qemu/target-i386/monitor.c

495 lines
18 KiB
C
Raw Normal View History

/*
* QEMU monitor
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "cpu.h"
#include "monitor/monitor.h"
#include "monitor/hmp-target.h"
#include "hmp.h"
static void print_pte(Monitor *mon, hwaddr addr,
hwaddr pte,
hwaddr mask)
{
#ifdef TARGET_X86_64
if (addr & (1ULL << 47)) {
addr |= -1LL << 48;
}
#endif
monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx
" %c%c%c%c%c%c%c%c%c\n",
addr,
pte & mask,
pte & PG_NX_MASK ? 'X' : '-',
pte & PG_GLOBAL_MASK ? 'G' : '-',
pte & PG_PSE_MASK ? 'P' : '-',
pte & PG_DIRTY_MASK ? 'D' : '-',
pte & PG_ACCESSED_MASK ? 'A' : '-',
pte & PG_PCD_MASK ? 'C' : '-',
pte & PG_PWT_MASK ? 'T' : '-',
pte & PG_USER_MASK ? 'U' : '-',
pte & PG_RW_MASK ? 'W' : '-');
}
static void tlb_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
uint32_t pgd, pde, pte;
pgd = env->cr[3] & ~0xfff;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
/* 4M pages */
print_pte(mon, (l1 << 22), pde, ~((1 << 21) - 1));
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 22) + (l2 << 12),
pte & ~PG_PSE_MASK,
~0xfff);
}
}
}
}
}
}
static void tlb_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
pdp_addr = env->cr[3] & ~0x1f;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages with PAE, CR4.PSE is ignored */
print_pte(mon, (l1 << 30 ) + (l2 << 21), pde,
~((hwaddr)(1 << 20) - 1));
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 30 ) + (l2 << 21)
+ (l3 << 12),
pte & ~PG_PSE_MASK,
~(hwaddr)0xfff);
}
}
}
}
}
}
}
}
#ifdef TARGET_X86_64
static void tlb_info_64(Monitor *mon, CPUArchState *env)
{
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
/* 1G pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30), pdpe,
0x3ffffc0000000ULL);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
/* 2M pages, CR4.PSE is ignored */
print_pte(mon, (l1 << 39) + (l2 << 30) +
(l3 << 21), pde,
0x3ffffffe00000ULL);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
if (pte & PG_PRESENT_MASK) {
print_pte(mon, (l1 << 39) +
(l2 << 30) +
(l3 << 21) + (l4 << 12),
pte & ~PG_PSE_MASK,
0x3fffffffff000ULL);
}
}
}
}
}
}
}
}
}
}
}
#endif /* TARGET_X86_64 */
void hmp_info_tlb(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu_env();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
tlb_info_64(mon, env);
} else
#endif
{
tlb_info_pae32(mon, env);
}
} else {
tlb_info_32(mon, env);
}
}
static void mem_print(Monitor *mon, hwaddr *pstart,
int *plast_prot,
hwaddr end, int prot)
{
int prot1;
prot1 = *plast_prot;
if (prot != prot1) {
if (*pstart != -1) {
monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " "
TARGET_FMT_plx " %c%c%c\n",
*pstart, end, end - *pstart,
prot1 & PG_USER_MASK ? 'u' : '-',
'r',
prot1 & PG_RW_MASK ? 'w' : '-');
}
if (prot != 0)
*pstart = end;
else
*pstart = -1;
*plast_prot = prot;
}
}
static void mem_info_32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2;
int prot, last_prot;
uint32_t pgd, pde, pte;
hwaddr start, end;
pgd = env->cr[3] & ~0xfff;
last_prot = 0;
start = -1;
for(l1 = 0; l1 < 1024; l1++) {
cpu_physical_memory_read(pgd + l1 * 4, &pde, 4);
pde = le32_to_cpu(pde);
end = l1 << 22;
if (pde & PG_PRESENT_MASK) {
if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) {
prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
for(l2 = 0; l2 < 1024; l2++) {
cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4);
pte = le32_to_cpu(pte);
end = (l1 << 22) + (l2 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde &
(PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
}
static void mem_info_pae32(Monitor *mon, CPUArchState *env)
{
unsigned int l1, l2, l3;
int prot, last_prot;
uint64_t pdpe, pde, pte;
uint64_t pdp_addr, pd_addr, pt_addr;
hwaddr start, end;
pdp_addr = env->cr[3] & ~0x1f;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 4; l1++) {
cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = l1 << 30;
if (pdpe & PG_PRESENT_MASK) {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 30) + (l2 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 30) + (l2 << 21) + (l3 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 32, 0);
}
#ifdef TARGET_X86_64
static void mem_info_64(Monitor *mon, CPUArchState *env)
{
int prot, last_prot;
uint64_t l1, l2, l3, l4;
uint64_t pml4e, pdpe, pde, pte;
uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end;
pml4_addr = env->cr[3] & 0x3fffffffff000ULL;
last_prot = 0;
start = -1;
for (l1 = 0; l1 < 512; l1++) {
cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8);
pml4e = le64_to_cpu(pml4e);
end = l1 << 39;
if (pml4e & PG_PRESENT_MASK) {
pdp_addr = pml4e & 0x3fffffffff000ULL;
for (l2 = 0; l2 < 512; l2++) {
cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8);
pdpe = le64_to_cpu(pdpe);
end = (l1 << 39) + (l2 << 30);
if (pdpe & PG_PRESENT_MASK) {
if (pdpe & PG_PSE_MASK) {
prot = pdpe & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pd_addr = pdpe & 0x3fffffffff000ULL;
for (l3 = 0; l3 < 512; l3++) {
cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8);
pde = le64_to_cpu(pde);
end = (l1 << 39) + (l2 << 30) + (l3 << 21);
if (pde & PG_PRESENT_MASK) {
if (pde & PG_PSE_MASK) {
prot = pde & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe;
mem_print(mon, &start, &last_prot, end, prot);
} else {
pt_addr = pde & 0x3fffffffff000ULL;
for (l4 = 0; l4 < 512; l4++) {
cpu_physical_memory_read(pt_addr
+ l4 * 8,
&pte, 8);
pte = le64_to_cpu(pte);
end = (l1 << 39) + (l2 << 30) +
(l3 << 21) + (l4 << 12);
if (pte & PG_PRESENT_MASK) {
prot = pte & (PG_USER_MASK | PG_RW_MASK |
PG_PRESENT_MASK);
prot &= pml4e & pdpe & pde;
} else {
prot = 0;
}
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
} else {
prot = 0;
mem_print(mon, &start, &last_prot, end, prot);
}
}
/* Flush last range */
mem_print(mon, &start, &last_prot, (hwaddr)1 << 48, 0);
}
#endif /* TARGET_X86_64 */
void hmp_info_mem(Monitor *mon, const QDict *qdict)
{
CPUArchState *env;
env = mon_get_cpu_env();
if (!(env->cr[0] & CR0_PG_MASK)) {
monitor_printf(mon, "PG disabled\n");
return;
}
if (env->cr[4] & CR4_PAE_MASK) {
#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
mem_info_64(mon, env);
} else
#endif
{
mem_info_pae32(mon, env);
}
} else {
mem_info_32(mon, env);
}
}
void hmp_mce(Monitor *mon, const QDict *qdict)
{
X86CPU *cpu;
CPUState *cs;
int cpu_index = qdict_get_int(qdict, "cpu_index");
int bank = qdict_get_int(qdict, "bank");
uint64_t status = qdict_get_int(qdict, "status");
uint64_t mcg_status = qdict_get_int(qdict, "mcg_status");
uint64_t addr = qdict_get_int(qdict, "addr");
uint64_t misc = qdict_get_int(qdict, "misc");
int flags = MCE_INJECT_UNCOND_AO;
if (qdict_get_try_bool(qdict, "broadcast", false)) {
flags |= MCE_INJECT_BROADCAST;
}
cs = qemu_get_cpu(cpu_index);
if (cs != NULL) {
cpu = X86_CPU(cs);
cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc,
flags);
}
}
static target_long monitor_get_pc(const struct MonitorDef *md, int val)
{
CPUArchState *env = mon_get_cpu_env();
return env->eip + env->segs[R_CS].base;
}
const MonitorDef monitor_defs[] = {
#define SEG(name, seg) \
{ name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\
{ name ".base", offsetof(CPUX86State, segs[seg].base) },\
{ name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 },
{ "eax", offsetof(CPUX86State, regs[0]) },
{ "ecx", offsetof(CPUX86State, regs[1]) },
{ "edx", offsetof(CPUX86State, regs[2]) },
{ "ebx", offsetof(CPUX86State, regs[3]) },
{ "esp|sp", offsetof(CPUX86State, regs[4]) },
{ "ebp|fp", offsetof(CPUX86State, regs[5]) },
{ "esi", offsetof(CPUX86State, regs[6]) },
{ "edi", offsetof(CPUX86State, regs[7]) },
#ifdef TARGET_X86_64
{ "r8", offsetof(CPUX86State, regs[8]) },
{ "r9", offsetof(CPUX86State, regs[9]) },
{ "r10", offsetof(CPUX86State, regs[10]) },
{ "r11", offsetof(CPUX86State, regs[11]) },
{ "r12", offsetof(CPUX86State, regs[12]) },
{ "r13", offsetof(CPUX86State, regs[13]) },
{ "r14", offsetof(CPUX86State, regs[14]) },
{ "r15", offsetof(CPUX86State, regs[15]) },
#endif
{ "eflags", offsetof(CPUX86State, eflags) },
{ "eip", offsetof(CPUX86State, eip) },
SEG("cs", R_CS)
SEG("ds", R_DS)
SEG("es", R_ES)
SEG("ss", R_SS)
SEG("fs", R_FS)
SEG("gs", R_GS)
{ "pc", 0, monitor_get_pc, },
{ NULL },
};
const MonitorDef *target_monitor_defs(void)
{
return monitor_defs;
}