qemu/hw/mac_dbdma.c

878 lines
22 KiB
C
Raw Normal View History

/*
* PowerMac descriptor-based DMA emulation
*
* Copyright (c) 2005-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2009 Laurent Vivier
*
* some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
*
* Definitions for using the Apple Descriptor-Based DMA controller
* in Power Macintosh computers.
*
* Copyright (C) 1996 Paul Mackerras.
*
* some parts from mol 0.9.71
*
* Descriptor based DMA emulation
*
* Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "isa.h"
#include "mac_dbdma.h"
/* debug DBDMA */
//#define DEBUG_DBDMA
#ifdef DEBUG_DBDMA
#define DBDMA_DPRINTF(fmt, args...) \
do { printf("DBDMA: " fmt , ##args); } while (0)
#else
#define DBDMA_DPRINTF(fmt, args...)
#endif
/*
*/
/*
* DBDMA control/status registers. All little-endian.
*/
#define DBDMA_CONTROL 0x00
#define DBDMA_STATUS 0x01
#define DBDMA_CMDPTR_HI 0x02
#define DBDMA_CMDPTR_LO 0x03
#define DBDMA_INTR_SEL 0x04
#define DBDMA_BRANCH_SEL 0x05
#define DBDMA_WAIT_SEL 0x06
#define DBDMA_XFER_MODE 0x07
#define DBDMA_DATA2PTR_HI 0x08
#define DBDMA_DATA2PTR_LO 0x09
#define DBDMA_RES1 0x0A
#define DBDMA_ADDRESS_HI 0x0B
#define DBDMA_BRANCH_ADDR_HI 0x0C
#define DBDMA_RES2 0x0D
#define DBDMA_RES3 0x0E
#define DBDMA_RES4 0x0F
#define DBDMA_REGS 16
#define DBDMA_SIZE (DBDMA_REGS * sizeof(uint32_t))
#define DBDMA_CHANNEL_SHIFT 7
#define DBDMA_CHANNEL_SIZE (1 << DBDMA_CHANNEL_SHIFT)
#define DBDMA_CHANNELS (0x1000 >> DBDMA_CHANNEL_SHIFT)
/* Bits in control and status registers */
#define RUN 0x8000
#define PAUSE 0x4000
#define FLUSH 0x2000
#define WAKE 0x1000
#define DEAD 0x0800
#define ACTIVE 0x0400
#define BT 0x0100
#define DEVSTAT 0x00ff
/*
* DBDMA command structure. These fields are all little-endian!
*/
typedef struct dbdma_cmd {
uint16_t req_count; /* requested byte transfer count */
uint16_t command; /* command word (has bit-fields) */
uint32_t phy_addr; /* physical data address */
uint32_t cmd_dep; /* command-dependent field */
uint16_t res_count; /* residual count after completion */
uint16_t xfer_status; /* transfer status */
} dbdma_cmd;
/* DBDMA command values in command field */
#define COMMAND_MASK 0xf000
#define OUTPUT_MORE 0x0000 /* transfer memory data to stream */
#define OUTPUT_LAST 0x1000 /* ditto followed by end marker */
#define INPUT_MORE 0x2000 /* transfer stream data to memory */
#define INPUT_LAST 0x3000 /* ditto, expect end marker */
#define STORE_WORD 0x4000 /* write word (4 bytes) to device reg */
#define LOAD_WORD 0x5000 /* read word (4 bytes) from device reg */
#define DBDMA_NOP 0x6000 /* do nothing */
#define DBDMA_STOP 0x7000 /* suspend processing */
/* Key values in command field */
#define KEY_MASK 0x0700
#define KEY_STREAM0 0x0000 /* usual data stream */
#define KEY_STREAM1 0x0100 /* control/status stream */
#define KEY_STREAM2 0x0200 /* device-dependent stream */
#define KEY_STREAM3 0x0300 /* device-dependent stream */
#define KEY_STREAM4 0x0400 /* reserved */
#define KEY_REGS 0x0500 /* device register space */
#define KEY_SYSTEM 0x0600 /* system memory-mapped space */
#define KEY_DEVICE 0x0700 /* device memory-mapped space */
/* Interrupt control values in command field */
#define INTR_MASK 0x0030
#define INTR_NEVER 0x0000 /* don't interrupt */
#define INTR_IFSET 0x0010 /* intr if condition bit is 1 */
#define INTR_IFCLR 0x0020 /* intr if condition bit is 0 */
#define INTR_ALWAYS 0x0030 /* always interrupt */
/* Branch control values in command field */
#define BR_MASK 0x000c
#define BR_NEVER 0x0000 /* don't branch */
#define BR_IFSET 0x0004 /* branch if condition bit is 1 */
#define BR_IFCLR 0x0008 /* branch if condition bit is 0 */
#define BR_ALWAYS 0x000c /* always branch */
/* Wait control values in command field */
#define WAIT_MASK 0x0003
#define WAIT_NEVER 0x0000 /* don't wait */
#define WAIT_IFSET 0x0001 /* wait if condition bit is 1 */
#define WAIT_IFCLR 0x0002 /* wait if condition bit is 0 */
#define WAIT_ALWAYS 0x0003 /* always wait */
typedef struct DBDMA_channel {
int channel;
uint32_t regs[DBDMA_REGS];
qemu_irq irq;
DBDMA_transfer io;
DBDMA_transfer_handler transfer_handler;
dbdma_cmd current;
} DBDMA_channel;
#ifdef DEBUG_DBDMA
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
printf("dbdma_cmd %p\n", cmd);
printf(" req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
printf(" command 0x%04x\n", le16_to_cpu(cmd->command));
printf(" phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
printf(" cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
printf(" res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
printf(" xfer_status 0x%04x\n", le16_to_cpu(cmd->xfer_status));
}
#else
static void dump_dbdma_cmd(dbdma_cmd *cmd)
{
}
#endif
static void dbdma_cmdptr_load(DBDMA_channel *ch)
{
DBDMA_DPRINTF("dbdma_cmdptr_load 0x%08x\n",
be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
cpu_physical_memory_read(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
(uint8_t*)&ch->current, sizeof(dbdma_cmd));
}
static void dbdma_cmdptr_save(DBDMA_channel *ch)
{
DBDMA_DPRINTF("dbdma_cmdptr_save 0x%08x\n",
be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]));
DBDMA_DPRINTF("xfer_status 0x%08x res_count 0x%04x\n",
le16_to_cpu(ch->current.xfer_status),
le16_to_cpu(ch->current.res_count));
cpu_physical_memory_write(be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]),
(uint8_t*)&ch->current, sizeof(dbdma_cmd));
}
static void kill_channel(DBDMA_channel *ch)
{
DBDMA_DPRINTF("kill_channel\n");
ch->regs[DBDMA_STATUS] |= cpu_to_be32(DEAD);
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~ACTIVE);
qemu_irq_raise(ch->irq);
}
static void conditional_interrupt(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t intr;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_interrupt\n");
intr = be16_to_cpu(current->command) & INTR_MASK;
switch(intr) {
case INTR_NEVER: /* don't interrupt */
return;
case INTR_ALWAYS: /* always interrupt */
qemu_irq_raise(ch->irq);
return;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_INTR_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(intr) {
case INTR_IFSET: /* intr if condition bit is 1 */
if (cond)
qemu_irq_raise(ch->irq);
return;
case INTR_IFCLR: /* intr if condition bit is 0 */
if (!cond)
qemu_irq_raise(ch->irq);
return;
}
}
static int conditional_wait(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t wait;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_wait\n");
wait = be16_to_cpu(current->command) & WAIT_MASK;
switch(wait) {
case WAIT_NEVER: /* don't wait */
return 0;
case WAIT_ALWAYS: /* always wait */
return 1;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_WAIT_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(wait) {
case WAIT_IFSET: /* wait if condition bit is 1 */
if (cond)
return 1;
return 0;
case WAIT_IFCLR: /* wait if condition bit is 0 */
if (!cond)
return 1;
return 0;
}
return 0;
}
static void next(DBDMA_channel *ch)
{
uint32_t cp;
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~BT);
cp = be32_to_cpu(ch->regs[DBDMA_CMDPTR_LO]);
ch->regs[DBDMA_CMDPTR_LO] = cpu_to_be32(cp + sizeof(dbdma_cmd));
dbdma_cmdptr_load(ch);
}
static void branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
ch->regs[DBDMA_CMDPTR_LO] = current->cmd_dep;
ch->regs[DBDMA_STATUS] |= cpu_to_be32(BT);
dbdma_cmdptr_load(ch);
}
static void conditional_branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t br;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTF("conditional_branch\n");
/* check if we must branch */
br = be16_to_cpu(current->command) & BR_MASK;
switch(br) {
case BR_NEVER: /* don't branch */
next(ch);
return;
case BR_ALWAYS: /* always branch */
branch(ch);
return;
}
status = be32_to_cpu(ch->regs[DBDMA_STATUS]) & DEVSTAT;
sel_mask = (be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) >> 16) & 0x0f;
sel_value = be32_to_cpu(ch->regs[DBDMA_BRANCH_SEL]) & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(br) {
case BR_IFSET: /* branch if condition bit is 1 */
if (cond)
branch(ch);
else
next(ch);
return;
case BR_IFCLR: /* branch if condition bit is 0 */
if (!cond)
branch(ch);
else
next(ch);
return;
}
}
static int dbdma_read_memory(DBDMA_transfer *io)
{
DBDMA_channel *ch = io->channel;
dbdma_cmd *current = &ch->current;
DBDMA_DPRINTF("DBDMA_read_memory\n");
cpu_physical_memory_read(le32_to_cpu(current->phy_addr) + io->buf_pos,
io->buf, io->buf_len);
return io->buf_len;
}
static int dbdma_write_memory(DBDMA_transfer *io)
{
DBDMA_channel *ch = io->channel;
dbdma_cmd *current = &ch->current;
DBDMA_DPRINTF("DBDMA_write_memory\n");
cpu_physical_memory_write(le32_to_cpu(current->phy_addr) + io->buf_pos,
io->buf, io->buf_len);
return io->buf_len;
}
static int start_output(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
dbdma_cmd *current = &ch->current;
uint32_t n;
DBDMA_DPRINTF("start_output\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
DBDMA_DPRINTF("addr 0x%x key 0x%x\n", addr, key);
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return 0;
}
ch->io.buf = NULL;
ch->io.buf_pos = 0;
ch->io.buf_len = 0;
ch->io.len = req_count;
ch->io.is_last = is_last;
n = ch->transfer_handler(&ch->io, dbdma_read_memory);
if (conditional_wait(ch))
return 1;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
current->res_count = cpu_to_le16(0);
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
conditional_branch(ch);
return 1;
}
static int start_input(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
dbdma_cmd *current = &ch->current;
uint32_t n;
DBDMA_DPRINTF("start_input\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return 0;
}
ch->io.buf = NULL;
ch->io.buf_pos = 0;
ch->io.buf_len = 0;
ch->io.len = req_count;
ch->io.is_last = is_last;
n = ch->transfer_handler(&ch->io, dbdma_write_memory);
if (conditional_wait(ch))
return 1;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
current->res_count = cpu_to_le16(0);
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
conditional_branch(ch);
return 1;
}
static int load_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
uint32_t val;
DBDMA_DPRINTF("load_word\n");
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return 0;
}
cpu_physical_memory_read(addr, (uint8_t*)&val, len);
if (len == 2)
val = (val << 16) | (current->cmd_dep & 0x0000ffff);
else if (len == 1)
val = (val << 24) | (current->cmd_dep & 0x00ffffff);
current->cmd_dep = val;
if (conditional_wait(ch))
return 1;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
next(ch);
return 1;
}
static int store_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
uint32_t val;
DBDMA_DPRINTF("store_word\n");
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return 0;
}
val = current->cmd_dep;
if (len == 2)
val >>= 16;
else if (len == 1)
val >>= 24;
cpu_physical_memory_write(addr, (uint8_t*)&val, len);
if (conditional_wait(ch))
return 1;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
next(ch);
return 1;
}
static int nop(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
if (conditional_wait(ch))
return 1;
current->xfer_status = cpu_to_le16(be32_to_cpu(ch->regs[DBDMA_STATUS]));
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
conditional_branch(ch);
return 1;
}
static int stop(DBDMA_channel *ch)
{
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~(ACTIVE|DEAD));
/* the stop command does not increment command pointer */
return 0;
}
static int channel_run(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t cmd, key;
uint16_t req_count;
uint32_t phy_addr;
DBDMA_DPRINTF("channel_run\n");
dump_dbdma_cmd(current);
/* clear WAKE flag at command fetch */
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~WAKE);
cmd = le16_to_cpu(current->command) & COMMAND_MASK;
switch (cmd) {
case DBDMA_NOP:
return nop(ch);
case DBDMA_STOP:
return stop(ch);
}
key = le16_to_cpu(current->command) & 0x0700;
req_count = le16_to_cpu(current->req_count);
phy_addr = le32_to_cpu(current->phy_addr);
if (key == KEY_STREAM4) {
printf("command %x, invalid key 4\n", cmd);
kill_channel(ch);
return 0;
}
switch (cmd) {
case OUTPUT_MORE:
return start_output(ch, key, phy_addr, req_count, 0);
case OUTPUT_LAST:
return start_output(ch, key, phy_addr, req_count, 1);
case INPUT_MORE:
return start_input(ch, key, phy_addr, req_count, 0);
case INPUT_LAST:
return start_input(ch, key, phy_addr, req_count, 1);
}
if (key < KEY_REGS) {
printf("command %x, invalid key %x\n", cmd, key);
key = KEY_SYSTEM;
}
/* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
* and BRANCH is invalid
*/
req_count = req_count & 0x0007;
if (req_count & 0x4) {
req_count = 4;
phy_addr &= ~3;
} else if (req_count & 0x2) {
req_count = 2;
phy_addr &= ~1;
} else
req_count = 1;
switch (cmd) {
case LOAD_WORD:
return load_word(ch, key, phy_addr, req_count);
case STORE_WORD:
return store_word(ch, key, phy_addr, req_count);
}
return 0;
}
static QEMUBH *dbdma_bh;
static void DBDMA_run (DBDMA_channel *ch)
{
int channel;
int rearm = 0;
for (channel = 0; channel < DBDMA_CHANNELS; channel++, ch++) {
uint32_t status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
if ((status & RUN) && (status & ACTIVE)) {
if (status & FLUSH)
while (channel_run(ch));
else if (channel_run(ch))
rearm = 1;
}
ch->regs[DBDMA_STATUS] &= cpu_to_be32(~FLUSH);
}
if (rearm)
qemu_bh_schedule_idle(dbdma_bh);
}
static void DBDMA_run_bh(void *opaque)
{
DBDMA_channel *ch = opaque;
DBDMA_DPRINTF("DBDMA_run_bh\n");
DBDMA_run(ch);
}
void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
DBDMA_transfer_handler transfer_handler,
void *opaque)
{
DBDMA_channel *ch = ( DBDMA_channel *)dbdma + nchan;
DBDMA_DPRINTF("DBDMA_register_channel 0x%x\n", nchan);
ch->irq = irq;
ch->channel = nchan;
ch->transfer_handler = transfer_handler;
ch->io.opaque = opaque;
ch->io.channel = ch;
}
void DBDMA_schedule(void)
{
CPUState *env = cpu_single_env;
if (env)
cpu_interrupt(env, CPU_INTERRUPT_EXIT);
}
static void
dbdma_control_write(DBDMA_channel *ch)
{
uint16_t mask, value;
uint32_t status;
mask = (be32_to_cpu(ch->regs[DBDMA_CONTROL]) >> 16) & 0xffff;
value = be32_to_cpu(ch->regs[DBDMA_CONTROL]) & 0xffff;
value &= (RUN | PAUSE | FLUSH | WAKE | DEVSTAT);
status = be32_to_cpu(ch->regs[DBDMA_STATUS]);
status = (value & mask) | (status & ~mask);
if (status & WAKE)
status |= ACTIVE;
if (status & RUN) {
status |= ACTIVE;
status &= ~DEAD;
}
if (status & PAUSE)
status &= ~ACTIVE;
if ((be32_to_cpu(ch->regs[DBDMA_STATUS]) & RUN) && !(status & RUN)) {
/* RUN is cleared */
status &= ~(ACTIVE|DEAD);
}
DBDMA_DPRINTF(" status 0x%08x\n", status);
ch->regs[DBDMA_STATUS] = cpu_to_be32(status);
if (status & ACTIVE) {
qemu_bh_schedule_idle(dbdma_bh);
if (status & FLUSH)
DBDMA_schedule();
}
}
static void dbdma_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
DBDMA_DPRINTF("writel 0x" TARGET_FMT_plx " <= 0x%08x\n", addr, value);
DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
/* cmdptr cannot be modified if channel is RUN or ACTIVE */
if (reg == DBDMA_CMDPTR_LO &&
(ch->regs[DBDMA_STATUS] & cpu_to_be32(RUN | ACTIVE)))
return;
ch->regs[reg] = value;
switch(reg) {
case DBDMA_CONTROL:
dbdma_control_write(ch);
break;
case DBDMA_CMDPTR_LO:
/* 16-byte aligned */
ch->regs[DBDMA_CMDPTR_LO] &= cpu_to_be32(~0xf);
dbdma_cmdptr_load(ch);
break;
case DBDMA_STATUS:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* unused */
break;
}
}
static uint32_t dbdma_readl (void *opaque, target_phys_addr_t addr)
{
uint32_t value;
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMA_channel *ch = (DBDMA_channel *)opaque + channel;
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
value = ch->regs[reg];
DBDMA_DPRINTF("readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
DBDMA_DPRINTF("channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
switch(reg) {
case DBDMA_CONTROL:
value = 0;
break;
case DBDMA_STATUS:
case DBDMA_CMDPTR_LO:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
/* unused */
value = 0;
break;
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* reserved */
break;
}
return value;
}
static CPUWriteMemoryFunc *dbdma_write[] = {
NULL,
NULL,
dbdma_writel,
};
static CPUReadMemoryFunc *dbdma_read[] = {
NULL,
NULL,
dbdma_readl,
};
static void dbdma_save(QEMUFile *f, void *opaque)
{
DBDMA_channel *s = opaque;
unsigned int i, j;
for (i = 0; i < DBDMA_CHANNELS; i++)
for (j = 0; j < DBDMA_REGS; j++)
qemu_put_be32s(f, &s[i].regs[j]);
}
static int dbdma_load(QEMUFile *f, void *opaque, int version_id)
{
DBDMA_channel *s = opaque;
unsigned int i, j;
if (version_id != 2)
return -EINVAL;
for (i = 0; i < DBDMA_CHANNELS; i++)
for (j = 0; j < DBDMA_REGS; j++)
qemu_get_be32s(f, &s[i].regs[j]);
return 0;
}
static void dbdma_reset(void *opaque)
{
DBDMA_channel *s = opaque;
int i;
for (i = 0; i < DBDMA_CHANNELS; i++)
memset(s[i].regs, 0, DBDMA_SIZE);
}
void* DBDMA_init (int *dbdma_mem_index)
{
DBDMA_channel *s;
s = qemu_mallocz(sizeof(DBDMA_channel) * DBDMA_CHANNELS);
*dbdma_mem_index = cpu_register_io_memory(0, dbdma_read, dbdma_write, s);
register_savevm("dbdma", -1, 1, dbdma_save, dbdma_load, s);
qemu_register_reset(dbdma_reset, s);
dbdma_reset(s);
dbdma_bh = qemu_bh_new(DBDMA_run_bh, s);
return s;
}