qemu/hw/riscv/microchip_pfsoc.c

438 lines
18 KiB
C
Raw Normal View History

/*
* QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
*
* Copyright (c) 2020 Wind River Systems, Inc.
*
* Author:
* Bin Meng <bin.meng@windriver.com>
*
* Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
*
* 0) CLINT (Core Level Interruptor)
* 1) PLIC (Platform Level Interrupt Controller)
* 2) eNVM (Embedded Non-Volatile Memory)
* 3) MMUARTs (Multi-Mode UART)
* 4) Cadence eMMC/SDHC controller and an SD card connected to it
* 5) SiFive Platform DMA (Direct Memory Access Controller)
* 6) GEM (Gigabit Ethernet MAC Controller)
*
* This board currently generates devicetree dynamically that indicates at least
* two harts and up to five harts.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/log.h"
#include "qemu/units.h"
#include "qemu/cutils.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "chardev/char.h"
#include "hw/cpu/cluster.h"
#include "target/riscv/cpu.h"
#include "hw/misc/unimp.h"
#include "hw/riscv/boot.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/microchip_pfsoc.h"
#include "hw/intc/sifive_clint.h"
#include "hw/intc/sifive_plic.h"
#include "sysemu/sysemu.h"
/*
* The BIOS image used by this machine is called Hart Software Services (HSS).
* See https://github.com/polarfire-soc/hart-software-services
*/
#define BIOS_FILENAME "hss.bin"
#define RESET_VECTOR 0x20220000
/* CLINT timebase frequency */
#define CLINT_TIMEBASE_FREQ 1000000
/* GEM version */
#define GEM_REVISION 0x0107010c
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} microchip_pfsoc_memmap[] = {
[MICROCHIP_PFSOC_DEBUG] = { 0x0, 0x1000 },
[MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
[MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
[MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
[MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
[MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
[MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
[MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
[MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
[MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
[MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
[MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
[MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
[MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
[MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
[MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
[MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
[MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
[MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
[MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
[MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
[MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
[MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
[MICROCHIP_PFSOC_IOSCB_CFG] = { 0x37080000, 0x1000 },
[MICROCHIP_PFSOC_DRAM] = { 0x80000000, 0x0 },
};
static void microchip_pfsoc_soc_instance_init(Object *obj)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_E51);
qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
TYPE_RISCV_HART_ARRAY);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
TYPE_RISCV_CPU_SIFIVE_U54);
qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
object_initialize_child(obj, "dma-controller", &s->dma,
TYPE_SIFIVE_PDMA);
object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
object_initialize_child(obj, "sd-controller", &s->sdhci,
TYPE_CADENCE_SDHCI);
}
static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
{
MachineState *ms = MACHINE(qdev_get_machine());
MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
MemoryRegion *envm_data = g_new(MemoryRegion, 1);
char *plic_hart_config;
size_t plic_hart_config_len;
NICInfo *nd;
int i;
sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
/*
* The cluster must be realized after the RISC-V hart array container,
* as the container's CPU object is only created on realize, and the
* CPU must exist and have been parented into the cluster before the
* cluster is realized.
*/
qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
/* E51 DTIM */
memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_E51_DTIM].base,
e51_dtim_mem);
/* Bus Error Units */
create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
/* CLINT */
sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
CLINT_TIMEBASE_FREQ, false);
/* L2 cache controller */
create_unimplemented_device("microchip.pfsoc.l2cc",
memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
/*
* Add L2-LIM at reset size.
* This should be reduced in size as the L2 Cache Controller WayEnable
* register is incremented. Unfortunately I don't see a nice (or any) way
* to handle reducing or blocking out the L2 LIM while still allowing it
* be re returned to all enabled after a reset. For the time being, just
* leave it enabled all the time. This won't break anything, but will be
* too generous to misbehaving guests.
*/
memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_L2LIM].base,
l2lim_mem);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
ms->smp.cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < ms->smp.cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
plic_hart_config_len);
} else {
strncat(plic_hart_config, "M", plic_hart_config_len);
}
plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
}
/* PLIC */
s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
plic_hart_config, 0,
MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
MICROCHIP_PFSOC_PLIC_PENDING_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
memmap[MICROCHIP_PFSOC_PLIC].size);
g_free(plic_hart_config);
/* DMA */
sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
memmap[MICROCHIP_PFSOC_DMA].base);
for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
qdev_get_gpio_in(DEVICE(s->plic),
MICROCHIP_PFSOC_DMA_IRQ0 + i));
}
/* SYSREG */
create_unimplemented_device("microchip.pfsoc.sysreg",
memmap[MICROCHIP_PFSOC_SYSREG].base,
memmap[MICROCHIP_PFSOC_SYSREG].size);
/* MPUCFG */
create_unimplemented_device("microchip.pfsoc.mpucfg",
memmap[MICROCHIP_PFSOC_MPUCFG].base,
memmap[MICROCHIP_PFSOC_MPUCFG].size);
/* SDHCI */
sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
memmap[MICROCHIP_PFSOC_EMMC_SD].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
/* MMUARTs */
s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART0].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
serial_hd(0));
s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART1].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
serial_hd(1));
s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART2].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
serial_hd(2));
s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART3].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
serial_hd(3));
s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
memmap[MICROCHIP_PFSOC_MMUART4].base,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
serial_hd(4));
/* GEMs */
nd = &nd_table[0];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem0), nd);
}
nd = &nd_table[1];
if (nd->used) {
qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
qdev_set_nic_properties(DEVICE(&s->gem1), nd);
}
object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
memmap[MICROCHIP_PFSOC_GEM0].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
memmap[MICROCHIP_PFSOC_GEM1].base);
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
/* GPIOs */
create_unimplemented_device("microchip.pfsoc.gpio0",
memmap[MICROCHIP_PFSOC_GPIO0].base,
memmap[MICROCHIP_PFSOC_GPIO0].size);
create_unimplemented_device("microchip.pfsoc.gpio1",
memmap[MICROCHIP_PFSOC_GPIO1].base,
memmap[MICROCHIP_PFSOC_GPIO1].size);
create_unimplemented_device("microchip.pfsoc.gpio2",
memmap[MICROCHIP_PFSOC_GPIO2].base,
memmap[MICROCHIP_PFSOC_GPIO2].size);
/* eNVM */
memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
&error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
envm_data);
/* IOSCBCFG */
create_unimplemented_device("microchip.pfsoc.ioscb.cfg",
memmap[MICROCHIP_PFSOC_IOSCB_CFG].base,
memmap[MICROCHIP_PFSOC_IOSCB_CFG].size);
}
static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = microchip_pfsoc_soc_realize;
/* Reason: Uses serial_hds in realize function, thus can't be used twice */
dc->user_creatable = false;
}
static const TypeInfo microchip_pfsoc_soc_type_info = {
.name = TYPE_MICROCHIP_PFSOC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(MicrochipPFSoCState),
.instance_init = microchip_pfsoc_soc_instance_init,
.class_init = microchip_pfsoc_soc_class_init,
};
static void microchip_pfsoc_soc_register_types(void)
{
type_register_static(&microchip_pfsoc_soc_type_info);
}
type_init(microchip_pfsoc_soc_register_types)
static void microchip_icicle_kit_machine_init(MachineState *machine)
{
MachineClass *mc = MACHINE_GET_CLASS(machine);
const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *main_mem = g_new(MemoryRegion, 1);
DriveInfo *dinfo = drive_get_next(IF_SD);
/* Sanity check on RAM size */
if (machine->ram_size < mc->default_ram_size) {
char *sz = size_to_str(mc->default_ram_size);
error_report("Invalid RAM size, should be bigger than %s", sz);
g_free(sz);
exit(EXIT_FAILURE);
}
/* Initialize SoC */
object_initialize_child(OBJECT(machine), "soc", &s->soc,
TYPE_MICROCHIP_PFSOC);
qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
/* Register RAM */
memory_region_init_ram(main_mem, NULL, "microchip.icicle.kit.ram",
machine->ram_size, &error_fatal);
memory_region_add_subregion(system_memory,
memmap[MICROCHIP_PFSOC_DRAM].base, main_mem);
/* Load the firmware */
riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
/* Attach an SD card */
if (dinfo) {
CadenceSDHCIState *sdhci = &(s->soc.sdhci);
DeviceState *card = qdev_new(TYPE_SD_CARD);
qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
}
}
static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "Microchip PolarFire SoC Icicle Kit";
mc->init = microchip_icicle_kit_machine_init;
mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
mc->default_cpus = mc->min_cpus;
mc->default_ram_size = 1 * GiB;
}
static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
.parent = TYPE_MACHINE,
.class_init = microchip_icicle_kit_machine_class_init,
.instance_size = sizeof(MicrochipIcicleKitState),
};
static void microchip_icicle_kit_machine_init_register_types(void)
{
type_register_static(&microchip_icicle_kit_machine_typeinfo);
}
type_init(microchip_icicle_kit_machine_init_register_types)