
|
||
|
break;
|
||
|
/* remove timer from the list before calling the callback */
|
||
|
*ptimer_head = ts->next;
|
||
|
ts->next = NULL;
|
||
|
|
||
|
/* run the callback (the timer list can be modified) */
|
||
|
ts->cb(ts->opaque);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int64_t qemu_get_clock(QEMUClock *clock)
|
||
|
{
|
||
|
switch(clock->type) {
|
||
|
case QEMU_CLOCK_REALTIME:
|
||
|
return get_clock() / 1000000;
|
||
|
default:
|
||
|
case QEMU_CLOCK_VIRTUAL:
|
||
|
if (use_icount) {
|
||
|
return cpu_get_icount();
|
||
|
} else {
|
||
|
return cpu_get_clock();
|
||
|
}
|
||
|
case QEMU_CLOCK_HOST:
|
||
|
return get_clock_realtime();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int64_t qemu_get_clock_ns(QEMUClock *clock)
|
||
|
{
|
||
|
switch(clock->type) {
|
||
|
case QEMU_CLOCK_REALTIME:
|
||
|
return get_clock();
|
||
|
default:
|
||
|
case QEMU_CLOCK_VIRTUAL:
|
||
|
if (use_icount) {
|
||
|
return cpu_get_icount();
|
||
|
} else {
|
||
|
return cpu_get_clock();
|
||
|
}
|
||
|
case QEMU_CLOCK_HOST:
|
||
|
return get_clock_realtime();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void init_clocks(void)
|
||
|
{
|
||
|
init_get_clock();
|
||
|
rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
|
||
|
vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
|
||
|
host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
|
||
|
|
||
|
rtc_clock = host_clock;
|
||
|
}
|
||
|
|
||
|
/* save a timer */
|
||
|
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
|
||
|
{
|
||
|
uint64_t expire_time;
|
||
|
|
||
|
if (qemu_timer_pending(ts)) {
|
||
|
expire_time = ts->expire_time;
|
||
|
} else {
|
||
|
expire_time = -1;
|
||
|
}
|
||
|
qemu_put_be64(f, expire_time);
|
||
|
}
|
||
|
|
||
|
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
|
||
|
{
|
||
|
uint64_t expire_time;
|
||
|
|
||
|
expire_time = qemu_get_be64(f);
|
||
|
if (expire_time != -1) {
|
||
|
qemu_mod_timer(ts, expire_time);
|
||
|
} else {
|
||
|
qemu_del_timer(ts);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static const VMStateDescription vmstate_timers = {
|
||
|
.name = "timer",
|
||
|
.version_id = 2,
|
||
|
.minimum_version_id = 1,
|
||
|
.minimum_version_id_old = 1,
|
||
|
.fields = (VMStateField []) {
|
||
|
VMSTATE_INT64(cpu_ticks_offset, TimersState),
|
||
|
VMSTATE_INT64(dummy, TimersState),
|
||
|
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
|
||
|
VMSTATE_END_OF_LIST()
|
||
|
}
|
||
|
};
|
||
|
|
||
|
void configure_icount(const char *option)
|
||
|
{
|
||
|
vmstate_register(0, &vmstate_timers, &timers_state);
|
||
|
if (!option)
|
||
|
return;
|
||
|
|
||
|
if (strcmp(option, "auto") != 0) {
|
||
|
icount_time_shift = strtol(option, NULL, 0);
|
||
|
use_icount = 1;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
use_icount = 2;
|
||
|
|
||
|
/* 125MIPS seems a reasonable initial guess at the guest speed.
|
||
|
It will be corrected fairly quickly anyway. */
|
||
|
icount_time_shift = 3;
|
||
|
|
||
|
/* Have both realtime and virtual time triggers for speed adjustment.
|
||
|
The realtime trigger catches emulated time passing too slowly,
|
||
|
the virtual time trigger catches emulated time passing too fast.
|
||
|
Realtime triggers occur even when idle, so use them less frequently
|
||
|
than VM triggers. */
|
||
|
icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
|
||
|
qemu_mod_timer(icount_rt_timer,
|
||
|
qemu_get_clock(rt_clock) + 1000);
|
||
|
icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
|
||
|
qemu_mod_timer(icount_vm_timer,
|
||
|
qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
|
||
|
}
|
||
|
|
||
|
void qemu_run_all_timers(void)
|
||
|
{
|
||
|
/* rearm timer, if not periodic */
|
||
|
if (alarm_timer->expired) {
|
||
|
alarm_timer->expired = 0;
|
||
|
qemu_rearm_alarm_timer(alarm_timer);
|
||
|
}
|
||
|
|
||
|
alarm_timer->pending = 0;
|
||
|
|
||
|
/* vm time timers */
|
||
|
if (vm_running) {
|
||
|
qemu_run_timers(vm_clock);
|
||
|
}
|
||
|
|
||
|
qemu_run_timers(rt_clock);
|
||
|
qemu_run_timers(host_clock);
|
||
|
}
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
|
||
|
DWORD_PTR dwUser, DWORD_PTR dw1,
|
||
|
DWORD_PTR dw2)
|
||
|
#else
|
||
|
static void host_alarm_handler(int host_signum)
|
||
|
#endif
|
||
|
{
|
||
|
struct qemu_alarm_timer *t = alarm_timer;
|
||
|
if (!t)
|
||
|
return;
|
||
|
|
||
|
#if 0
|
||
|
#define DISP_FREQ 1000
|
||
|
{
|
||
|
static int64_t delta_min = INT64_MAX;
|
||
|
static int64_t delta_max, delta_cum, last_clock, delta, ti;
|
||
|
static int count;
|
||
|
ti = qemu_get_clock(vm_clock);
|
||
|
if (last_clock != 0) {
|
||
|
delta = ti - last_clock;
|
||
|
if (delta < delta_min)
|
||
|
delta_min = delta;
|
||
|
if (delta > delta_max)
|
||
|
delta_max = delta;
|
||
|
delta_cum += delta;
|
||
|
if (++count == DISP_FREQ) {
|
||
|
printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
|
||
|
muldiv64(delta_min, 1000000, get_ticks_per_sec()),
|
||
|
muldiv64(delta_max, 1000000, get_ticks_per_sec()),
|
||
|
muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
|
||
|
(double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
|
||
|
count = 0;
|
||
|
delta_min = INT64_MAX;
|
||
|
delta_max = 0;
|
||
|
delta_cum = 0;
|
||
|
}
|
||
|
}
|
||
|
last_clock = ti;
|
||
|
}
|
||
|
#endif
|
||
|
if (alarm_has_dynticks(t) ||
|
||
|
(!use_icount &&
|
||
|
qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
|
||
|
qemu_get_clock(vm_clock))) ||
|
||
|
qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
|
||
|
qemu_get_clock(rt_clock)) ||
|
||
|
qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
|
||
|
qemu_get_clock(host_clock))) {
|
||
|
|
||
|
t->expired = alarm_has_dynticks(t);
|
||
|
t->pending = 1;
|
||
|
qemu_notify_event();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int64_t qemu_next_deadline(void)
|
||
|
{
|
||
|
/* To avoid problems with overflow limit this to 2^32. */
|
||
|
int64_t delta = INT32_MAX;
|
||
|
|
||
|
if (active_timers[QEMU_CLOCK_VIRTUAL]) {
|
||
|
delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
|
||
|
qemu_get_clock(vm_clock);
|
||
|
}
|
||
|
if (active_timers[QEMU_CLOCK_HOST]) {
|
||
|
int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
|
||
|
qemu_get_clock(host_clock);
|
||
|
if (hdelta < delta)
|
||
|
delta = hdelta;
|
||
|
}
|
||
|
|
||
|
if (delta < 0)
|
||
|
delta = 0;
|
||
|
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
#ifndef _WIN32
|
||
|
|
||
|
#if defined(__linux__)
|
||
|
|
||
|
#define RTC_FREQ 1024
|
||
|
|
||
|
static uint64_t qemu_next_deadline_dyntick(void)
|
||
|
{
|
||
|
int64_t delta;
|
||
|
int64_t rtdelta;
|
||
|
|
||
|
if (use_icount)
|
||
|
delta = INT32_MAX;
|
||
|
else
|
||
|
delta = (qemu_next_deadline() + 999) / 1000;
|
||
|
|
||
|
if (active_timers[QEMU_CLOCK_REALTIME]) {
|
||
|
rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
|
||
|
qemu_get_clock(rt_clock))*1000;
|
||
|
if (rtdelta < delta)
|
||
|
delta = rtdelta;
|
||
|
}
|
||
|
|
||
|
if (delta < MIN_TIMER_REARM_US)
|
||
|
delta = MIN_TIMER_REARM_US;
|
||
|
|
||
|
return delta;
|
||
|
}
|
||
|
|
||
|
static void enable_sigio_timer(int fd)
|
||
|
{
|
||
|
struct sigaction act;
|
||
|
|
||
|
/* timer signal */
|
||
|
sigfillset(&act.sa_mask);
|
||
|
act.sa_flags = 0;
|
||
|
act.sa_handler = host_alarm_handler;
|
||
|
|
||
|
sigaction(SIGIO, &act, NULL);
|
||
|
fcntl_setfl(fd, O_ASYNC);
|
||
|
fcntl(fd, F_SETOWN, getpid());
|
||
|
}
|
||
|
|
||
|
static int hpet_start_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct hpet_info info;
|
||
|
int r, fd;
|
||
|
|
||
|
fd = qemu_open("/dev/hpet", O_RDONLY);
|
||
|
if (fd < 0)
|
||
|
return -1;
|
||
|
|
||
|
/* Set frequency */
|
||
|
r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
|
||
|
if (r < 0) {
|
||
|
fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
|
||
|
"error, but for better emulation accuracy type:\n"
|
||
|
"'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* Check capabilities */
|
||
|
r = ioctl(fd, HPET_INFO, &info);
|
||
|
if (r < 0)
|
||
|
goto fail;
|
||
|
|
||
|
/* Enable periodic mode */
|
||
|
r = ioctl(fd, HPET_EPI, 0);
|
||
|
if (info.hi_flags && (r < 0))
|
||
|
goto fail;
|
||
|
|
||
|
/* Enable interrupt */
|
||
|
r = ioctl(fd, HPET_IE_ON, 0);
|
||
|
if (r < 0)
|
||
|
goto fail;
|
||
|
|
||
|
enable_sigio_timer(fd);
|
||
|
t->priv = (void *)(long)fd;
|
||
|
|
||
|
return 0;
|
||
|
fail:
|
||
|
close(fd);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
static void hpet_stop_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
int fd = (long)t->priv;
|
||
|
|
||
|
close(fd);
|
||
|
}
|
||
|
|
||
|
static int rtc_start_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
int rtc_fd;
|
||
|
unsigned long current_rtc_freq = 0;
|
||
|
|
||
|
TFR(rtc_fd = qemu_open("/dev/rtc", O_RDONLY));
|
||
|
if (rtc_fd < 0)
|
||
|
return -1;
|
||
|
ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq);
|
||
|
if (current_rtc_freq != RTC_FREQ &&
|
||
|
ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
|
||
|
fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
|
||
|
"error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
|
||
|
"type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
|
||
|
goto fail;
|
||
|
}
|
||
|
if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
|
||
|
fail:
|
||
|
close(rtc_fd);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
enable_sigio_timer(rtc_fd);
|
||
|
|
||
|
t->priv = (void *)(long)rtc_fd;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void rtc_stop_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
int rtc_fd = (long)t->priv;
|
||
|
|
||
|
close(rtc_fd);
|
||
|
}
|
||
|
|
||
|
static int dynticks_start_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct sigevent ev;
|
||
|
timer_t host_timer;
|
||
|
struct sigaction act;
|
||
|
|
||
|
sigfillset(&act.sa_mask);
|
||
|
act.sa_flags = 0;
|
||
|
act.sa_handler = host_alarm_handler;
|
||
|
|
||
|
sigaction(SIGALRM, &act, NULL);
|
||
|
|
||
|
/*
|
||
|
* Initialize ev struct to 0 to avoid valgrind complaining
|
||
|
* about uninitialized data in timer_create call
|
||
|
*/
|
||
|
memset(&ev, 0, sizeof(ev));
|
||
|
ev.sigev_value.sival_int = 0;
|
||
|
ev.sigev_notify = SIGEV_SIGNAL;
|
||
|
ev.sigev_signo = SIGALRM;
|
||
|
|
||
|
if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
|
||
|
perror("timer_create");
|
||
|
|
||
|
/* disable dynticks */
|
||
|
fprintf(stderr, "Dynamic Ticks disabled\n");
|
||
|
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
t->priv = (void *)(long)host_timer;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
timer_t host_timer = (timer_t)(long)t->priv;
|
||
|
|
||
|
timer_delete(host_timer);
|
||
|
}
|
||
|
|
||
|
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
timer_t host_timer = (timer_t)(long)t->priv;
|
||
|
struct itimerspec timeout;
|
||
|
int64_t nearest_delta_us = INT64_MAX;
|
||
|
int64_t current_us;
|
||
|
|
||
|
assert(alarm_has_dynticks(t));
|
||
|
if (!active_timers[QEMU_CLOCK_REALTIME] &&
|
||
|
!active_timers[QEMU_CLOCK_VIRTUAL] &&
|
||
|
!active_timers[QEMU_CLOCK_HOST])
|
||
|
return;
|
||
|
|
||
|
nearest_delta_us = qemu_next_deadline_dyntick();
|
||
|
|
||
|
/* check whether a timer is already running */
|
||
|
if (timer_gettime(host_timer, &timeout)) {
|
||
|
perror("gettime");
|
||
|
fprintf(stderr, "Internal timer error: aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
|
||
|
if (current_us && current_us <= nearest_delta_us)
|
||
|
return;
|
||
|
|
||
|
timeout.it_interval.tv_sec = 0;
|
||
|
timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
|
||
|
timeout.it_value.tv_sec = nearest_delta_us / 1000000;
|
||
|
timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
|
||
|
if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
|
||
|
perror("settime");
|
||
|
fprintf(stderr, "Internal timer error: aborting\n");
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* defined(__linux__) */
|
||
|
|
||
|
static int unix_start_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct sigaction act;
|
||
|
struct itimerval itv;
|
||
|
int err;
|
||
|
|
||
|
/* timer signal */
|
||
|
sigfillset(&act.sa_mask);
|
||
|
act.sa_flags = 0;
|
||
|
act.sa_handler = host_alarm_handler;
|
||
|
|
||
|
sigaction(SIGALRM, &act, NULL);
|
||
|
|
||
|
itv.it_interval.tv_sec = 0;
|
||
|
/* for i386 kernel 2.6 to get 1 ms */
|
||
|
itv.it_interval.tv_usec = 999;
|
||
|
itv.it_value.tv_sec = 0;
|
||
|
itv.it_value.tv_usec = 10 * 1000;
|
||
|
|
||
|
err = setitimer(ITIMER_REAL, &itv, NULL);
|
||
|
if (err)
|
||
|
return -1;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void unix_stop_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct itimerval itv;
|
||
|
|
||
|
memset(&itv, 0, sizeof(itv));
|
||
|
setitimer(ITIMER_REAL, &itv, NULL);
|
||
|
}
|
||
|
|
||
|
#endif /* !defined(_WIN32) */
|
||
|
|
||
|
|
||
|
#ifdef _WIN32
|
||
|
|
||
|
static int win32_start_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
TIMECAPS tc;
|
||
|
struct qemu_alarm_win32 *data = t->priv;
|
||
|
UINT flags;
|
||
|
|
||
|
memset(&tc, 0, sizeof(tc));
|
||
|
timeGetDevCaps(&tc, sizeof(tc));
|
||
|
|
||
|
data->period = tc.wPeriodMin;
|
||
|
timeBeginPeriod(data->period);
|
||
|
|
||
|
flags = TIME_CALLBACK_FUNCTION;
|
||
|
if (alarm_has_dynticks(t))
|
||
|
flags |= TIME_ONESHOT;
|
||
|
else
|
||
|
flags |= TIME_PERIODIC;
|
||
|
|
||
|
data->timerId = timeSetEvent(1, // interval (ms)
|
||
|
data->period, // resolution
|
||
|
host_alarm_handler, // function
|
||
|
(DWORD)t, // parameter
|
||
|
flags);
|
||
|
|
||
|
if (!data->timerId) {
|
||
|
fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
|
||
|
GetLastError());
|
||
|
timeEndPeriod(data->period);
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
static void win32_stop_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct qemu_alarm_win32 *data = t->priv;
|
||
|
|
||
|
timeKillEvent(data->timerId);
|
||
|
timeEndPeriod(data->period);
|
||
|
}
|
||
|
|
||
|
static void win32_rearm_timer(struct qemu_alarm_timer *t)
|
||
|
{
|
||
|
struct qemu_alarm_win32 *data = t->priv;
|
||
|
|
||
|
assert(alarm_has_dynticks(t));
|
||
|
if (!active_timers[QEMU_CLOCK_REALTIME] &&
|
||
|
!active_timers[QEMU_CLOCK_VIRTUAL] &&
|
||
|
!active_timers[QEMU_CLOCK_HOST])
|
||
|
return;
|
||
|
|
||
|
timeKillEvent(data->timerId);
|
||
|
|
||
|
data->timerId = timeSetEvent(1,
|
||
|
data->period,
|
||
|
host_alarm_handler,
|
||
|
(DWORD)t,
|
||
|
TIME_ONESHOT | TIME_CALLBACK_FUNCTION);
|
||
|
|
||
|
if (!data->timerId) {
|
||
|
fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
|
||
|
GetLastError());
|
||
|
|
||
|
timeEndPeriod(data->period);
|
||
|
exit(1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif /* _WIN32 */
|
||
|
|
||
|
static void alarm_timer_on_change_state_rearm(void *opaque, int running, int reason)
|
||
|
{
|
||
|
if (running)
|
||
|
qemu_rearm_alarm_timer((struct qemu_alarm_timer *) opaque);
|
||
|
}
|
||
|
|
||
|
int init_timer_alarm(void)
|
||
|
{
|
||
|
struct qemu_alarm_timer *t = NULL;
|
||
|
int i, err = -1;
|
||
|
|
||
|
for (i = 0; alarm_timers[i].name; i++) {
|
||
|
t = &alarm_timers[i];
|
||
|
|
||
|
err = t->start(t);
|
||
|
if (!err)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (err) {
|
||
|
err = -ENOENT;
|
||
|
goto fail;
|
||
|
}
|
||
|
|
||
|
/* first event is at time 0 */
|
||
|
t->pending = 1;
|
||
|
alarm_timer = t;
|
||
|
qemu_add_vm_change_state_handler(alarm_timer_on_change_state_rearm, t);
|
||
|
|
||
|
return 0;
|
||
|
|
||
|
fail:
|
||
|
return err;
|
||
|
}
|
||
|
|
||
|
void quit_timers(void)
|
||
|
{
|
||
|
struct qemu_alarm_timer *t = alarm_timer;
|
||
|
alarm_timer = NULL;
|
||
|
t->stop(t);
|
||
|
}
|
||
|
|
||
|
int qemu_calculate_timeout(void)
|
||
|
{
|
||
|
#ifndef CONFIG_IOTHREAD
|
||
|
int timeout;
|
||
|
|
||
|
if (!vm_running)
|
||
|
timeout = 5000;
|
||
|
else {
|
||
|
/* XXX: use timeout computed from timers */
|
||
|
int64_t add;
|
||
|
int64_t delta;
|
||
|
/* Advance virtual time to the next event. */
|
||
|
delta = qemu_icount_delta();
|
||
|
if (delta > 0) {
|
||
|
/* If virtual time is ahead of real time then just
|
||
|
wait for IO. */
|
||
|
timeout = (delta + 999999) / 1000000;
|
||
|
} else {
|
||
|
/* Wait for either IO to occur or the next
|
||
|
timer event. */
|
||
|
add = qemu_next_deadline();
|
||
|
/* We advance the timer before checking for IO.
|
||
|
Limit the amount we advance so that early IO
|
||
|
activity won't get the guest too far ahead. */
|
||
|
if (add > 10000000)
|
||
|
add = 10000000;
|
||
|
delta += add;
|
||
|
qemu_icount += qemu_icount_round (add);
|
||
|
timeout = delta / 1000000;
|
||
|
if (timeout < 0)
|
||
|
timeout = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return timeout;
|
||
|
#else /* CONFIG_IOTHREAD */
|
||
|
return 1000;
|
||
|
#endif
|
||
|
}
|
||
|
|