qemu/cpus.c

1171 lines
25 KiB
C
Raw Normal View History

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"
#include "monitor.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"
#include "qemu-thread.h"
#include "cpus.h"
#ifndef _WIN32
#include "compatfd.h"
#endif
#ifdef SIGRTMIN
#define SIG_IPI (SIGRTMIN+4)
#else
#define SIG_IPI SIGUSR1
#endif
#ifdef CONFIG_LINUX
#include <sys/prctl.h>
#ifndef PR_MCE_KILL
#define PR_MCE_KILL 33
#endif
#ifndef PR_MCE_KILL_SET
#define PR_MCE_KILL_SET 1
#endif
#ifndef PR_MCE_KILL_EARLY
#define PR_MCE_KILL_EARLY 1
#endif
#endif /* CONFIG_LINUX */
static CPUState *next_cpu;
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
CPUState *env;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
for(env = first_cpu; env != NULL; env = env->next_cpu) {
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
}
va_end(ap);
abort();
}
void cpu_synchronize_all_states(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_state(cpu);
}
}
void cpu_synchronize_all_post_reset(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_reset(cpu);
}
}
void cpu_synchronize_all_post_init(void)
{
CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_init(cpu);
}
}
int cpu_is_stopped(CPUState *env)
{
return !vm_running || env->stopped;
}
static void do_vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
pause_all_vcpus();
vm_state_notify(0, reason);
qemu_aio_flush();
bdrv_flush_all();
monitor_protocol_event(QEVENT_STOP, NULL);
}
}
static int cpu_can_run(CPUState *env)
{
if (env->stop) {
return 0;
}
if (env->stopped || !vm_running) {
return 0;
}
return 1;
}
static bool cpu_thread_is_idle(CPUState *env)
{
if (env->stop || env->queued_work_first) {
return false;
}
if (env->stopped || !vm_running) {
return true;
}
if (!env->halted || qemu_cpu_has_work(env) ||
(kvm_enabled() && kvm_irqchip_in_kernel())) {
return false;
}
return true;
}
bool all_cpu_threads_idle(void)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (!cpu_thread_is_idle(env)) {
return false;
}
}
return true;
}
static void cpu_handle_guest_debug(CPUState *env)
{
gdb_set_stop_cpu(env);
qemu_system_debug_request();
#ifdef CONFIG_IOTHREAD
env->stopped = 1;
#endif
}
#ifdef CONFIG_IOTHREAD
static void cpu_signal(int sig)
{
if (cpu_single_env) {
cpu_exit(cpu_single_env);
}
exit_request = 1;
}
#endif
#ifdef CONFIG_LINUX
static void sigbus_reraise(void)
{
sigset_t set;
struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_handler = SIG_DFL;
if (!sigaction(SIGBUS, &action, NULL)) {
raise(SIGBUS);
sigemptyset(&set);
sigaddset(&set, SIGBUS);
sigprocmask(SIG_UNBLOCK, &set, NULL);
}
perror("Failed to re-raise SIGBUS!\n");
abort();
}
static void sigbus_handler(int n, struct qemu_signalfd_siginfo *siginfo,
void *ctx)
{
if (kvm_on_sigbus(siginfo->ssi_code,
(void *)(intptr_t)siginfo->ssi_addr)) {
sigbus_reraise();
}
}
static void qemu_init_sigbus(void)
{
struct sigaction action;
memset(&action, 0, sizeof(action));
action.sa_flags = SA_SIGINFO;
action.sa_sigaction = (void (*)(int, siginfo_t*, void*))sigbus_handler;
sigaction(SIGBUS, &action, NULL);
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}
static void qemu_kvm_eat_signals(CPUState *env)
{
struct timespec ts = { 0, 0 };
siginfo_t siginfo;
sigset_t waitset;
sigset_t chkset;
int r;
sigemptyset(&waitset);
sigaddset(&waitset, SIG_IPI);
sigaddset(&waitset, SIGBUS);
do {
r = sigtimedwait(&waitset, &siginfo, &ts);
if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
perror("sigtimedwait");
exit(1);
}
switch (r) {
case SIGBUS:
if (kvm_on_sigbus_vcpu(env, siginfo.si_code, siginfo.si_addr)) {
sigbus_reraise();
}
break;
default:
break;
}
r = sigpending(&chkset);
if (r == -1) {
perror("sigpending");
exit(1);
}
} while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
#ifndef CONFIG_IOTHREAD
if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
qemu_notify_event();
}
#endif
}
#else /* !CONFIG_LINUX */
static void qemu_init_sigbus(void)
{
}
static void qemu_kvm_eat_signals(CPUState *env)
{
}
#endif /* !CONFIG_LINUX */
#ifndef _WIN32
static int io_thread_fd = -1;
static void qemu_event_increment(void)
{
/* Write 8 bytes to be compatible with eventfd. */
static const uint64_t val = 1;
ssize_t ret;
if (io_thread_fd == -1) {
return;
}
do {
ret = write(io_thread_fd, &val, sizeof(val));
} while (ret < 0 && errno == EINTR);
/* EAGAIN is fine, a read must be pending. */
if (ret < 0 && errno != EAGAIN) {
fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
strerror(errno));
exit (1);
}
}
static void qemu_event_read(void *opaque)
{
int fd = (intptr_t)opaque;
ssize_t len;
char buffer[512];
/* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
do {
len = read(fd, buffer, sizeof(buffer));
} while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
}
static int qemu_event_init(void)
{
int err;
int fds[2];
err = qemu_eventfd(fds);
if (err == -1) {
return -errno;
}
err = fcntl_setfl(fds[0], O_NONBLOCK);
if (err < 0) {
goto fail;
}
err = fcntl_setfl(fds[1], O_NONBLOCK);
if (err < 0) {
goto fail;
}
qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
(void *)(intptr_t)fds[0]);
io_thread_fd = fds[1];
return 0;
fail:
close(fds[0]);
close(fds[1]);
return err;
}
static void dummy_signal(int sig)
{
}
/* If we have signalfd, we mask out the signals we want to handle and then
* use signalfd to listen for them. We rely on whatever the current signal
* handler is to dispatch the signals when we receive them.
*/
static void sigfd_handler(void *opaque)
{
int fd = (intptr_t)opaque;
struct qemu_signalfd_siginfo info;
struct sigaction action;
ssize_t len;
while (1) {
do {
len = read(fd, &info, sizeof(info));
} while (len == -1 && errno == EINTR);
if (len == -1 && errno == EAGAIN) {
break;
}
if (len != sizeof(info)) {
printf("read from sigfd returned %zd: %m\n", len);
return;
}
sigaction(info.ssi_signo, NULL, &action);
if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
action.sa_sigaction(info.ssi_signo,
(siginfo_t *)&info, NULL);
} else if (action.sa_handler) {
action.sa_handler(info.ssi_signo);
}
}
}
static int qemu_signal_init(void)
{
int sigfd;
sigset_t set;
#ifdef CONFIG_IOTHREAD
/* SIGUSR2 used by posix-aio-compat.c */
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
/*
* SIG_IPI must be blocked in the main thread and must not be caught
* by sigwait() in the signal thread. Otherwise, the cpu thread will
* not catch it reliably.
*/
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_BLOCK, &set, NULL);
sigemptyset(&set);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
sigaddset(&set, SIGBUS);
#else
sigemptyset(&set);
sigaddset(&set, SIGBUS);
if (kvm_enabled()) {
/*
* We need to process timer signals synchronously to avoid a race
* between exit_request check and KVM vcpu entry.
*/
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
}
#endif
pthread_sigmask(SIG_BLOCK, &set, NULL);
sigfd = qemu_signalfd(&set);
if (sigfd == -1) {
fprintf(stderr, "failed to create signalfd\n");
return -errno;
}
fcntl_setfl(sigfd, O_NONBLOCK);
qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
(void *)(intptr_t)sigfd);
return 0;
}
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
int r;
sigset_t set;
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
#ifdef CONFIG_IOTHREAD
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
r = kvm_set_signal_mask(env, &set);
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
#else
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
pthread_sigmask(SIG_BLOCK, &set, NULL);
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIGIO);
sigdelset(&set, SIGALRM);
#endif
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
r = kvm_set_signal_mask(env, &set);
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
}
static void qemu_tcg_init_cpu_signals(void)
{
#ifdef CONFIG_IOTHREAD
sigset_t set;
struct sigaction sigact;
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = cpu_signal;
sigaction(SIG_IPI, &sigact, NULL);
sigemptyset(&set);
sigaddset(&set, SIG_IPI);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
#endif
}
#else /* _WIN32 */
HANDLE qemu_event_handle;
static void dummy_event_handler(void *opaque)
{
}
static int qemu_event_init(void)
{
qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!qemu_event_handle) {
fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
return -1;
}
qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
return 0;
}
static void qemu_event_increment(void)
{
if (!SetEvent(qemu_event_handle)) {
fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
GetLastError());
exit (1);
}
}
static int qemu_signal_init(void)
{
return 0;
}
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
abort();
}
static void qemu_tcg_init_cpu_signals(void)
{
}
#endif /* _WIN32 */
#ifndef CONFIG_IOTHREAD
int qemu_init_main_loop(void)
{
int ret;
ret = qemu_signal_init();
if (ret) {
return ret;
}
qemu_init_sigbus();
return qemu_event_init();
}
void qemu_main_loop_start(void)
{
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
int r;
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
if (kvm_enabled()) {
r = kvm_init_vcpu(env);
if (r < 0) {
fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
exit(1);
}
qemu_kvm_init_cpu_signals(env);
} else {
qemu_tcg_init_cpu_signals();
}
}
int qemu_cpu_is_self(void *env)
{
return 1;
}
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
{
func(data);
}
void resume_all_vcpus(void)
{
}
void pause_all_vcpus(void)
{
}
void qemu_cpu_kick(void *env)
{
}
void qemu_cpu_kick_self(void)
{
#ifndef _WIN32
assert(cpu_single_env);
raise(SIG_IPI);
#else
abort();
#endif
}
void qemu_notify_event(void)
{
CPUState *env = cpu_single_env;
qemu_event_increment ();
if (env) {
cpu_exit(env);
}
if (next_cpu && env != next_cpu) {
cpu_exit(next_cpu);
}
exit_request = 1;
}
void qemu_mutex_lock_iothread(void) {}
void qemu_mutex_unlock_iothread(void) {}
void cpu_stop_current(void)
{
}
void vm_stop(int reason)
{
do_vm_stop(reason);
}
#else /* CONFIG_IOTHREAD */
QemuMutex qemu_global_mutex;
static QemuCond qemu_io_proceeded_cond;
static bool iothread_requesting_mutex;
static QemuThread io_thread;
static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;
/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_pause_cond;
static QemuCond qemu_work_cond;
int qemu_init_main_loop(void)
{
int ret;
qemu_init_sigbus();
ret = qemu_signal_init();
if (ret) {
return ret;
}
/* Note eventfd must be drained before signalfd handlers run */
ret = qemu_event_init();
if (ret) {
return ret;
}
qemu_cond_init(&qemu_cpu_cond);
qemu_cond_init(&qemu_pause_cond);
qemu_cond_init(&qemu_work_cond);
qemu_cond_init(&qemu_io_proceeded_cond);
qemu_mutex_init(&qemu_global_mutex);
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(&io_thread);
return 0;
}
void qemu_main_loop_start(void)
{
resume_all_vcpus();
}
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
{
struct qemu_work_item wi;
if (qemu_cpu_is_self(env)) {
func(data);
return;
}
wi.func = func;
wi.data = data;
if (!env->queued_work_first) {
env->queued_work_first = &wi;
} else {
env->queued_work_last->next = &wi;
}
env->queued_work_last = &wi;
wi.next = NULL;
wi.done = false;
qemu_cpu_kick(env);
while (!wi.done) {
CPUState *self_env = cpu_single_env;
qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
cpu_single_env = self_env;
}
}
static void flush_queued_work(CPUState *env)
{
struct qemu_work_item *wi;
if (!env->queued_work_first) {
return;
}
while ((wi = env->queued_work_first)) {
env->queued_work_first = wi->next;
wi->func(wi->data);
wi->done = true;
}
env->queued_work_last = NULL;
qemu_cond_broadcast(&qemu_work_cond);
}
static void qemu_wait_io_event_common(CPUState *env)
{
if (env->stop) {
env->stop = 0;
env->stopped = 1;
qemu_cond_signal(&qemu_pause_cond);
}
flush_queued_work(env);
env->thread_kicked = false;
}
static void qemu_tcg_wait_io_event(void)
{
CPUState *env;
while (all_cpu_threads_idle()) {
/* Start accounting real time to the virtual clock if the CPUs
are idle. */
qemu_clock_warp(vm_clock);
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
}
while (iothread_requesting_mutex) {
qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
}
for (env = first_cpu; env != NULL; env = env->next_cpu) {
qemu_wait_io_event_common(env);
}
}
static void qemu_kvm_wait_io_event(CPUState *env)
{
while (cpu_thread_is_idle(env)) {
qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
}
qemu_kvm_eat_signals(env);
qemu_wait_io_event_common(env);
}
static void *qemu_kvm_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
int r;
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(env->thread);
env->thread_id = qemu_get_thread_id();
r = kvm_init_vcpu(env);
if (r < 0) {
fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
exit(1);
}
qemu_kvm_init_cpu_signals(env);
/* signal CPU creation */
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
while (1) {
if (cpu_can_run(env)) {
r = kvm_cpu_exec(env);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(env);
}
}
qemu_kvm_wait_io_event(env);
}
return NULL;
}
static void *qemu_tcg_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
qemu_tcg_init_cpu_signals();
qemu_thread_get_self(env->thread);
/* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
env->thread_id = qemu_get_thread_id();
env->created = 1;
}
qemu_cond_signal(&qemu_cpu_cond);
/* wait for initial kick-off after machine start */
while (first_cpu->stopped) {
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
}
while (1) {
cpu_exec_all();
if (use_icount && qemu_next_icount_deadline() <= 0) {
qemu_notify_event();
}
qemu_tcg_wait_io_event();
}
return NULL;
}
static void qemu_cpu_kick_thread(CPUState *env)
{
#ifndef _WIN32
int err;
err = pthread_kill(env->thread->thread, SIG_IPI);
if (err) {
fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
exit(1);
}
#else /* _WIN32 */
if (!qemu_cpu_is_self(env)) {
SuspendThread(env->thread->thread);
cpu_signal(0);
ResumeThread(env->thread->thread);
}
#endif
}
void qemu_cpu_kick(void *_env)
{
CPUState *env = _env;
qemu_cond_broadcast(env->halt_cond);
if (kvm_enabled() && !env->thread_kicked) {
qemu_cpu_kick_thread(env);
env->thread_kicked = true;
}
}
void qemu_cpu_kick_self(void)
{
#ifndef _WIN32
assert(cpu_single_env);
if (!cpu_single_env->thread_kicked) {
qemu_cpu_kick_thread(cpu_single_env);
cpu_single_env->thread_kicked = true;
}
#else
abort();
#endif
}
int qemu_cpu_is_self(void *_env)
{
CPUState *env = _env;
return qemu_thread_is_self(env->thread);
}
void qemu_mutex_lock_iothread(void)
{
if (kvm_enabled()) {
qemu_mutex_lock(&qemu_global_mutex);
} else {
iothread_requesting_mutex = true;
if (qemu_mutex_trylock(&qemu_global_mutex)) {
qemu_cpu_kick_thread(first_cpu);
qemu_mutex_lock(&qemu_global_mutex);
}
iothread_requesting_mutex = false;
qemu_cond_broadcast(&qemu_io_proceeded_cond);
}
}
void qemu_mutex_unlock_iothread(void)
{
qemu_mutex_unlock(&qemu_global_mutex);
}
static int all_vcpus_paused(void)
{
CPUState *penv = first_cpu;
while (penv) {
if (!penv->stopped) {
return 0;
}
penv = (CPUState *)penv->next_cpu;
}
return 1;
}
void pause_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 1;
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
while (!all_vcpus_paused()) {
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
penv = first_cpu;
while (penv) {
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
}
}
void resume_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 0;
penv->stopped = 0;
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
}
static void qemu_tcg_init_vcpu(void *_env)
{
CPUState *env = _env;
/* share a single thread for all cpus with TCG */
if (!tcg_cpu_thread) {
env->thread = g_malloc0(sizeof(QemuThread));
env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
tcg_halt_cond = env->halt_cond;
qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
while (env->created == 0) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
tcg_cpu_thread = env->thread;
} else {
env->thread = tcg_cpu_thread;
env->halt_cond = tcg_halt_cond;
}
}
static void qemu_kvm_start_vcpu(CPUState *env)
{
env->thread = g_malloc0(sizeof(QemuThread));
env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
while (env->created == 0) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
env->stopped = 1;
if (kvm_enabled()) {
qemu_kvm_start_vcpu(env);
} else {
qemu_tcg_init_vcpu(env);
}
}
void qemu_notify_event(void)
{
qemu_event_increment();
}
void cpu_stop_current(void)
{
if (cpu_single_env) {
cpu_single_env->stop = 0;
cpu_single_env->stopped = 1;
cpu_exit(cpu_single_env);
qemu_cond_signal(&qemu_pause_cond);
}
}
void vm_stop(int reason)
{
if (!qemu_thread_is_self(&io_thread)) {
qemu_system_vmstop_request(reason);
/*
* FIXME: should not return to device code in case
* vm_stop() has been requested.
*/
cpu_stop_current();
return;
}
do_vm_stop(reason);
}
#endif
static int tcg_cpu_exec(CPUState *env)
{
int ret;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
if (use_icount) {
int64_t count;
int decr;
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
count = qemu_icount_round(qemu_next_icount_deadline());
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
env->icount_decr.u16.low = decr;
env->icount_extra = count;
}
ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
qemu_time += profile_getclock() - ti;
#endif
if (use_icount) {
/* Fold pending instructions back into the
instruction counter, and clear the interrupt flag. */
qemu_icount -= (env->icount_decr.u16.low
+ env->icount_extra);
env->icount_decr.u32 = 0;
env->icount_extra = 0;
}
return ret;
}
bool cpu_exec_all(void)
{
int r;
/* Account partial waits to the vm_clock. */
qemu_clock_warp(vm_clock);
if (next_cpu == NULL) {
next_cpu = first_cpu;
}
for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
CPUState *env = next_cpu;
qemu_clock_enable(vm_clock,
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
#ifndef CONFIG_IOTHREAD
if (qemu_alarm_pending()) {
break;
}
#endif
if (cpu_can_run(env)) {
if (kvm_enabled()) {
r = kvm_cpu_exec(env);
qemu_kvm_eat_signals(env);
} else {
r = tcg_cpu_exec(env);
}
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(env);
break;
}
} else if (env->stop || env->stopped) {
break;
}
}
exit_request = 0;
return !all_cpu_threads_idle();
}
void set_numa_modes(void)
{
CPUState *env;
int i;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] & (1 << env->cpu_index)) {
env->numa_node = i;
}
}
}
}
void set_cpu_log(const char *optarg)
{
int mask;
const CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for (item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
void set_cpu_log_filename(const char *optarg)
{
cpu_set_log_filename(optarg);
}
/* Return the virtual CPU time, based on the instruction counter. */
int64_t cpu_get_icount(void)
{
int64_t icount;
CPUState *env = cpu_single_env;;
icount = qemu_icount;
if (env) {
if (!can_do_io(env)) {
fprintf(stderr, "Bad clock read\n");
}
icount -= (env->icount_decr.u16.low + env->icount_extra);
}
return qemu_icount_bias + (icount << icount_time_shift);
}
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list_id)
cpu_list_id(f, cpu_fprintf, optarg);
#elif defined(cpu_list)
cpu_list(f, cpu_fprintf); /* deprecated */
#endif
}