qemu/target/arm/kvm64.c

1378 lines
39 KiB
C
Raw Normal View History

/*
* ARM implementation of KVM hooks, 64 bit specific code
*
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
* Copyright Alex Bennée 2014, Linaro
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <sys/ioctl.h>
#include <sys/ptrace.h>
#include <linux/elf.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "cpu.h"
#include "qemu/timer.h"
#include "qemu/error-report.h"
#include "qemu/host-utils.h"
#include "qemu/main-loop.h"
#include "exec/gdbstub.h"
#include "sysemu/kvm.h"
#include "sysemu/kvm_int.h"
#include "kvm_arm.h"
#include "internals.h"
static bool have_guest_debug;
/*
* Although the ARM implementation of hardware assisted debugging
* allows for different breakpoints per-core, the current GDB
* interface treats them as a global pool of registers (which seems to
* be the case for x86, ppc and s390). As a result we store one copy
* of registers which is used for all active cores.
*
* Write access is serialised by virtue of the GDB protocol which
* updates things. Read access (i.e. when the values are copied to the
* vCPU) is also gated by GDB's run control.
*
* This is not unreasonable as most of the time debugging kernels you
* never know which core will eventually execute your function.
*/
typedef struct {
uint64_t bcr;
uint64_t bvr;
} HWBreakpoint;
/* The watchpoint registers can cover more area than the requested
* watchpoint so we need to store the additional information
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
* when the watchpoint is hit.
*/
typedef struct {
uint64_t wcr;
uint64_t wvr;
CPUWatchpoint details;
} HWWatchpoint;
/* Maximum and current break/watch point counts */
int max_hw_bps, max_hw_wps;
GArray *hw_breakpoints, *hw_watchpoints;
#define cur_hw_wps (hw_watchpoints->len)
#define cur_hw_bps (hw_breakpoints->len)
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
/**
* kvm_arm_init_debug() - check for guest debug capabilities
* @cs: CPUState
*
* kvm_check_extension returns the number of debug registers we have
* or 0 if we have none.
*
*/
static void kvm_arm_init_debug(CPUState *cs)
{
have_guest_debug = kvm_check_extension(cs->kvm_state,
KVM_CAP_SET_GUEST_DEBUG);
max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
hw_watchpoints = g_array_sized_new(true, true,
sizeof(HWWatchpoint), max_hw_wps);
max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
hw_breakpoints = g_array_sized_new(true, true,
sizeof(HWBreakpoint), max_hw_bps);
return;
}
/**
* insert_hw_breakpoint()
* @addr: address of breakpoint
*
* See ARM ARM D2.9.1 for details but here we are only going to create
* simple un-linked breakpoints (i.e. we don't chain breakpoints
* together to match address and context or vmid). The hardware is
* capable of fancier matching but that will require exposing that
* fanciness to GDB's interface
*
* DBGBCR<n>_EL1, Debug Breakpoint Control Registers
*
* 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
* +------+------+-------+-----+----+------+-----+------+-----+---+
* | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
* +------+------+-------+-----+----+------+-----+------+-----+---+
*
* BT: Breakpoint type (0 = unlinked address match)
* LBN: Linked BP number (0 = unused)
* SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
* BAS: Byte Address Select (RES1 for AArch64)
* E: Enable bit
*
* DBGBVR<n>_EL1, Debug Breakpoint Value Registers
*
* 63 53 52 49 48 2 1 0
* +------+-----------+----------+-----+
* | RESS | VA[52:49] | VA[48:2] | 0 0 |
* +------+-----------+----------+-----+
*
* Depending on the addressing mode bits the top bits of the register
* are a sign extension of the highest applicable VA bit. Some
* versions of GDB don't do it correctly so we ensure they are correct
* here so future PC comparisons will work properly.
*/
static int insert_hw_breakpoint(target_ulong addr)
{
HWBreakpoint brk = {
.bcr = 0x1, /* BCR E=1, enable */
.bvr = sextract64(addr, 0, 53)
};
if (cur_hw_bps >= max_hw_bps) {
return -ENOBUFS;
}
brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
g_array_append_val(hw_breakpoints, brk);
return 0;
}
/**
* delete_hw_breakpoint()
* @pc: address of breakpoint
*
* Delete a breakpoint and shuffle any above down
*/
static int delete_hw_breakpoint(target_ulong pc)
{
int i;
for (i = 0; i < hw_breakpoints->len; i++) {
HWBreakpoint *brk = get_hw_bp(i);
if (brk->bvr == pc) {
g_array_remove_index(hw_breakpoints, i);
return 0;
}
}
return -ENOENT;
}
/**
* insert_hw_watchpoint()
* @addr: address of watch point
* @len: size of area
* @type: type of watch point
*
* See ARM ARM D2.10. As with the breakpoints we can do some advanced
* stuff if we want to. The watch points can be linked with the break
* points above to make them context aware. However for simplicity
* currently we only deal with simple read/write watch points.
*
* D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
*
* 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
* | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
*
* MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
* WT: 0 - unlinked, 1 - linked (not currently used)
* LBN: Linked BP number (not currently used)
* SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
* BAS: Byte Address Select
* LSC: Load/Store control (01: load, 10: store, 11: both)
* E: Enable
*
* The bottom 2 bits of the value register are masked. Therefore to
* break on any sizes smaller than an unaligned word you need to set
* MASK=0, BAS=bit per byte in question. For larger regions (^2) you
* need to ensure you mask the address as required and set BAS=0xff
*/
static int insert_hw_watchpoint(target_ulong addr,
target_ulong len, int type)
{
HWWatchpoint wp = {
.wcr = 1, /* E=1, enable */
.wvr = addr & (~0x7ULL),
.details = { .vaddr = addr, .len = len }
};
if (cur_hw_wps >= max_hw_wps) {
return -ENOBUFS;
}
/*
* HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
* valid whether EL3 is implemented or not
*/
wp.wcr = deposit32(wp.wcr, 1, 2, 3);
switch (type) {
case GDB_WATCHPOINT_READ:
wp.wcr = deposit32(wp.wcr, 3, 2, 1);
wp.details.flags = BP_MEM_READ;
break;
case GDB_WATCHPOINT_WRITE:
wp.wcr = deposit32(wp.wcr, 3, 2, 2);
wp.details.flags = BP_MEM_WRITE;
break;
case GDB_WATCHPOINT_ACCESS:
wp.wcr = deposit32(wp.wcr, 3, 2, 3);
wp.details.flags = BP_MEM_ACCESS;
break;
default:
g_assert_not_reached();
break;
}
if (len <= 8) {
/* we align the address and set the bits in BAS */
int off = addr & 0x7;
int bas = (1 << len) - 1;
wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
} else {
/* For ranges above 8 bytes we need to be a power of 2 */
if (is_power_of_2(len)) {
int bits = ctz64(len);
wp.wvr &= ~((1 << bits) - 1);
wp.wcr = deposit32(wp.wcr, 24, 4, bits);
wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
} else {
return -ENOBUFS;
}
}
g_array_append_val(hw_watchpoints, wp);
return 0;
}
static bool check_watchpoint_in_range(int i, target_ulong addr)
{
HWWatchpoint *wp = get_hw_wp(i);
uint64_t addr_top, addr_bottom = wp->wvr;
int bas = extract32(wp->wcr, 5, 8);
int mask = extract32(wp->wcr, 24, 4);
if (mask) {
addr_top = addr_bottom + (1 << mask);
} else {
/* BAS must be contiguous but can offset against the base
* address in DBGWVR */
addr_bottom = addr_bottom + ctz32(bas);
addr_top = addr_bottom + clo32(bas);
}
if (addr >= addr_bottom && addr <= addr_top) {
return true;
}
return false;
}
/**
* delete_hw_watchpoint()
* @addr: address of breakpoint
*
* Delete a breakpoint and shuffle any above down
*/
static int delete_hw_watchpoint(target_ulong addr,
target_ulong len, int type)
{
int i;
for (i = 0; i < cur_hw_wps; i++) {
if (check_watchpoint_in_range(i, addr)) {
g_array_remove_index(hw_watchpoints, i);
return 0;
}
}
return -ENOENT;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return insert_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return insert_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
switch (type) {
case GDB_BREAKPOINT_HW:
return delete_hw_breakpoint(addr);
break;
case GDB_WATCHPOINT_READ:
case GDB_WATCHPOINT_WRITE:
case GDB_WATCHPOINT_ACCESS:
return delete_hw_watchpoint(addr, len, type);
default:
return -ENOSYS;
}
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
if (cur_hw_wps > 0) {
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
}
if (cur_hw_bps > 0) {
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
}
}
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
{
int i;
memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
for (i = 0; i < max_hw_wps; i++) {
HWWatchpoint *wp = get_hw_wp(i);
ptr->dbg_wcr[i] = wp->wcr;
ptr->dbg_wvr[i] = wp->wvr;
}
for (i = 0; i < max_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
ptr->dbg_bcr[i] = bp->bcr;
ptr->dbg_bvr[i] = bp->bvr;
}
}
bool kvm_arm_hw_debug_active(CPUState *cs)
{
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}
static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
{
int i;
for (i = 0; i < cur_hw_bps; i++) {
HWBreakpoint *bp = get_hw_bp(i);
if (bp->bvr == pc) {
return true;
}
}
return false;
}
static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
{
int i;
for (i = 0; i < cur_hw_wps; i++) {
if (check_watchpoint_in_range(i, addr)) {
return &get_hw_wp(i)->details;
}
}
return NULL;
}
static bool kvm_arm_pmu_set_attr(CPUState *cs, struct kvm_device_attr *attr)
{
int err;
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
if (err != 0) {
error_report("PMU: KVM_HAS_DEVICE_ATTR: %s", strerror(-err));
return false;
}
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
if (err != 0) {
error_report("PMU: KVM_SET_DEVICE_ATTR: %s", strerror(-err));
return false;
}
return true;
}
void kvm_arm_pmu_init(CPUState *cs)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_pmu_set_attr(cs, &attr)) {
error_report("failed to init PMU");
abort();
}
}
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
{
struct kvm_device_attr attr = {
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
.addr = (intptr_t)&irq,
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
};
if (!ARM_CPU(cs)->has_pmu) {
return;
}
if (!kvm_arm_pmu_set_attr(cs, &attr)) {
error_report("failed to set irq for PMU");
abort();
}
}
static inline void set_feature(uint64_t *features, int feature)
{
*features |= 1ULL << feature;
}
static inline void unset_feature(uint64_t *features, int feature)
{
*features &= ~(1ULL << feature);
}
static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
{
uint64_t ret;
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
int err;
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
if (err < 0) {
return -1;
}
*pret = ret;
return 0;
}
static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
{
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
return ioctl(fd, KVM_GET_ONE_REG, &idreg);
}
target/arm: Query host CPU features on-demand at instance init Currently we query the host CPU features in the class init function for the TYPE_ARM_HOST_CPU class, so that we can later copy them from the class object into the instance object in the object instance init function. This is awkward for implementing "-cpu max", which should work like "-cpu host" for KVM but like "cpu with all implemented features" for TCG. Move the place where we store the information about the host CPU from a class object to static variables in kvm.c, and then in the instance init function call a new kvm_arm_set_cpu_features_from_host() function which will query the host kernel if necessary and then fill in the CPU instance fields. This allows us to drop the special class struct and class init function for TYPE_ARM_HOST_CPU entirely. We can't delay the probe until realize, because the ARM instance_post_init hook needs to look at the feature bits we set, so we need to do it in the initfn. This is safe because the probing doesn't affect the actual VM state (it creates a separate scratch VM to do its testing), but the probe might fail. Because we can't report errors in retrieving the host features in the initfn, we check this belatedly in the realize function (the intervening code will be able to cope with the relevant fields in the CPU structure being zero). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20180308130626.12393-2-peter.maydell@linaro.org
2018-03-09 20:09:44 +03:00
bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
/* Identify the feature bits corresponding to the host CPU, and
* fill out the ARMHostCPUClass fields accordingly. To do this
* we have to create a scratch VM, create a single CPU inside it,
* and then query that CPU for the relevant ID registers.
*/
int fdarray[3];
bool sve_supported;
uint64_t features = 0;
uint64_t t;
int err;
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
* we know these will only support creating one kind of guest CPU,
* which is its preferred CPU type. Fortunately these old kernels
* support only a very limited number of CPUs.
*/
static const uint32_t cpus_to_try[] = {
KVM_ARM_TARGET_AEM_V8,
KVM_ARM_TARGET_FOUNDATION_V8,
KVM_ARM_TARGET_CORTEX_A57,
QEMU_KVM_ARM_TARGET_NONE
};
/*
* target = -1 informs kvm_arm_create_scratch_host_vcpu()
* to use the preferred target
*/
struct kvm_vcpu_init init = { .target = -1, };
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
return false;
}
target/arm: Query host CPU features on-demand at instance init Currently we query the host CPU features in the class init function for the TYPE_ARM_HOST_CPU class, so that we can later copy them from the class object into the instance object in the object instance init function. This is awkward for implementing "-cpu max", which should work like "-cpu host" for KVM but like "cpu with all implemented features" for TCG. Move the place where we store the information about the host CPU from a class object to static variables in kvm.c, and then in the instance init function call a new kvm_arm_set_cpu_features_from_host() function which will query the host kernel if necessary and then fill in the CPU instance fields. This allows us to drop the special class struct and class init function for TYPE_ARM_HOST_CPU entirely. We can't delay the probe until realize, because the ARM instance_post_init hook needs to look at the feature bits we set, so we need to do it in the initfn. This is safe because the probing doesn't affect the actual VM state (it creates a separate scratch VM to do its testing), but the probe might fail. Because we can't report errors in retrieving the host features in the initfn, we check this belatedly in the realize function (the intervening code will be able to cope with the relevant fields in the CPU structure being zero). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20180308130626.12393-2-peter.maydell@linaro.org
2018-03-09 20:09:44 +03:00
ahcf->target = init.target;
ahcf->dtb_compatible = "arm,arm-v8";
err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
ARM64_SYS_REG(3, 0, 0, 4, 0));
if (unlikely(err < 0)) {
/*
* Before v4.15, the kernel only exposed a limited number of system
* registers, not including any of the interesting AArch64 ID regs.
* For the most part we could leave these fields as zero with minimal
* effect, since this does not affect the values seen by the guest.
*
* However, it could cause problems down the line for QEMU,
* so provide a minimal v8.0 default.
*
* ??? Could read MIDR and use knowledge from cpu64.c.
* ??? Could map a page of memory into our temp guest and
* run the tiniest of hand-crafted kernels to extract
* the values seen by the guest.
* ??? Either of these sounds like too much effort just
* to work around running a modern host kernel.
*/
ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
err = 0;
} else {
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
ARM64_SYS_REG(3, 0, 0, 4, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
ARM64_SYS_REG(3, 0, 0, 6, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
ARM64_SYS_REG(3, 0, 0, 6, 1));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
ARM64_SYS_REG(3, 0, 0, 7, 0));
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
ARM64_SYS_REG(3, 0, 0, 7, 1));
/*
* Note that if AArch32 support is not present in the host,
* the AArch32 sysregs are present to be read, but will
* return UNKNOWN values. This is neither better nor worse
* than skipping the reads and leaving 0, as we must avoid
* considering the values in every case.
*/
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
ARM64_SYS_REG(3, 0, 0, 2, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
ARM64_SYS_REG(3, 0, 0, 2, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
ARM64_SYS_REG(3, 0, 0, 2, 2));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
ARM64_SYS_REG(3, 0, 0, 2, 3));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
ARM64_SYS_REG(3, 0, 0, 2, 4));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
ARM64_SYS_REG(3, 0, 0, 2, 5));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
ARM64_SYS_REG(3, 0, 0, 2, 7));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
ARM64_SYS_REG(3, 0, 0, 3, 0));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
ARM64_SYS_REG(3, 0, 0, 3, 1));
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
ARM64_SYS_REG(3, 0, 0, 3, 2));
}
sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (err < 0) {
return false;
}
/* Add feature bits that can't appear until after VCPU init. */
if (sve_supported) {
t = ahcf->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
ahcf->isar.id_aa64pfr0 = t;
}
/*
* We can assume any KVM supporting CPU is at least a v8
* with VFPv4+Neon; this in turn implies most of the other
* feature bits.
*/
set_feature(&features, ARM_FEATURE_V8);
set_feature(&features, ARM_FEATURE_VFP4);
set_feature(&features, ARM_FEATURE_NEON);
set_feature(&features, ARM_FEATURE_AARCH64);
set_feature(&features, ARM_FEATURE_PMU);
set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
target/arm: Query host CPU features on-demand at instance init Currently we query the host CPU features in the class init function for the TYPE_ARM_HOST_CPU class, so that we can later copy them from the class object into the instance object in the object instance init function. This is awkward for implementing "-cpu max", which should work like "-cpu host" for KVM but like "cpu with all implemented features" for TCG. Move the place where we store the information about the host CPU from a class object to static variables in kvm.c, and then in the instance init function call a new kvm_arm_set_cpu_features_from_host() function which will query the host kernel if necessary and then fill in the CPU instance fields. This allows us to drop the special class struct and class init function for TYPE_ARM_HOST_CPU entirely. We can't delay the probe until realize, because the ARM instance_post_init hook needs to look at the feature bits we set, so we need to do it in the initfn. This is safe because the probing doesn't affect the actual VM state (it creates a separate scratch VM to do its testing), but the probe might fail. Because we can't report errors in retrieving the host features in the initfn, we check this belatedly in the realize function (the intervening code will be able to cope with the relevant fields in the CPU structure being zero). Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Message-id: 20180308130626.12393-2-peter.maydell@linaro.org
2018-03-09 20:09:44 +03:00
ahcf->features = features;
return true;
}
bool kvm_arm_aarch32_supported(CPUState *cpu)
{
KVMState *s = KVM_STATE(current_accel());
return kvm_check_extension(s, KVM_CAP_ARM_EL1_32BIT);
}
bool kvm_arm_sve_supported(CPUState *cpu)
{
KVMState *s = KVM_STATE(current_accel());
return kvm_check_extension(s, KVM_CAP_ARM_SVE);
}
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
{
/* Only call this function if kvm_arm_sve_supported() returns true. */
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
static bool probed;
uint32_t vq = 0;
int i, j;
bitmap_clear(map, 0, ARM_MAX_VQ);
/*
* KVM ensures all host CPUs support the same set of vector lengths.
* So we only need to create the scratch VCPUs once and then cache
* the results.
*/
if (!probed) {
struct kvm_vcpu_init init = {
.target = -1,
.features[0] = (1 << KVM_ARM_VCPU_SVE),
};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
int fdarray[3], ret;
probed = true;
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
error_report("failed to create scratch VCPU with SVE enabled");
abort();
}
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
kvm_arm_destroy_scratch_host_vcpu(fdarray);
if (ret) {
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
strerror(errno));
abort();
}
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
if (vls[i]) {
vq = 64 - clz64(vls[i]) + i * 64;
break;
}
}
if (vq > ARM_MAX_VQ) {
warn_report("KVM supports vector lengths larger than "
"QEMU can enable");
}
}
for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
if (!vls[i]) {
continue;
}
for (j = 1; j <= 64; ++j) {
vq = j + i * 64;
if (vq > ARM_MAX_VQ) {
return;
}
if (vls[i] & (1UL << (j - 1))) {
set_bit(vq - 1, map);
}
}
}
}
static int kvm_arm_sve_set_vls(CPUState *cs)
{
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
struct kvm_one_reg reg = {
.id = KVM_REG_ARM64_SVE_VLS,
.addr = (uint64_t)&vls[0],
};
ARMCPU *cpu = ARM_CPU(cs);
uint32_t vq;
int i, j;
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
if (test_bit(vq - 1, cpu->sve_vq_map)) {
i = (vq - 1) / 64;
j = (vq - 1) % 64;
vls[i] |= 1UL << j;
}
}
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
}
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
int kvm_arch_init_vcpu(CPUState *cs)
{
int ret;
uint64_t mpidr;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
error_report("KVM is not supported for this guest CPU type");
return -EINVAL;
}
/* Determine init features for this CPU */
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
if (cpu->start_powered_off) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
}
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
cpu->psci_version = 2;
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
}
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
}
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
cpu->has_pmu = false;
}
if (cpu->has_pmu) {
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
} else {
unset_feature(&env->features, ARM_FEATURE_PMU);
}
if (cpu_isar_feature(aa64_sve, cpu)) {
assert(kvm_arm_sve_supported(cs));
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
}
/* Do KVM_ARM_VCPU_INIT ioctl */
ret = kvm_arm_vcpu_init(cs);
if (ret) {
return ret;
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arm_sve_set_vls(cs);
if (ret) {
return ret;
}
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
if (ret) {
return ret;
}
}
/*
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
* Currently KVM has its own idea about MPIDR assignment, so we
* override our defaults with what we get from KVM.
*/
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
if (ret) {
return ret;
}
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
kvm_arm_init_debug(cs);
/* Check whether user space can specify guest syndrome value */
kvm_arm_init_serror_injection(cs);
return kvm_arm_init_cpreg_list(cpu);
}
int kvm_arch_destroy_vcpu(CPUState *cs)
{
return 0;
}
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
{
/* Return true if the regidx is a register we should synchronize
* via the cpreg_tuples array (ie is not a core or sve reg that
* we sync by hand in kvm_arch_get/put_registers())
*/
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
case KVM_REG_ARM_CORE:
case KVM_REG_ARM64_SVE:
return false;
default:
return true;
}
}
typedef struct CPRegStateLevel {
uint64_t regidx;
int level;
} CPRegStateLevel;
/* All system registers not listed in the following table are assumed to be
* of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
* often, you must add it to this table with a state of either
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
*/
static const CPRegStateLevel non_runtime_cpregs[] = {
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
};
int kvm_arm_cpreg_level(uint64_t regidx)
{
int i;
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
const CPRegStateLevel *l = &non_runtime_cpregs[i];
if (l->regidx == regidx) {
return l->level;
}
}
return KVM_PUT_RUNTIME_STATE;
}
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
static int kvm_arch_put_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
#ifdef HOST_WORDS_BIGENDIAN
uint64_t fp_val[2] = { q[1], q[0] };
reg.addr = (uintptr_t)fp_val;
#else
reg.addr = (uintptr_t)q;
#endif
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_put_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint64_t tmp[ARM_MAX_VQ * 2];
uint64_t *r;
struct kvm_one_reg reg;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
return 0;
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
struct kvm_one_reg reg;
uint64_t val;
uint32_t fpr;
int i, ret;
unsigned int el;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
* AArch64 registers before pushing them out to 64-bit KVM.
*/
if (!is_a64(env)) {
aarch64_sync_32_to_64(env);
}
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_save_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
if (is_a64(env)) {
val = pstate_read(env);
} else {
val = cpsr_read(env);
}
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Saved Program State Registers
*
* Before we restore from the banked_spsr[] array we need to
* ensure that any modifications to env->spsr are correctly
* reflected in the banks.
*/
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->banked_spsr[i] = env->spsr;
}
/* KVM 0-4 map to QEMU banks 1-5 */
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_put_sve(cs);
} else {
ret = kvm_arch_put_fpsimd(cs);
}
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
fpr = vfp_get_fpsr(env);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
fpr = vfp_get_fpcr(env);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret) {
return ret;
}
ret = kvm_put_vcpu_events(cpu);
if (ret) {
return ret;
}
write_cpustate_to_list(cpu, true);
if (!write_list_to_kvmstate(cpu, level)) {
return -EINVAL;
}
kvm_arm_sync_mpstate_to_kvm(cpu);
return ret;
}
static int kvm_arch_get_fpsimd(CPUState *cs)
{
CPUARMState *env = &ARM_CPU(cs)->env;
struct kvm_one_reg reg;
int i, ret;
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
reg.addr = (uintptr_t)q;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
} else {
#ifdef HOST_WORDS_BIGENDIAN
uint64_t t;
t = q[0], q[0] = q[1], q[1] = t;
#endif
}
}
return 0;
}
/*
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
* code the slice index to zero for now as it's unlikely we'll need more than
* one slice for quite some time.
*/
static int kvm_arch_get_sve(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
struct kvm_one_reg reg;
uint64_t *r;
int n, ret;
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
r = &env->vfp.zregs[n].d[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, cpu->sve_max_vq * 2);
}
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
r = &env->vfp.pregs[n].p[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
}
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
reg.addr = (uintptr_t)r;
reg.id = KVM_REG_ARM64_SVE_FFR(0);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
struct kvm_one_reg reg;
uint64_t val;
unsigned int el;
uint32_t fpr;
int i, ret;
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
for (i = 0; i < 31; i++) {
reg.id = AARCH64_CORE_REG(regs.regs[i]);
reg.addr = (uintptr_t) &env->xregs[i];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
reg.id = AARCH64_CORE_REG(regs.sp);
reg.addr = (uintptr_t) &env->sp_el[0];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(sp_el1);
reg.addr = (uintptr_t) &env->sp_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
reg.id = AARCH64_CORE_REG(regs.pstate);
reg.addr = (uintptr_t) &val;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
env->aarch64 = ((val & PSTATE_nRW) == 0);
if (is_a64(env)) {
pstate_write(env, val);
} else {
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
}
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
* QEMU side we keep the current SP in xregs[31] as well.
*/
aarch64_restore_sp(env, 1);
reg.id = AARCH64_CORE_REG(regs.pc);
reg.addr = (uintptr_t) &env->pc;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
* incoming AArch64 regs received from 64-bit KVM.
* We must perform this after all of the registers have been acquired from
* the kernel.
*/
if (!is_a64(env)) {
aarch64_sync_64_to_32(env);
}
reg.id = AARCH64_CORE_REG(elr_el1);
reg.addr = (uintptr_t) &env->elr_el[1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
/* Fetch the SPSR registers
*
* KVM SPSRs 0-4 map to QEMU banks 1-5
*/
for (i = 0; i < KVM_NR_SPSR; i++) {
reg.id = AARCH64_CORE_REG(spsr[i]);
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
}
el = arm_current_el(env);
if (el > 0 && !is_a64(env)) {
i = bank_number(env->uncached_cpsr & CPSR_M);
env->spsr = env->banked_spsr[i];
}
if (cpu_isar_feature(aa64_sve, cpu)) {
ret = kvm_arch_get_sve(cs);
} else {
ret = kvm_arch_get_fpsimd(cs);
}
if (ret) {
return ret;
}
reg.addr = (uintptr_t)(&fpr);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
vfp_set_fpsr(env, fpr);
reg.addr = (uintptr_t)(&fpr);
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (ret) {
return ret;
}
vfp_set_fpcr(env, fpr);
ret = kvm_get_vcpu_events(cpu);
if (ret) {
return ret;
}
if (!write_kvmstate_to_list(cpu)) {
return -EINVAL;
}
/* Note that it's OK to have registers which aren't in CPUState,
* so we can ignore a failure return here.
*/
write_list_to_cpustate(cpu);
kvm_arm_sync_mpstate_to_qemu(cpu);
/* TODO: other registers */
return ret;
}
/* C6.6.29 BRK instruction */
static const uint32_t brk_insn = 0xd4200000;
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
if (have_guest_debug) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
return -EINVAL;
}
return 0;
} else {
error_report("guest debug not supported on this kernel");
return -EINVAL;
}
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static uint32_t brk;
if (have_guest_debug) {
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
brk != brk_insn ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
return -EINVAL;
}
return 0;
} else {
error_report("guest debug not supported on this kernel");
return -EINVAL;
}
}
/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
*
* To minimise translating between kernel and user-space the kernel
* ABI just provides user-space with the full exception syndrome
* register value to be decoded in QEMU.
*/
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
{
int hsr_ec = syn_get_ec(debug_exit->hsr);
ARMCPU *cpu = ARM_CPU(cs);
CPUClass *cc = CPU_GET_CLASS(cs);
CPUARMState *env = &cpu->env;
/* Ensure PC is synchronised */
kvm_cpu_synchronize_state(cs);
switch (hsr_ec) {
case EC_SOFTWARESTEP:
if (cs->singlestep_enabled) {
return true;
} else {
/*
* The kernel should have suppressed the guest's ability to
* single step at this point so something has gone wrong.
*/
error_report("%s: guest single-step while debugging unsupported"
" (%"PRIx64", %"PRIx32")",
__func__, env->pc, debug_exit->hsr);
return false;
}
break;
case EC_AA64_BKPT:
if (kvm_find_sw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_BREAKPOINT:
if (find_hw_breakpoint(cs, env->pc)) {
return true;
}
break;
case EC_WATCHPOINT:
{
CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
if (wp) {
cs->watchpoint_hit = wp;
return true;
}
break;
}
default:
error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
__func__, debug_exit->hsr, env->pc);
}
/* If we are not handling the debug exception it must belong to
* the guest. Let's re-use the existing TCG interrupt code to set
* everything up properly.
*/
cs->exception_index = EXCP_BKPT;
env->exception.syndrome = debug_exit->hsr;
env->exception.vaddress = debug_exit->far;
env->exception.target_el = 1;
qemu_mutex_lock_iothread();
cc->do_interrupt(cs);
qemu_mutex_unlock_iothread();
return false;
}