qemu/hw/m68k/next-cube.c

986 lines
27 KiB
C
Raw Normal View History

/*
* NeXT Cube System Driver
*
* Copyright (c) 2011 Bryce Lanham
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/hwaddr.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "qom/object.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"
/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
#define ENTRY 0x0100001e
#define RAM_SIZE 0x4000000
#define ROM_FILE "Rev_2.5_v66.bin"
typedef struct next_dma {
uint32_t csr;
uint32_t saved_next;
uint32_t saved_limit;
uint32_t saved_start;
uint32_t saved_stop;
uint32_t next;
uint32_t limit;
uint32_t start;
uint32_t stop;
uint32_t next_initbuf;
uint32_t size;
} next_dma;
typedef struct NextRtc {
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
} NextRtc;
struct NeXTState {
MachineState parent;
uint32_t int_mask;
uint32_t int_status;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
next_dma dma[10];
qemu_irq *scsi_irq;
qemu_irq scsi_dma;
qemu_irq scsi_reset;
qemu_irq *fd_irq;
uint32_t scr1;
uint32_t scr2;
NextRtc rtc;
};
/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};
#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void nextscr2_write(NeXTState *s, uint32_t val, int size)
{
static int led;
static int phase;
static uint8_t old_scr2;
uint8_t scr2_2;
NextRtc *rtc = &s->rtc;
if (size == 4) {
scr2_2 = (val >> 8) & 0xFF;
} else {
scr2_2 = val & 0xFF;
}
if (val & 0x1) {
DPRINTF("fault!\n");
led++;
if (led == 10) {
DPRINTF("LED flashing, possible fault!\n");
led = 0;
}
}
if (scr2_2 & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
if (phase == -1) {
phase = 0;
}
/* If we are in going down clock... do something */
if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
((scr2_2 & SCR2_RTCLK) == 0)) {
if (phase < 8) {
rtc->command = (rtc->command << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if (phase >= 8 && phase < 16) {
rtc->value = (rtc->value << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
/* if we read RAM register, output RT_DATA bit */
if (rtc->command <= 0x1F) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x30 */
if (rtc->command == 0x30) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now status = 0x98 (new rtc + FTU) */
if (rtc->status & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x31 */
if (rtc->command == 0x31) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->control & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now 0x00 */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
int ret = 0;
switch (rtc->command) {
case 0x20:
ret = SCR2_TOBCD(info->tm_sec);
break;
case 0x21:
ret = SCR2_TOBCD(info->tm_min);
break;
case 0x22:
ret = SCR2_TOBCD(info->tm_hour);
break;
case 0x24:
ret = SCR2_TOBCD(info->tm_mday);
break;
case 0x25:
ret = SCR2_TOBCD((info->tm_mon + 1));
break;
case 0x26:
ret = SCR2_TOBCD((info->tm_year - 100));
break;
}
if (ret & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
}
phase++;
if (phase == 16) {
if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
rtc->ram[rtc->command - 0x80] = rtc->value;
}
/* write to x30 register */
if (rtc->command == 0xB1) {
/* clear FTU */
if (rtc->value & 0x04) {
rtc->status = rtc->status & (~0x18);
s->int_status = s->int_status & (~0x04);
}
}
}
}
} else {
/* else end or abort */
phase = -1;
rtc->command = 0;
rtc->value = 0;
}
s->scr2 = val & 0xFFFF00FF;
s->scr2 |= scr2_2 << 8;
old_scr2 = scr2_2;
}
static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0xc000:
return (s->scr1 >> 24) & 0xFF;
case 0xc001:
return (s->scr1 >> 16) & 0xFF;
case 0xc002:
return (s->scr1 >> 8) & 0xFF;
case 0xc003:
return (s->scr1 >> 0) & 0xFF;
case 0xd000:
return (s->scr2 >> 24) & 0xFF;
case 0xd001:
return (s->scr2 >> 16) & 0xFF;
case 0xd002:
return (s->scr2 >> 8) & 0xFF;
case 0xd003:
return (s->scr2 >> 0) & 0xFF;
case 0x14020:
DPRINTF("MMIO Read 0x4020\n");
return 0x7f;
default:
DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
{
switch (addr) {
default:
DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0x7000:
/* DPRINTF("Read INT status: %x\n", s->int_status); */
return s->int_status;
case 0x7800:
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
return s->int_mask;
case 0xc000:
return s->scr1;
case 0xd000:
return s->scr2;
default:
DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0xd003:
nextscr2_write(s, val, 1);
break;
default:
DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
}
}
static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
{
DPRINTF("MMIO Write W\n");
}
static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0x7000:
DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
s->int_status = val;
break;
case 0x7800:
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
s->int_mask = val;
break;
case 0xc000:
DPRINTF("SCR1 Write: %x\n", val);
break;
case 0xd000:
nextscr2_write(s, val, 4);
break;
default:
DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
}
}
static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
return mmio_readb(ns, addr);
case 2:
return mmio_readw(ns, addr);
case 4:
return mmio_readl(ns, addr);
default:
g_assert_not_reached();
}
}
static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
mmio_writeb(ns, addr, value);
break;
case 2:
mmio_writew(ns, addr, value);
break;
case 4:
mmio_writel(ns, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps mmio_ops = {
.read = mmio_readfn,
.write = mmio_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint32_t scr_readb(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0x14108:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
return 0x40 | 0x04 | 0x2 | 0x1;
case 0x14020:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
return s->scsi_csr_1;
case 0x14021:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
return 0x40;
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far
*/
case 0x1a000:
return 0xff & (clock() >> 24);
case 0x1a001:
return 0xff & (clock() >> 16);
case 0x1a002:
return 0xff & (clock() >> 8);
case 0x1a003:
/* Hack: We need to have this change consistently to make it work */
return 0xFF & clock();
default:
DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
return 0;
}
}
static uint32_t scr_readw(NeXTState *s, hwaddr addr)
{
DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
return 0;
}
static uint32_t scr_readl(NeXTState *s, hwaddr addr)
{
DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
return 0;
}
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
#define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
{
switch (addr) {
case 0x14108:
DPRINTF("FDCSR Write: %x\n", value);
if (value == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
case 0x14020: /* SCSI Control Register */
if (value & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
/* qemu_irq_pulse(s->scsi_dma); */
}
if (value & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
* s->scsi_csr_1 = 0xc0;
* s->scsi_csr_1 |= 0x1;
* qemu_irq_pulse(s->scsi_dma);
*/
}
/*
* else
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (value & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
/* qemu_irq_raise(s->scsi_reset); */
/* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */
}
if (value & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (value & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
s->int_status |= 0x4000000;
} else {
s->int_status &= ~(0x4000000);
}
if (value & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= value;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
* next_irq(s, NEXT_SCSI_I, level);
* }
*/
} else {
/* int_mask |= 0x1000; */
}
if (value & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR Write: %x\n", value);
/* s->scsi_csr_1 = value; */
return;
/* Hardware timer latch - not implemented yet */
case 0x1a000:
default:
DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
}
}
static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
}
static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
}
static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
return scr_readb(ns, addr);
case 2:
return scr_readw(ns, addr);
case 4:
return scr_readl(ns, addr);
default:
g_assert_not_reached();
}
}
static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
scr_writeb(ns, addr, value);
break;
case 2:
scr_writew(ns, addr, value);
break;
case 4:
scr_writel(ns, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps scr_ops = {
.read = scr_readfn,
.write = scr_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
#define NEXTDMA_SCSI(x) (0x10 + x)
#define NEXTDMA_FD(x) (0x10 + x)
#define NEXTDMA_ENTX(x) (0x110 + x)
#define NEXTDMA_ENRX(x) (0x150 + x)
#define NEXTDMA_CSR 0x0
#define NEXTDMA_NEXT 0x4000
#define NEXTDMA_LIMIT 0x4004
#define NEXTDMA_START 0x4008
#define NEXTDMA_STOP 0x400c
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = value;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = value;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = value;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = value;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = value;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = value;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
break;
default:
DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
}
}
static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
return next_state->dma[NEXTDMA_SCSI].csr;
case NEXTDMA_ENRX(NEXTDMA_CSR):
return next_state->dma[NEXTDMA_ENRX].csr;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_ENRX].next_initbuf;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_ENRX].next;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_ENRX].limit;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_SCSI].next;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_SCSI].next_initbuf;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_SCSI].limit;
case NEXTDMA_SCSI(NEXTDMA_START):
return next_state->dma[NEXTDMA_SCSI].start;
case NEXTDMA_SCSI(NEXTDMA_STOP):
return next_state->dma[NEXTDMA_SCSI].stop;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
return 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
}
static const MemoryRegionOps dma_ops = {
.read = dma_readl,
.write = dma_writel,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* TODO: set the shift numbers as values in the enum, so the first switch
* will not be needed
*/
void next_irq(void *opaque, int number, int level)
{
M68kCPU *cpu = opaque;
int shift = 0;
NeXTState *ns = NEXT_MACHINE(qdev_get_machine());
/* first switch sets interupt status */
/* DPRINTF("IRQ %i\n",number); */
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
shift = 7;
break;
case NEXT_KBD_I:
shift = 3;
break;
case NEXT_PWR_I:
shift = 2;
break;
case NEXT_ENRX_I:
shift = 9;
break;
case NEXT_ENTX_I:
shift = 10;
break;
case NEXT_SCSI_I:
shift = 12;
break;
case NEXT_CLK_I:
shift = 5;
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
shift = 17;
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
shift = 28;
break;
case NEXT_ENRX_DMA_I:
shift = 27;
break;
case NEXT_SCSI_DMA_I:
shift = 26;
break;
case NEXT_SND_I:
shift = 23;
break;
case NEXT_SCC_DMA_I:
shift = 21;
break;
}
/*
* this HAS to be wrong, the interrupt handlers in mach and together
* int_status and int_mask and return if there is a hit
*/
if (ns->int_mask & (1 << shift)) {
DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
/* return; */
}
/* second switch triggers the correct interrupt */
if (level) {
ns->int_status |= 1 << shift;
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
case NEXT_KBD_I:
case NEXT_PWR_I:
case NEXT_ENRX_I:
case NEXT_ENTX_I:
case NEXT_SCSI_I:
case NEXT_CLK_I:
m68k_set_irq_level(cpu, 3, 27);
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
m68k_set_irq_level(cpu, 5, 29);
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
case NEXT_ENRX_DMA_I:
case NEXT_SCSI_DMA_I:
case NEXT_SND_I:
case NEXT_SCC_DMA_I:
m68k_set_irq_level(cpu, 6, 30);
break;
}
} else {
ns->int_status &= ~(1 << shift);
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
}
static void next_serial_irq(void *opaque, int n, int level)
{
/* DPRINTF("SCC IRQ NUM %i\n",n); */
if (n) {
next_irq(opaque, NEXT_SCC_DMA_I, level);
} else {
next_irq(opaque, NEXT_SCC_I, level);
}
}
static void next_escc_init(M68kCPU *cpu)
{
qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, cpu, 2);
DeviceState *dev;
SysBusDevice *s;
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
qdev_prop_set_uint32(dev, "it_shift", 0);
qdev_prop_set_bit(dev, "bit_swap", true);
qdev_prop_set_chr(dev, "chrB", serial_hd(1));
qdev_prop_set_chr(dev, "chrA", serial_hd(0));
qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, ser_irq[0]);
sysbus_connect_irq(s, 1, ser_irq[1]);
sysbus_mmio_map(s, 0, 0x2118000);
}
static void next_cube_init(MachineState *machine)
{
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *rom = g_new(MemoryRegion, 1);
MemoryRegion *mmiomem = g_new(MemoryRegion, 1);
MemoryRegion *scrmem = g_new(MemoryRegion, 1);
MemoryRegion *dmamem = g_new(MemoryRegion, 1);
MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
MemoryRegion *sysmem = get_system_memory();
NeXTState *ns = NEXT_MACHINE(machine);
DeviceState *dev;
/* Initialize the cpu core */
cpu = M68K_CPU(cpu_create(machine->cpu_type));
if (!cpu) {
error_report("Unable to find m68k CPU definition");
exit(1);
}
env = &cpu->env;
/* Initialize CPU registers. */
env->vbr = 0;
env->sr = 0x2700;
/* Set internal registers to initial values */
/* 0x0000XX00 << vital bits */
ns->scr1 = 0x00011102;
ns->scr2 = 0x00ff0c80;
ns->rtc.status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(ns->rtc.ram, rtc_ram2, 32);
/* 64MB RAM starting at 0x04000000 */
memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
/* Framebuffer */
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_NEXTFB);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);
/* MMIO */
memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio",
0xD0000);
memory_region_add_subregion(sysmem, 0x02000000, mmiomem);
/* BMAP memory */
memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
true, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
/* BMAP IO - acts as a catch-all for now */
memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr",
0x20000);
memory_region_add_subregion(sysmem, 0x02100000, scrmem);
/* KBD */
qdev: Convert uses of qdev_create() with Coccinelle This is the transformation explained in the commit before previous. Takes care of just one pattern that needs conversion. More to come in this series. Coccinelle script: @ depends on !(file in "hw/arm/highbank.c")@ expression bus, type_name, dev, expr; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr; identifier DOWN; @@ - dev = DOWN(qdev_create(bus, type_name)); + dev = DOWN(qdev_new(type_name)); ... when != dev = expr - qdev_init_nofail(DEVICE(dev)); + qdev_realize_and_unref(DEVICE(dev), bus, &error_fatal); @@ expression bus, type_name, expr; identifier dev; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - qdev_init_nofail(dev); + qdev_realize_and_unref(dev, bus, &error_fatal); @@ expression bus, type_name, dev, expr, errp; symbol true; @@ - dev = qdev_create(bus, type_name); + dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); @@ expression bus, type_name, expr, errp; identifier dev; symbol true; @@ - DeviceState *dev = qdev_create(bus, type_name); + DeviceState *dev = qdev_new(type_name); ... when != dev = expr - object_property_set_bool(OBJECT(dev), true, "realized", errp); + qdev_realize_and_unref(dev, bus, errp); The first rule exempts hw/arm/highbank.c, because it matches along two control flow paths there, with different @type_name. Covered by the next commit's manual conversions. Missing #include "qapi/error.h" added manually. Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200610053247.1583243-10-armbru@redhat.com> [Conflicts in hw/misc/empty_slot.c and hw/sparc/leon3.c resolved]
2020-06-10 08:31:58 +03:00
dev = qdev_new(TYPE_NEXTKBD);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);
/* Load ROM here */
if (bios_name == NULL) {
bios_name = ROM_FILE;
}
/* still not sure if the rom should also be mapped at 0x0*/
memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, rom);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
} else {
uint8_t *ptr;
/* Initial PC is always at offset 4 in firmware binaries */
ptr = rom_ptr(0x01000004, 4);
g_assert(ptr != NULL);
env->pc = ldl_p(ptr);
if (env->pc >= 0x01020000) {
error_report("'%s' does not seem to be a valid firmware image.",
bios_name);
exit(1);
}
}
/* Serial */
next_escc_init(cpu);
/* TODO: */
/* Network */
/* SCSI */
/* DMA */
memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "NeXT Cube";
mc->init = next_cube_init;
mc->default_ram_size = RAM_SIZE;
mc->default_ram_id = "next.ram";
mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
}
static const TypeInfo next_typeinfo = {
.name = TYPE_NEXT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = next_machine_class_init,
.instance_size = sizeof(NeXTState),
};
static void next_register_type(void)
{
type_register_static(&next_typeinfo);
}
type_init(next_register_type)