qemu/scripts/qapi/introspect.py

262 lines
8.9 KiB
Python
Raw Normal View History

"""
QAPI introspection generator
Copyright (C) 2015-2018 Red Hat, Inc.
Authors:
Markus Armbruster <armbru@redhat.com>
This work is licensed under the terms of the GNU GPL, version 2.
See the COPYING file in the top-level directory.
"""
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
from .common import (
c_name,
gen_endif,
gen_if,
mcgen,
)
qapi: Prefer explicit relative imports All of the QAPI include statements are changed to be package-aware, as explicit relative imports. A quirk of Python packages is that the name of the package exists only *outside* of the package. This means that to a module inside of the qapi folder, there is inherently no such thing as the "qapi" package. The reason these imports work is because the "qapi" package exists in the context of the caller -- the execution shim, where sys.path includes a directory that has a 'qapi' folder in it. When we write "from qapi import sibling", we are NOT referencing the folder 'qapi', but rather "any package named qapi in sys.path". If you should so happen to have a 'qapi' package in your path, it will use *that* package. When we write "from .sibling import foo", we always reference explicitly our sibling module; guaranteeing consistency in *where* we are importing these modules from. This can be useful when working with virtual environments and packages in development mode. In development mode, a package is installed as a series of symlinks that forwards to your same source files. The problem arises because code quality checkers will follow "import qapi.x" to the "installed" version instead of the sibling file and -- even though they are the same file -- they have different module paths, and this causes cyclic import problems, false positive type mismatch errors, and more. It can also be useful when dealing with hierarchical packages, e.g. if we allow qemu.core.qmp, qemu.qapi.parser, etc. Signed-off-by: John Snow <jsnow@redhat.com> Reviewed-by: Eduardo Habkost <ehabkost@redhat.com> Reviewed-by: Cleber Rosa <crosa@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20201009161558.107041-6-jsnow@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
2020-10-09 19:15:27 +03:00
from .gen import QAPISchemaMonolithicCVisitor
from .schema import (
QAPISchemaArrayType,
QAPISchemaBuiltinType,
QAPISchemaType,
)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def _make_tree(obj, ifcond, extra=None):
if extra is None:
extra = {}
if ifcond:
extra['if'] = ifcond
return (obj, extra)
def _tree_to_qlit(obj, level=0, dict_value=False):
def indent(level):
return level * 4 * ' '
if isinstance(obj, tuple):
qapi: Add comments to aid debugging generated introspection We consciously chose in commit 1a9a507b to hide QAPI type names from the introspection output on the wire, but added a command line option -u to unmask the type name when doing a debug build. The unmask option still remains useful to some other forms of automated analysis, so it will not be removed; however, when it is not in use, the generated .c file can be hard to read. At the time when we first introduced masking, the generated file consisted only of a monolithic C string, so there was no clean way to inject any comments. Later, in commit 7d0f982b, we switched the generation to output a QLit object, in part to make it easier for future addition of conditional compilation. In fact, commit d626b6c1 took advantage of this by passing a tuple instead of a bare object for encoding the output of conditionals. By extending that tuple, we can now interject strategic comments. For now, type name debug aid comments are only output once per meta-type, rather than at all uses of the number used to encode the type within the introspection data. But this is still a lot more convenient than having to regenerate the file with the unmask operation temporarily turned on - merely search the generated file for '"NNN" =' to learn the corresponding source name and associated definition of type NNN. The generated qapi-introspect.c changes only with the addition of comments, such as: | @@ -14755,6 +15240,7 @@ | { "name", QLIT_QSTR("[485]"), }, | {} | })), | + /* "485" = QCryptoBlockInfoLUKSSlot */ | QLIT_QDICT(((QLitDictEntry[]) { | { "members", QLIT_QLIST(((QLitObject[]) { | QLIT_QDICT(((QLitDictEntry[]) { Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <20180827213943.33524-3-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Rebased, update to qapi-code-gen.txt corrected] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2018-08-28 00:39:43 +03:00
ifobj, extra = obj
ifcond = extra.get('if')
comment = extra.get('comment')
# NB: _tree_to_qlit is called recursively on the values of a
# key:value pair; those values can't be decorated with
# comments or conditionals.
msg = "dict values cannot have attached comments or if-conditionals."
assert not dict_value, msg
qapi: Add comments to aid debugging generated introspection We consciously chose in commit 1a9a507b to hide QAPI type names from the introspection output on the wire, but added a command line option -u to unmask the type name when doing a debug build. The unmask option still remains useful to some other forms of automated analysis, so it will not be removed; however, when it is not in use, the generated .c file can be hard to read. At the time when we first introduced masking, the generated file consisted only of a monolithic C string, so there was no clean way to inject any comments. Later, in commit 7d0f982b, we switched the generation to output a QLit object, in part to make it easier for future addition of conditional compilation. In fact, commit d626b6c1 took advantage of this by passing a tuple instead of a bare object for encoding the output of conditionals. By extending that tuple, we can now interject strategic comments. For now, type name debug aid comments are only output once per meta-type, rather than at all uses of the number used to encode the type within the introspection data. But this is still a lot more convenient than having to regenerate the file with the unmask operation temporarily turned on - merely search the generated file for '"NNN" =' to learn the corresponding source name and associated definition of type NNN. The generated qapi-introspect.c changes only with the addition of comments, such as: | @@ -14755,6 +15240,7 @@ | { "name", QLIT_QSTR("[485]"), }, | {} | })), | + /* "485" = QCryptoBlockInfoLUKSSlot */ | QLIT_QDICT(((QLitDictEntry[]) { | { "members", QLIT_QLIST(((QLitObject[]) { | QLIT_QDICT(((QLitDictEntry[]) { Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <20180827213943.33524-3-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Rebased, update to qapi-code-gen.txt corrected] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2018-08-28 00:39:43 +03:00
ret = ''
if comment:
ret += indent(level) + '/* %s */\n' % comment
if ifcond:
ret += gen_if(ifcond)
ret += _tree_to_qlit(ifobj, level)
qapi: Add comments to aid debugging generated introspection We consciously chose in commit 1a9a507b to hide QAPI type names from the introspection output on the wire, but added a command line option -u to unmask the type name when doing a debug build. The unmask option still remains useful to some other forms of automated analysis, so it will not be removed; however, when it is not in use, the generated .c file can be hard to read. At the time when we first introduced masking, the generated file consisted only of a monolithic C string, so there was no clean way to inject any comments. Later, in commit 7d0f982b, we switched the generation to output a QLit object, in part to make it easier for future addition of conditional compilation. In fact, commit d626b6c1 took advantage of this by passing a tuple instead of a bare object for encoding the output of conditionals. By extending that tuple, we can now interject strategic comments. For now, type name debug aid comments are only output once per meta-type, rather than at all uses of the number used to encode the type within the introspection data. But this is still a lot more convenient than having to regenerate the file with the unmask operation temporarily turned on - merely search the generated file for '"NNN" =' to learn the corresponding source name and associated definition of type NNN. The generated qapi-introspect.c changes only with the addition of comments, such as: | @@ -14755,6 +15240,7 @@ | { "name", QLIT_QSTR("[485]"), }, | {} | })), | + /* "485" = QCryptoBlockInfoLUKSSlot */ | QLIT_QDICT(((QLitDictEntry[]) { | { "members", QLIT_QLIST(((QLitObject[]) { | QLIT_QDICT(((QLitDictEntry[]) { Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <20180827213943.33524-3-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Rebased, update to qapi-code-gen.txt corrected] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2018-08-28 00:39:43 +03:00
if ifcond:
ret += '\n' + gen_endif(ifcond)
return ret
ret = ''
if not dict_value:
ret += indent(level)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
if obj is None:
ret += 'QLIT_QNULL'
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
elif isinstance(obj, str):
ret += 'QLIT_QSTR(' + to_c_string(obj) + ')'
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
elif isinstance(obj, list):
elts = [_tree_to_qlit(elt, level + 1).strip('\n')
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
for elt in obj]
elts.append(indent(level + 1) + "{}")
ret += 'QLIT_QLIST(((QLitObject[]) {\n'
ret += '\n'.join(elts) + '\n'
ret += indent(level) + '}))'
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
elif isinstance(obj, dict):
elts = []
for key, value in sorted(obj.items()):
elts.append(indent(level + 1) + '{ %s, %s }' %
(to_c_string(key),
_tree_to_qlit(value, level + 1, True)))
elts.append(indent(level + 1) + '{}')
ret += 'QLIT_QDICT(((QLitDictEntry[]) {\n'
ret += ',\n'.join(elts) + '\n'
ret += indent(level) + '}))'
elif isinstance(obj, bool):
ret += 'QLIT_QBOOL(%s)' % ('true' if obj else 'false')
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
else:
assert False # not implemented
if level > 0:
ret += ','
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
return ret
def to_c_string(string):
return '"' + string.replace('\\', r'\\').replace('"', r'\"') + '"'
class QAPISchemaGenIntrospectVisitor(QAPISchemaMonolithicCVisitor):
def __init__(self, prefix, unmask):
super().__init__(
prefix, 'qapi-introspect',
' * QAPI/QMP schema introspection', __doc__)
self._unmask = unmask
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
self._schema = None
self._trees = []
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
self._used_types = []
self._name_map = {}
self._genc.add(mcgen('''
#include "qemu/osdep.h"
#include "%(prefix)sqapi-introspect.h"
''',
prefix=prefix))
def visit_begin(self, schema):
self._schema = schema
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_end(self):
# visit the types that are actually used
for typ in self._used_types:
typ.visit(self)
# generate C
name = c_name(self._prefix, protect=False) + 'qmp_schema_qlit'
self._genh.add(mcgen('''
#include "qapi/qmp/qlit.h"
extern const QLitObject %(c_name)s;
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
''',
c_name=c_name(name)))
self._genc.add(mcgen('''
const QLitObject %(c_name)s = %(c_string)s;
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
''',
c_name=c_name(name),
c_string=_tree_to_qlit(self._trees)))
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
self._schema = None
self._trees = []
self._used_types = []
self._name_map = {}
def visit_needed(self, entity):
# Ignore types on first pass; visit_end() will pick up used types
return not isinstance(entity, QAPISchemaType)
def _name(self, name):
if self._unmask:
return name
if name not in self._name_map:
self._name_map[name] = '%d' % len(self._name_map)
return self._name_map[name]
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def _use_type(self, typ):
assert self._schema is not None
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
# Map the various integer types to plain int
if typ.json_type() == 'int':
typ = self._schema.lookup_type('int')
elif (isinstance(typ, QAPISchemaArrayType) and
typ.element_type.json_type() == 'int'):
typ = self._schema.lookup_type('intList')
# Add type to work queue if new
if typ not in self._used_types:
self._used_types.append(typ)
# Clients should examine commands and events, not types. Hide
# type names as integers to reduce the temptation. Also, it
# saves a few characters on the wire.
if isinstance(typ, QAPISchemaBuiltinType):
return typ.name
if isinstance(typ, QAPISchemaArrayType):
return '[' + self._use_type(typ.element_type) + ']'
return self._name(typ.name)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
@staticmethod
def _gen_features(features):
return [_make_tree(f.name, f.ifcond) for f in features]
def _gen_tree(self, name, mtype, obj, ifcond, features):
extra = None
if mtype not in ('command', 'event', 'builtin', 'array'):
qapi: Add comments to aid debugging generated introspection We consciously chose in commit 1a9a507b to hide QAPI type names from the introspection output on the wire, but added a command line option -u to unmask the type name when doing a debug build. The unmask option still remains useful to some other forms of automated analysis, so it will not be removed; however, when it is not in use, the generated .c file can be hard to read. At the time when we first introduced masking, the generated file consisted only of a monolithic C string, so there was no clean way to inject any comments. Later, in commit 7d0f982b, we switched the generation to output a QLit object, in part to make it easier for future addition of conditional compilation. In fact, commit d626b6c1 took advantage of this by passing a tuple instead of a bare object for encoding the output of conditionals. By extending that tuple, we can now interject strategic comments. For now, type name debug aid comments are only output once per meta-type, rather than at all uses of the number used to encode the type within the introspection data. But this is still a lot more convenient than having to regenerate the file with the unmask operation temporarily turned on - merely search the generated file for '"NNN" =' to learn the corresponding source name and associated definition of type NNN. The generated qapi-introspect.c changes only with the addition of comments, such as: | @@ -14755,6 +15240,7 @@ | { "name", QLIT_QSTR("[485]"), }, | {} | })), | + /* "485" = QCryptoBlockInfoLUKSSlot */ | QLIT_QDICT(((QLitDictEntry[]) { | { "members", QLIT_QLIST(((QLitObject[]) { | QLIT_QDICT(((QLitDictEntry[]) { Signed-off-by: Eric Blake <eblake@redhat.com> Message-Id: <20180827213943.33524-3-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> [Rebased, update to qapi-code-gen.txt corrected] Signed-off-by: Markus Armbruster <armbru@redhat.com>
2018-08-28 00:39:43 +03:00
if not self._unmask:
# Output a comment to make it easy to map masked names
# back to the source when reading the generated output.
extra = {'comment': '"%s" = %s' % (self._name(name), name)}
name = self._name(name)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
obj['name'] = name
obj['meta-type'] = mtype
if features:
obj['features'] = self._gen_features(features)
self._trees.append(_make_tree(obj, ifcond, extra))
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def _gen_member(self, member):
obj = {'name': member.name, 'type': self._use_type(member.type)}
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
if member.optional:
obj['default'] = None
if member.features:
obj['features'] = self._gen_features(member.features)
return _make_tree(obj, member.ifcond)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def _gen_variants(self, tag_name, variants):
return {'tag': tag_name,
'variants': [self._gen_variant(v) for v in variants]}
def _gen_variant(self, variant):
obj = {'case': variant.name, 'type': self._use_type(variant.type)}
return _make_tree(obj, variant.ifcond)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_builtin_type(self, name, info, json_type):
self._gen_tree(name, 'builtin', {'json-type': json_type}, [], None)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_enum_type(self, name, info, ifcond, features, members, prefix):
self._gen_tree(name, 'enum',
{'values': [_make_tree(m.name, m.ifcond, None)
for m in members]},
ifcond, features)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_array_type(self, name, info, ifcond, element_type):
element = self._use_type(element_type)
self._gen_tree('[' + element + ']', 'array', {'element-type': element},
ifcond, None)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_object_type_flat(self, name, info, ifcond, features,
members, variants):
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
obj = {'members': [self._gen_member(m) for m in members]}
if variants:
obj.update(self._gen_variants(variants.tag_member.name,
variants.variants))
self._gen_tree(name, 'object', obj, ifcond, features)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_alternate_type(self, name, info, ifcond, features, variants):
self._gen_tree(name, 'alternate',
{'members': [
_make_tree({'type': self._use_type(m.type)},
m.ifcond, None)
for m in variants.variants]},
ifcond, features)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def visit_command(self, name, info, ifcond, features,
arg_type, ret_type, gen, success_response, boxed,
allow_oob, allow_preconfig, coroutine):
assert self._schema is not None
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
arg_type = arg_type or self._schema.the_empty_object_type
ret_type = ret_type or self._schema.the_empty_object_type
obj = {'arg-type': self._use_type(arg_type),
'ret-type': self._use_type(ret_type)}
if allow_oob:
obj['allow-oob'] = allow_oob
self._gen_tree(name, 'command', obj, ifcond, features)
def visit_event(self, name, info, ifcond, features, arg_type, boxed):
assert self._schema is not None
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
arg_type = arg_type or self._schema.the_empty_object_type
self._gen_tree(name, 'event', {'arg-type': self._use_type(arg_type)},
ifcond, features)
qapi: New QMP command query-qmp-schema for QMP introspection qapi/introspect.json defines the introspection schema. It's designed for QMP introspection, but should do for similar uses, such as QGA. The introspection schema does not reflect all the rules and restrictions that apply to QAPI schemata. A valid QAPI schema has an introspection value conforming to the introspection schema, but the converse is not true. Introspection lowers away a number of schema details, and makes implicit things explicit: * The built-in types are declared with their JSON type. All integer types are mapped to 'int', because how many bits we use internally is an implementation detail. It could be pressed into external interface service as very approximate range information, but that's a bad idea. If we need range information, we better do it properly. * Implicit type definitions are made explicit, and given auto-generated names: - Array types, named by appending "List" to the name of their element type, like in generated C. - The enumeration types implicitly defined by simple union types, named by appending "Kind" to the name of their simple union type, like in generated C. - Types that don't occur in generated C. Their names start with ':' so they don't clash with the user's names. * All type references are by name. * The struct and union types are generalized into an object type. * Base types are flattened. * Commands take a single argument and return a single result. Dictionary argument or list result is an implicit type definition. The empty object type is used when a command takes no arguments or produces no results. The argument is always of object type, but the introspection schema doesn't reflect that. The 'gen': false directive is omitted as implementation detail. The 'success-response' directive is omitted as well for now, even though it's not an implementation detail, because it's not used by QMP. * Events carry a single data value. Implicit type definition and empty object type use, just like for commands. The value is of object type, but the introspection schema doesn't reflect that. * Types not used by commands or events are omitted. Indirect use counts as use. * Optional members have a default, which can only be null right now Instead of a mandatory "optional" flag, we have an optional default. No default means mandatory, default null means optional without default value. Non-null is available for optional with default (possible future extension). * Clients should *not* look up types by name, because type names are not ABI. Look up the command or event you're interested in, then follow the references. TODO Should we hide the type names to eliminate the temptation? New generator scripts/qapi-introspect.py computes an introspection value for its input, and generates a C variable holding it. It can generate awfully long lines. Marked TODO. A new test-qmp-input-visitor test case feeds its result for both tests/qapi-schema/qapi-schema-test.json and qapi-schema.json to a QmpInputVisitor to verify it actually conforms to the schema. New QMP command query-qmp-schema takes its return value from that variable. Its reply is some 85KiBytes for me right now. If this turns out to be too much, we have a couple of options: * We can use shorter names in the JSON. Not the QMP style. * Optionally return the sub-schema for commands and events given as arguments. Right now qmp_query_schema() sends the string literal computed by qmp-introspect.py. To compute sub-schema at run time, we'd have to duplicate parts of qapi-introspect.py in C. Unattractive. * Let clients cache the output of query-qmp-schema. It changes only on QEMU upgrades, i.e. rarely. Provide a command query-qmp-schema-hash. Clients can have a cache indexed by hash, and re-query the schema only when they don't have it cached. Even simpler: put the hash in the QMP greeting. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com>
2015-09-16 14:06:28 +03:00
def gen_introspect(schema, output_dir, prefix, opt_unmask):
vis = QAPISchemaGenIntrospectVisitor(prefix, opt_unmask)
schema.visit(vis)
vis.write(output_dir)