312 lines
8.7 KiB
C
312 lines
8.7 KiB
C
|
/*
|
||
|
* ARM debug helpers.
|
||
|
*
|
||
|
* This code is licensed under the GNU GPL v2 or later.
|
||
|
*
|
||
|
* SPDX-License-Identifier: GPL-2.0-or-later
|
||
|
*/
|
||
|
#include "qemu/osdep.h"
|
||
|
#include "cpu.h"
|
||
|
#include "internals.h"
|
||
|
#include "exec/exec-all.h"
|
||
|
#include "exec/helper-proto.h"
|
||
|
|
||
|
/* Return true if the linked breakpoint entry lbn passes its checks */
|
||
|
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
|
||
|
{
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
uint64_t bcr = env->cp15.dbgbcr[lbn];
|
||
|
int brps = extract32(cpu->dbgdidr, 24, 4);
|
||
|
int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
|
||
|
int bt;
|
||
|
uint32_t contextidr;
|
||
|
|
||
|
/*
|
||
|
* Links to unimplemented or non-context aware breakpoints are
|
||
|
* CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
|
||
|
* as if linked to an UNKNOWN context-aware breakpoint (in which
|
||
|
* case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
|
||
|
* We choose the former.
|
||
|
*/
|
||
|
if (lbn > brps || lbn < (brps - ctx_cmps)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bcr = env->cp15.dbgbcr[lbn];
|
||
|
|
||
|
if (extract64(bcr, 0, 1) == 0) {
|
||
|
/* Linked breakpoint disabled : generate no events */
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
bt = extract64(bcr, 20, 4);
|
||
|
|
||
|
/*
|
||
|
* We match the whole register even if this is AArch32 using the
|
||
|
* short descriptor format (in which case it holds both PROCID and ASID),
|
||
|
* since we don't implement the optional v7 context ID masking.
|
||
|
*/
|
||
|
contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
|
||
|
|
||
|
switch (bt) {
|
||
|
case 3: /* linked context ID match */
|
||
|
if (arm_current_el(env) > 1) {
|
||
|
/* Context matches never fire in EL2 or (AArch64) EL3 */
|
||
|
return false;
|
||
|
}
|
||
|
return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
|
||
|
case 5: /* linked address mismatch (reserved in AArch64) */
|
||
|
case 9: /* linked VMID match (reserved if no EL2) */
|
||
|
case 11: /* linked context ID and VMID match (reserved if no EL2) */
|
||
|
default:
|
||
|
/*
|
||
|
* Links to Unlinked context breakpoints must generate no
|
||
|
* events; we choose to do the same for reserved values too.
|
||
|
*/
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
|
||
|
{
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
uint64_t cr;
|
||
|
int pac, hmc, ssc, wt, lbn;
|
||
|
/*
|
||
|
* Note that for watchpoints the check is against the CPU security
|
||
|
* state, not the S/NS attribute on the offending data access.
|
||
|
*/
|
||
|
bool is_secure = arm_is_secure(env);
|
||
|
int access_el = arm_current_el(env);
|
||
|
|
||
|
if (is_wp) {
|
||
|
CPUWatchpoint *wp = env->cpu_watchpoint[n];
|
||
|
|
||
|
if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
|
||
|
return false;
|
||
|
}
|
||
|
cr = env->cp15.dbgwcr[n];
|
||
|
if (wp->hitattrs.user) {
|
||
|
/*
|
||
|
* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
|
||
|
* match watchpoints as if they were accesses done at EL0, even if
|
||
|
* the CPU is at EL1 or higher.
|
||
|
*/
|
||
|
access_el = 0;
|
||
|
}
|
||
|
} else {
|
||
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
||
|
|
||
|
if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
|
||
|
return false;
|
||
|
}
|
||
|
cr = env->cp15.dbgbcr[n];
|
||
|
}
|
||
|
/*
|
||
|
* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
|
||
|
* enabled and that the address and access type match; for breakpoints
|
||
|
* we know the address matched; check the remaining fields, including
|
||
|
* linked breakpoints. We rely on WCR and BCR having the same layout
|
||
|
* for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
|
||
|
* Note that some combinations of {PAC, HMC, SSC} are reserved and
|
||
|
* must act either like some valid combination or as if the watchpoint
|
||
|
* were disabled. We choose the former, and use this together with
|
||
|
* the fact that EL3 must always be Secure and EL2 must always be
|
||
|
* Non-Secure to simplify the code slightly compared to the full
|
||
|
* table in the ARM ARM.
|
||
|
*/
|
||
|
pac = extract64(cr, 1, 2);
|
||
|
hmc = extract64(cr, 13, 1);
|
||
|
ssc = extract64(cr, 14, 2);
|
||
|
|
||
|
switch (ssc) {
|
||
|
case 0:
|
||
|
break;
|
||
|
case 1:
|
||
|
case 3:
|
||
|
if (is_secure) {
|
||
|
return false;
|
||
|
}
|
||
|
break;
|
||
|
case 2:
|
||
|
if (!is_secure) {
|
||
|
return false;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
switch (access_el) {
|
||
|
case 3:
|
||
|
case 2:
|
||
|
if (!hmc) {
|
||
|
return false;
|
||
|
}
|
||
|
break;
|
||
|
case 1:
|
||
|
if (extract32(pac, 0, 1) == 0) {
|
||
|
return false;
|
||
|
}
|
||
|
break;
|
||
|
case 0:
|
||
|
if (extract32(pac, 1, 1) == 0) {
|
||
|
return false;
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
g_assert_not_reached();
|
||
|
}
|
||
|
|
||
|
wt = extract64(cr, 20, 1);
|
||
|
lbn = extract64(cr, 16, 4);
|
||
|
|
||
|
if (wt && !linked_bp_matches(cpu, lbn)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
static bool check_watchpoints(ARMCPU *cpu)
|
||
|
{
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
int n;
|
||
|
|
||
|
/*
|
||
|
* If watchpoints are disabled globally or we can't take debug
|
||
|
* exceptions here then watchpoint firings are ignored.
|
||
|
*/
|
||
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
||
|
|| !arm_generate_debug_exceptions(env)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
|
||
|
if (bp_wp_matches(cpu, n, true)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
static bool check_breakpoints(ARMCPU *cpu)
|
||
|
{
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
int n;
|
||
|
|
||
|
/*
|
||
|
* If breakpoints are disabled globally or we can't take debug
|
||
|
* exceptions here then breakpoint firings are ignored.
|
||
|
*/
|
||
|
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|
||
|
|| !arm_generate_debug_exceptions(env)) {
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
|
||
|
if (bp_wp_matches(cpu, n, false)) {
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void HELPER(check_breakpoints)(CPUARMState *env)
|
||
|
{
|
||
|
ARMCPU *cpu = env_archcpu(env);
|
||
|
|
||
|
if (check_breakpoints(cpu)) {
|
||
|
HELPER(exception_internal(env, EXCP_DEBUG));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
|
||
|
{
|
||
|
/*
|
||
|
* Called by core code when a CPU watchpoint fires; need to check if this
|
||
|
* is also an architectural watchpoint match.
|
||
|
*/
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
|
||
|
return check_watchpoints(cpu);
|
||
|
}
|
||
|
|
||
|
void arm_debug_excp_handler(CPUState *cs)
|
||
|
{
|
||
|
/*
|
||
|
* Called by core code when a watchpoint or breakpoint fires;
|
||
|
* need to check which one and raise the appropriate exception.
|
||
|
*/
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
CPUWatchpoint *wp_hit = cs->watchpoint_hit;
|
||
|
|
||
|
if (wp_hit) {
|
||
|
if (wp_hit->flags & BP_CPU) {
|
||
|
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
|
||
|
bool same_el = arm_debug_target_el(env) == arm_current_el(env);
|
||
|
|
||
|
cs->watchpoint_hit = NULL;
|
||
|
|
||
|
env->exception.fsr = arm_debug_exception_fsr(env);
|
||
|
env->exception.vaddress = wp_hit->hitaddr;
|
||
|
raise_exception(env, EXCP_DATA_ABORT,
|
||
|
syn_watchpoint(same_el, 0, wnr),
|
||
|
arm_debug_target_el(env));
|
||
|
}
|
||
|
} else {
|
||
|
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
|
||
|
bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
|
||
|
|
||
|
/*
|
||
|
* (1) GDB breakpoints should be handled first.
|
||
|
* (2) Do not raise a CPU exception if no CPU breakpoint has fired,
|
||
|
* since singlestep is also done by generating a debug internal
|
||
|
* exception.
|
||
|
*/
|
||
|
if (cpu_breakpoint_test(cs, pc, BP_GDB)
|
||
|
|| !cpu_breakpoint_test(cs, pc, BP_CPU)) {
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
env->exception.fsr = arm_debug_exception_fsr(env);
|
||
|
/*
|
||
|
* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
|
||
|
* values to the guest that it shouldn't be able to see at its
|
||
|
* exception/security level.
|
||
|
*/
|
||
|
env->exception.vaddress = 0;
|
||
|
raise_exception(env, EXCP_PREFETCH_ABORT,
|
||
|
syn_breakpoint(same_el),
|
||
|
arm_debug_target_el(env));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#if !defined(CONFIG_USER_ONLY)
|
||
|
|
||
|
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
|
||
|
{
|
||
|
ARMCPU *cpu = ARM_CPU(cs);
|
||
|
CPUARMState *env = &cpu->env;
|
||
|
|
||
|
/*
|
||
|
* In BE32 system mode, target memory is stored byteswapped (on a
|
||
|
* little-endian host system), and by the time we reach here (via an
|
||
|
* opcode helper) the addresses of subword accesses have been adjusted
|
||
|
* to account for that, which means that watchpoints will not match.
|
||
|
* Undo the adjustment here.
|
||
|
*/
|
||
|
if (arm_sctlr_b(env)) {
|
||
|
if (len == 1) {
|
||
|
addr ^= 3;
|
||
|
} else if (len == 2) {
|
||
|
addr ^= 2;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return addr;
|
||
|
}
|
||
|
|
||
|
#endif
|